
in a computer system. Hardware

and software cooperate in a

computer system to accomplish

complex tasks. The nature of

that cooperation and the purpose

of various hardware components

are important prerequisites to

the study of software develop-

ment. Furthermore, computer

networks have revolutionized the

manner in which computers are

used, and they now play a key

role in even basic software

development. This chapter

explores a broad range of com-

puting issues, laying the founda-

tion for the study of software

development.

◗ Describe the relationship between
hardware and software.

◗ Define various types of software
and how they are used.

◗ Identify the core hardware compo-
nents of a computer and explain
their purposes.

◗ Explain how the hardware compo-
nents interact to execute programs
and manage data.

◗ Describe how computers are con-
nected together into networks to
share information.

◗ Explain the impact and significance
of the Internet and the World Wide
Web.

◗ Introduce the Java programming
language.

◗ Describe the steps involved in pro-
gram compilation and execution.

◗ Introduce graphics and their repre-
sentations.

chapter
objectives

This book is about writing well-designed software.
To understand software, we must first have a

fundamental understanding of its role

1
computer systems

2 CHAPTER 1 computer systems

1.0 introduction
We begin our exploration of computer systems with an overview of computer
processing, defining some fundamental terminology and showing how the key
pieces of a computer system interact.

basic computer processing
A computer system is made up of hardware and software. The hardware compo-
nents of a computer system are the physical, tangible pieces that support the com-
puting effort. They include chips, boxes, wires, keyboards, speakers, disks,

cables, plugs, printers, mice, monitors, and so on. If you can physically
touch it and it can be considered part of a computer system, then it is
computer hardware.

The hardware components of a computer are essentially useless
without instructions to tell them what to do. A program is a series of

instructions that the hardware executes one after another. Software consists of
programs and the data those programs use. Software is the intangible counterpart
to the physical hardware components. Together they form a tool that we can use
to solve problems.

The key hardware components in a computer system are:

◗ central processing unit (CPU)

◗ input/output (I/O) devices

◗ main memory

◗ secondary memory devices

Each of these hardware components is described in detail in the next section.
For now, let’s simply examine their basic roles. The central processing unit (CPU)
is the device that executes the individual commands of a program. Input/output
(I/O) devices, such as the keyboard, mouse, and monitor, allow a human being to
interact with the computer.

Programs and data are held in storage devices called memory, which fall into
two categories: main memory and secondary memory. Main memory is the stor-
age device that holds the software while it is being processed by the CPU.
Secondary memory devices store software in a relatively permanent manner. The
most important secondary memory device of a typical computer system is the
hard disk that resides inside the main computer box. A floppy disk is similar to a
hard disk, but it cannot store nearly as much information as a hard disk. Floppy

A computer system consists of
hardware and software that
work in concert to help us
solve problems.

ke
y

co
nc

ep
t

disks have the advantage of portability; they can be removed temporarily or
moved from computer to computer as needed. Other portable secondary memory
devices include zip disks and compact discs (CDs).

Figure 1.1 shows how information moves among the basic hardware compo-
nents of a computer. Suppose you have an executable program you wish to run.
The program is stored on some secondary memory device, such as a hard
disk.When you instruct the computer to execute your program, a copy
of the program is brought in from secondary memory and stored in
main memory. The CPU reads the individual program instructions
from main memory. The CPU then executes the instructions one at a
time until the program ends. The data that the instructions use, such
as two numbers that will be added together, are also stored in main
memory. They are either brought in from secondary memory or read
from an input device such as the keyboard. During execution, the pro-
gram may display information to an output device such as a monitor.

The process of executing a program is fundamental to the operation of a com-
puter. All computer systems basically work in the same way.

software categories
Software can be classified into many categories using various criteria. At this
point we will simply differentiate between system programs and application
programs.

The operating system is the core software of a computer. It performs two
important functions. First, it provides a user interface that allows the user to

1.0 introduction 3

figure 1.1 A simplified view of a computer system

Hard disk

Keyboard

Main
memory

MonitorFloppy disk

CPU

To execute a program, the
computer first copies the pro-
gram from secondary memory
to main memory. The CPU
then reads the program
instructions from main mem-
ory, executing them one at a
time until the program ends.

key
concept

4 CHAPTER 1 computer systems

interact with the machine. Second, the operating system manages
computer resources such as the CPU and main memory. It determines
when programs are allowed to run, where they are loaded into mem-
ory, and how hardware devices communicate. It is the operating sys-

tem’s job to make the computer easy to use and to ensure that it runs efficiently.

Several popular operating systems are in use today. Windows 98, Windows
NT, Windows 2000, and Windows XP are several versions of the operating sys-
tem developed by Microsoft for personal computers. Various versions of the Unix
operating system are also quite popular, especially in larger computer systems. A
version of Unix called Linux was developed as an open source project, which
means that many people contributed to its development and its code is freely
available. Because of that, Linux has become a particular favorite among some
users. Mac OS is the operating system used for computing systems developed by
Apple Computers.

An application is a generic term for just about any software other than the
operating system. Word processors, missile control systems, database managers,
Web browsers, and games can all be considered application programs. Each
application program has its own user interface that allows the user to interact
with that particular program.

The user interface for most modern operating systems and applications is a
graphical user interface (GUI), which, as the name implies, make use of graphical
screen elements. These elements include:

◗ windows, which are used to separate the screen into distinct work areas

◗ icons, which are small images that represent computer resources, such as a
file

◗ pull-down menus, which provide the user with lists of options

◗ scroll bars, which allow the user to move up and down in a particular
window

◗ buttons, which can be “pushed” with a mouse click to indicate a user
selection

The mouse is the primary input device used with GUIs; thus, GUIs are some-
times called point-and-click interfaces. The screen shot in Fig. 1.2 shows an
example of a GUI.

The interface to an application or operating system is an important part of the
software because it is the only part of the program with which the user directly
interacts. To the user, the interface is the program. Chapter 9 discusses the cre-
ation of graphical user interfaces.

The operating system provides
a user interface and manages
computer resources.

ke
y

co
nc

ep
t

1.0 introduction 5

The focus of this book is the development of high-quality applica-
tion programs. We explore how to design and write software that will
perform calculations, make decisions, and control graphics. We use the
Java programming language throughout the text to demonstrate vari-
ous computing concepts.

digital computers
Two fundamental techniques are used to store and manage information: analog
and digital. Analog information is continuous, in direct proportion to the source
of the information. For example, a mercury thermometer is an analog device for
measuring temperature. The mercury rises in a tube in direct proportion to the
temperature outside the tube. Another example of analog information is an elec-
tronic signal used to represent the vibrations of a sound wave. The signal’s volt-
age varies in direct proportion to the original sound wave. A stereo amplifier
sends this kind of electronic signal to its speakers, which vibrate to reproduce the
sound. We use the term analog because the signal is directly analogous to the
information it represents. Figure 1.3 graphically depicts a sound wave captured
by a microphone and represented as an electronic signal.

figure 1.2 An example of a graphical user interface (GUI) (Palm Desktop™
courtesy of 3COM Corporation)

As far as the user is con-
cerned, the interface is the
program.

key
concept

6 CHAPTER 1 computer systems

Digital technology breaks information into discrete pieces and represents those
pieces as numbers. The music on a compact disc is stored digitally, as a series of
numbers. Each number represents the voltage level of one specific instance of the
recording. Many of these measurements are taken in a short period of time, per-
haps 40,000 measurements every second. The number of measurements per sec-
ond is called the sampling rate. If samples are taken often enough, the discrete
voltage measurements can be used to generate a continuous analog signal that is
“close enough” to the original. In most cases, the goal is to create a reproduction
of the original signal that is good enough to satisfy the human ear.

Figure 1.4 shows the sampling of an analog signal. When analog
information is converted to a digital format by breaking it into pieces,
we say it has been digitized. Because the changes that occur in a signal
between samples are lost, the sampling rate must be sufficiently fast.

Sampling is only one way to digitize information. For example, a
sentence of text is stored on a computer as a series of numbers, where each num-
ber represents a single character in the sentence. Every letter, digit, and punctua-
tion symbol has been assigned a number. Even the space character is assigned a
number. Consider the following sentence:

Hi, Heather.

figure 1.3 A sound wave and an electronic analog signal
that represents the wave

Sound wave Analog signal of the sound wave

Digital computers store infor-
mation by breaking it into
pieces and representing each
piece as a number.

ke
y

co
nc

ep
t

1.0 introduction 7

The characters of the sentence are represented as a series of 12 numbers, as
shown in Fig. 1.5. When a character is repeated, such as the uppercase ‘H’, the
same representation number is used. Note that the uppercase version of a letter
is stored as a different number from the lowercase version, such as the ‘H’ and
‘h’ in the word Heather. They are considered separate and distinct characters.

Modern electronic computers are digital. Every kind of information, including
text, images, numbers, audio, video, and even program instructions, is broken
into pieces. Each piece is represented as a number. The information is stored by
storing those numbers.

figure 1.4 Digitizing an analog signal by sampling

Information can be lost
between samples

Analog signal

Sampling process

Sampled values 12 11 39 40 7 14 47

figure 1.5 Text is stored by mapping each character to a number

72 105 44 32 72 101 97 104 114116 101 46

H i , H e a t h e r .

8 CHAPTER 1 computer systems

binary numbers
A digital computer stores information as numbers, but those numbers are not
stored as decimal values. All information in a computer is stored and managed as
binary values. Unlike the decimal system, which has 10 digits (0 through 9), the
binary number system has only two digits (0 and 1). A single binary digit is called
a bit.

All number systems work according to the same rules. The base value of a
number system dictates how many digits we have to work with and indicates the
place value of each digit in a number. The decimal number system is base 10,
whereas the binary number system is base 2. Appendix B contains a detailed dis-
cussion of number systems.

Modern computers use binary numbers because the devices that
store and move information are less expensive and more reliable if they
have to represent only one of two possible values. Other than this char-
acteristic, there is nothing special about the binary number system.
Computers have been created that use other number systems to store
information, but they aren’t as convenient.

Some computer memory devices, such as hard drives, are magnetic
in nature. Magnetic material can be polarized easily to one extreme or the other,
but intermediate levels are difficult to distinguish. Therefore magnetic devices can
be used to represent binary values quite efficiently—a magnetized area represents
a binary 1 and a demagnetized area represents a binary 0. Other computer mem-
ory devices are made up of tiny electrical circuits. These devices are easier to cre-
ate and are less likely to fail if they have to switch between only two states. We’re
better off reproducing millions of these simple devices than creating fewer, more
complicated ones.

Binary values and digital electronic signals go hand in hand. They improve our
ability to transmit information reliably along a wire. As we’ve seen, analog signal
has continuously varying voltage, but a digital signal is discrete, which means the
voltage changes dramatically between one extreme (such as +5 volts) and the
other (such as –5 volts). At any point, the voltage of a digital signal is considered
to be either “high,” which represents a binary 1, or “low,” which represents a
binary 0. Figure 1.6 compares these two types of signals.

As a signal moves down a wire, it gets weaker and degrades due to environ-
mental conditions. That is, the voltage levels of the original signal change slightly.
The trouble with an analog signal is that as it fluctuates, it loses its original infor-
mation. Since the information is directly analogous to the signal, any change in
the signal changes the information. The changes in an analog signal cannot be

Binary values are used to store
all information in a computer
because the devices that store
and manipulate binary infor-
mation are inexpensive and
reliable.

ke
y

co
nc

ep
t

1.0 introduction 9

recovered because the degraded signal is just as valid as the original. A digital sig-
nal degrades just as an analog signal does, but because the digital signal is origi-
nally at one of two extremes, it can be reinforced before any information is lost.
The voltage may change slightly from its original value, but it still can be inter-
preted as either high or low.

The number of bits we use in any given situation determines the number of
unique items we can represent. A single bit has two possible values, 0 and 1, and
therefore can represent two possible items or situations. If we want to represent
the state of a light bulb (off or on), one bit will suffice, because we can interpret
0 as the light bulb being off and 1 as the light bulb being on. If we want to rep-
resent more than two things, we need more than one bit.

Two bits, taken together, can represent four possible items because there are
exactly four permutations of two bits: 00, 01, 10, and 11. Suppose we want to
represent the gear that a car is in (park, drive, reverse, or neutral). We would need
only two bits, and could set up a mapping between the bit permuta-
tions and the gears. For instance, we could say that 00 represents park,
01 represents drive, 10 represents reverse, and 11 represents neutral.
In this case, it wouldn’t matter if we switched that mapping around,
though in some cases the relationships between the bit permutations
and what they represent is important.

Three bits can represent eight unique items, because there are eight permuta-
tions of three bits. Similarly, four bits can represent 16 items, five bits can repre-
sent 32 items, and so on. Figure 1.7 shows the relationship between the number
of bits used and the number of items they can represent. In general, N bits can
represent 2N unique items. For every bit added, the number of items that can be
represented doubles.

figure 1.6 An analog signal vs. a digital signal

Analog signal Digital signal

There are exactly 2N permuta-
tions of N bits. Therefore N
bits can represent up to 2N

unique items.

key
concept

We’ve seen how a sentence of text is stored on a computer by mapping char-
acters to numeric values. Those numeric values are stored as binary numbers.
Suppose we want to represent character strings in a language that contains 256
characters and symbols. We would need to use eight bits to store each character
because there are 256 unique permutations of eight bits (28 equals 256). Each bit
permutation, or binary value, is mapped to a specific character.

Ultimately, representing information on a computer boils down to the number
of items there are to represent and determining the way those items are mapped
to binary values.

1.1 hardware components
Let’s examine the hardware components of a computer system in more detail.
Consider the computer described in Fig. 1.8. What does it all mean? Is the system
capable of running the software you want it to? How does it compare to other
systems? These terms are explained throughout this section.

10 CHAPTER 1 computer systems

figure 1.7 The number of bits used determines the number of items
that can be represented

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

1 bit 2 bits 3 bits 4 bits
2 items 4 items 8 items 16 items

5 bits
32 items

000

001

010

011

100

101

110

111

00

01

10

11

0

1

computer architecture
The architecture of a house defines its structure. Similarly, we use the term com-
puter architecture to describe how the hardware components of a computer are
put together. Figure 1.9 illustrates the basic architecture of a generic computer
system. Information travels between components across a group of wires called a
bus.

The CPU and the main memory make up the core of a computer. As we men-
tioned earlier, main memory stores programs and data that are in active use, and
the CPU methodically executes program instructions one at a time.

Suppose we have a program that computes the average of a list of
numbers. The program and the numbers must reside in main memory
while the program runs. The CPU reads one program instruction from
main memory and executes it. If an instruction needs data, such as a
number in the list, to perform its task, the CPU reads that information
as well. This process repeats until the program ends. The average,
when computed, is stored in main memory to await further processing
or long-term storage in secondary memory.

■ 950 MHz Intel Pentium 4 processor

■ 512 MB RAM

■ 30 GB Hard Disk

■ CD-RW 24x/10x/40x

■ 17" Video Display with 1280 x 1024 resolution

■ 56 Kb/s modem

1.1 hardware components 11

figure 1.8 The hardware specification of a particular computer

The core of a computer is
made up of the CPU and the
main memory. Main memory
is used to store programs and
data. The CPU executes a pro-
gram’s instructions one at a
time.

key
concept

12 CHAPTER 1 computer systems

Almost all devices in a computer system other than the CPU and main mem-
ory are called peripherals; they operate at the periphery, or outer edges, of the sys-
tem (although they may be in the same box). Users don’t interact directly with the
CPU or main memory. Although they form the essence of the machine, the CPU
and main memory would not be useful without peripheral devices.

Controllers are devices that coordinate the activities of specific peripherals.
Every device has its own particular way of formatting and communicating data,
and part of the controller’s role is to handle these idiosyncrasies and isolate them
from the rest of the computer hardware. Furthermore, the controller often han-
dles much of the actual transmission of information, allowing the CPU to focus
on other activities.

Input/output (I/O) devices and secondary memory devices are considered
peripherals. Another category of peripherals includes data transfer devices, which
allow information to be sent and received between computers. The computer
specified in Fig. 1.8 includes a data transfer device called a modem, which allows
information to be sent across a telephone line. The modem in the example can
transfer data at a maximum rate of 56 kilobits (Kb) per second, or approximately
56,000 bits per second (bps).

In some ways, secondary memory devices and data transfer devices can be
thought of as I/O devices because they represent a source of information (input)

figure 1.9 Basic computer architecture

Other peripheral devices

Main
memory

Central
processing

unit

Controller
Video

controller
Disk

controller Controller

Bus

1.1 hardware components 13

and a place to send information (output). For our discussion, however, we define
I/O devices as those devices that allow the user to interact with the computer.

input/output devices
Let’s examine some I/O devices in more detail. The most common input devices
are the keyboard and the mouse. Others include:

◗ bar code readers, such as the ones used at a grocery store checkout

◗ joysticks, often used for games and advanced graphical applications

◗ microphones, used by voice recognition systems that interpret simple voice
commands

◗ virtual reality devices, such as gloves that interpret the movement of the
user’s hand

◗ scanners, which convert text, photographs, and graphics into machine-
readable form

Monitors and printers are the most common output devices. Others include:

◗ plotters, which move pens across large sheets of paper (or vice versa)

◗ speakers, for audio output

◗ goggles, for virtual reality display

Some devices can provide both input and output capabilities. A touch screen
system can detect the user touching the screen at a particular place. Software can
then use the screen to display text and graphics in response to the user’s touch.
Touch screens are particularly useful in situations where the interface to the
machine must be simple, such as at an information booth.

The computer described in Fig. 1.8 includes a monitor with a 17-inch diago-
nal display area. A picture is created by breaking it up into small pieces called pix-
els, a term that stands for “picture elements.” The monitor can display a grid of
1280 by 1024 pixels. The last section of this chapter explores the representation
of graphics in more detail.

main memory and secondary memory
Main memory is made up of a series of small, consecutive memory locations, as
shown in Fig. 1.10. Associated with each memory location is a unique number
called an address.

14 CHAPTER 1 computer systems

When data is stored in a memory location, it overwrites and
destroys any information that was previously stored at that location.
However, data is read from a memory location without affecting it.

On many computers, each memory location consists of eight bits, or
one byte, of information. If we need to store a value that cannot be rep-

resented in a single byte, such as a large number, then multiple, consecutive bytes
are used to store the data.

The storage capacity of a device such as main memory is the total number of
bytes it can hold. Devices can store thousands or millions of bytes, so you should

become familiar with larger units of measure. Because computer mem-
ory is based on the binary number system, all units of storage are pow-
ers of two. A kilobyte (KB) is 1,024, or 210, bytes. Some larger units of
storage are a megabyte (MB), a gigabyte (GB), and a terabyte (TB), as
listed in Fig. 1.11. It’s usually easier to think about these capacities by
rounding them off. For example, most computer users think of a kilo-
byte as approximately one thousand bytes, a megabyte as approxi-
mately one million bytes, and so forth.

Many personal computers have 128, 256, or 512 megabytes of main memory,
or RAM, such as the system described in Fig. 1.8 (we discuss RAM in more detail
later in the chapter). A large main memory allows large programs, or multiple
programs, to run efficiently because they don’t have to retrieve information from
secondary memory as often.

figure 1.10 Memory locations

Addresses

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

Data values are stored in
memory locations.

Large values are stored
in consecutive memory
locations.

An address is a unique number
associated with each memory
location. It is used when stor-
ing and retrieving data from
memory.

ke
y

co
nc

ep
t

Data written to a memory loca-
tion overwrites and destroys
any information that was pre-
viously stored at that location.
Data read from a memory
location leaves the value in
memory unaffected.

ke
y

co
nc

ep
t

1.1 hardware components 15

Main memory is usually volatile, meaning that the information
stored in it will be lost if its electric power supply is turned off. When
you are working on a computer, you should often save your work onto
a secondary memory device such as a disk in case the power is lost.
Secondary memory devices are usually nonvolatile; the information is
retained even if the power supply is turned off.

The most common secondary storage devices are hard disks and floppy disks.
A high-density floppy disk can store 1.44 MB of information. The storage capac-
ities of hard drives vary, but on personal computers, capacities typically range
between 10 and 40 GB, such as in the system described in Fig. 1.8.

A disk is a magnetic medium on which bits are represented as magnetized par-
ticles. A read/write head passes over the spinning disk, reading or writing
information as appropriate. A hard disk drive might actually contain several disks
in a vertical column with several read/write heads, such as the one shown in Fig.
1.12.

To get an intuitive feel for how much information these devices can store, con-
sider that all the information in this book, including pictures and formatting,
requires about 6 MB of storage.

Magnetic tapes are also used as secondary storage but are considerably slower
than disks because of the way information is accessed. A disk is a direct access
device since the read/write head can move, in general, directly to the information
needed. The terms direct access and random access are often used interchange-
ably. However, information on a tape can be accessed only after first getting past
the intervening data. A tape must be rewound or fast-forwarded to get to the
appropriate position. A tape is therefore considered a sequential access device.

figure 1.11 Units of binary storage

byte

kilobyte

megabyte

gigabyte

terabyte

KB

MB

GB

TB

20 = 1

210 = 1024

220 = 1,048,576

230 = 1,073,741,824

240 = 1,099,511,627,776

Unit Symbol Number of Bytes

Main memory is volatile,
meaning the stored informa-
tion is maintained only as
long as electric power is sup-
plied. Secondary memory
devices are usually non-
volatile.

key
concept

16 CHAPTER 1 computer systems

Tapes are usually used only to store information when it is no longer used fre-
quently, or to provide a backup copy of the information on a disk.

Two other terms are used to describe memory devices: random access memory
(RAM) and read-only memory (ROM). It’s important to understand these terms
because they are used often, and their names can be misleading. The terms RAM
and main memory are basically interchangeable. When contrasted with ROM,
however, the term RAM seems to imply something it shouldn’t. Both RAM and
ROM are direct (or random) access devices. RAM should probably be called
read-write memory, since data can be both written to it and read from it. This fea-
ture distinguishes it from ROM. After information is stored on ROM, it cannot
be altered (as the term “read-only” implies). ROM chips are often embedded into
the main circuit board of a computer and used to provide the preliminary instruc-
tions needed when the computer is initially turned on.

A CD-ROM is a portable secondary memory device. CD stands for compact
disc. It is accurately called ROM because information is stored permanently when

the CD is created and cannot be changed. Like its musical CD coun-
terpart, a CD-ROM stores information in binary format. When the CD
is initially created, a microscopic pit is pressed into the disc to repre-
sent a binary 1, and the disc is left smooth to represent a binary 0. The
bits are read by shining a low-intensity laser beam onto the spinning
disc. The laser beam reflects strongly from a smooth area on the disc

figure 1.12 A hard disk drive with multiple disks and read/write heads

Disks

Read/write
head

The surface of a CD has both
smooth areas and small pits. A
pit represents a binary 1 and a
smooth area represents a
binary 0.

ke
y

co
nc

ep
t

1.1 hardware components 17

but weakly from a pitted area. A sensor receiving the reflection determines
whether each bit is a 1 or a 0 accordingly. A typical CD-ROM’s storage capacity
is approximately 650 MB.

Variations on basic CD technology have emerged quickly. It is now common
for a home computer to be equipped with a CD-Recordable (CD-R) drive. A
CD-R can be used to create a CD for music or for general computer storage. Once
created, you can use a CD-R disc in a standard CD player, but you can’t change
the information on a CD-R disc once it has been “burned.” Music CDs that you
buy in a store are pressed from a mold, whereas CD-Rs are burned with a laser.

A CD-Rewritable (CD-RW) disc can be erased and reused. They can
be reused because the pits and flat surfaces of a normal CD are simu-
lated on a CD-RW by coating the surface of the disc with a material
that, when heated to one temperature becomes amorphous (and there-
fore non-reflective) and when heated to a different temperature
becomes crystalline (and therefore reflective). The CD-RW media
doesn’t work in all players, but CD-Rewritable drives can create both
CD-R and CD-RW discs.

CDs were initially a popular format for music; they later evolved to be used as
a general computer storage device. Similarly, the DVD format was originally cre-
ated for video and is now making headway as a general format for computer
data. DVD once stood for digital video disc or digital versatile disc, but now the
acronym generally stands on its own. A DVD has a tighter format (more bits per
square inch) than a CD and can therefore store much more information. It is
likely that DVD-ROMs eventually will replace CD-ROMs completely because
there is a compatible migration path, meaning that a DVD drive can read a CD-
ROM. There are currently six different formats for recordable DVDs; some of
these are essentially in competition with each other. The market will decide which
formats will dominate.

The speed of a CD drive is expressed in multiples of x, which represents a data
transfer speed of 153,600 bytes of data per second. The CD-RW drive described
in Fig. 1.8 is characterized as having 24x/10x/40x maximum speed, which means
it can write data onto CD-R discs at 24x, it can write data onto CD-RW discs at
10x, and it reads data from a disc at 40x.

The capacity of storage devices changes continually as technology improves. A
general rule in the computer industry suggests that storage capacity approx-
imately doubles every 18 months. However, this progress eventually will slow
down as capacities approach absolute physical limits.

A rewritable CD simulates the
pits and smooth areas of a
regular CD using a coating
that can be made amorphous
or crystalline as needed.

key
concept

18 CHAPTER 1 computer systems

the central processing unit
The central processing unit (CPU) interacts with main memory to perform all
fundamental processing in a computer. The CPU interprets and executes instruc-
tions, one after another, in a continuous cycle. It is made up of three important
components, as shown in Fig. 1.13. The control unit coordinates the processing
steps, the registers provide a small amount of storage space in the CPU itself, and
the arithmetic/logic unit performs calculations and makes decisions.

The control unit coordinates the transfer of data and instructions between
main memory and the registers in the CPU. It also coordinates the execution of
the circuitry in the arithmetic/logic unit to perform operations on data stored in
particular registers.

In most CPUs, some registers are reserved for special purposes. For example,
the instruction register holds the current instruction being executed. The program
counter is a register that holds the address of the next instruction to be executed.
In addition to these and other special-purpose registers, the CPU also contains a
set of general-purpose registers that are used for temporary storage of values as
needed.

The concept of storing both program instructions and data together in main
memory is the underlying principle of the von Neumann architecture of computer
design, named after John von Neumann, who first advanced this programming
concept in 1945. These computers continually follow the fetch-decode-execute
cycle depicted in Fig. 1.14. An instruction is fetched from main memory at the
address stored in the program counter and is put into the instruction register. The

figure 1.13 CPU components and main memory

Bus

CPU

Registers

Arithmetic/logic
unit

Main
memory

Control unit

program counter is incremented at this point to prepare for the next
cycle. Then the instruction is decoded electronically to determine
which operation to carry out. Finally, the control unit activates the cor-
rect circuitry to carry out the instruction, which may load a data value
into a register or add two values together, for example.

The CPU is constructed on a chip called a microprocessor, a device that is part
of the main circuit board of the computer. This board also contains ROM chips
and communication sockets to which device controllers, such as the controller
that manages the video display, can be connected.

Another crucial component of the main circuit board is the system clock. The
clock generates an electronic pulse at regular intervals, which synchronizes the
events of the CPU. The rate at which the pulses occur is called the clock speed,
and it varies depending on the processor. The computer described in Fig. 1.8
includes a Pentium 4 processor that runs at a clock speed of 950 megahertz
(MHz), or approximately 950 million pulses per second. The speed of
the system clock provides a rough measure of how fast the CPU exe-
cutes instructions. Similar to storage capacities, the speed of processors
is constantly increasing with advances in technology, approximately
doubling every 18 months.

1.2 networks
A single computer can accomplish a great deal, but connecting several computers
together into networks can dramatically increase productivity and facilitate the
sharing of information. A network is two or more computers connected together
so they can exchange information. Using networks has become the normal mode

1.2 networks 19

figure 1.14 The continuous fetch-decode-execute cycle

Fetch an instruction
from main memory

Execute the instruction

Decode the instruction
and increment program

counter

The von Neumann architecture
and the fetch-decode-execute
cycle form the foundation of
computer processing.

key
concept

The speed of the system clock
indicates how fast the CPU
executes instructions.

key
concept

20 CHAPTER 1 computer systems

of commercial computer operation. New technologies are emerging every day to
capitalize on the connected environments of modern computer systems.

Figure 1.15 shows a simple computer network. One of the devices on the net-
work is a printer, which allows any computer connected to the network to print
a document on that printer. One of the computers on the network is designated
as a file server, which is dedicated to storing programs and data that are needed
by many network users. A file server usually has a large amount of secondary
memory. When a network has a file server, each individual computer doesn’t need
its own copy of a program.

network connections
If two computers are directly connected, they can communicate in basically the
same way that information moves across wires inside a single machine. When

connecting two geographically close computers, this solution works
well and is called a point-to-point connection. However, consider the
task of connecting many computers together across large distances. If
point-to-point connections are used, every computer is directly con-
nected by a wire to every other computer in the network. A separate

wire for each connection is not a workable solution because every time a new
computer is added to the network, a new communication line will have to be
installed for each computer already in the network. Furthermore, a single com-
puter can handle only a small number of direct connections.

Figure 1.16 shows multiple point-to-point connections. Consider the number
of communication lines that would be needed if two or three additional comput-
ers were added to the network.

Contrast the diagrams in Fig. 1.15 and Fig. 1.16. All of the computers shown
in Fig. 1.15 share a single communication line. Each computer on the network

figure 1.15 A simple computer network

Shared printer

File server

A network consists of two or
more computers connected
together so they can exchange
information.

ke
y

co
nc

ep
t

1.2 networks 21

has its own network address, which uniquely identifies it. These addresses are
similar in concept to the addresses in main memory except that they identify indi-
vidual computers on a network instead of individual memory locations inside a
single computer. A message is sent across the line from one computer to another
by specifying the network address of the computer for which it is intended.

Sharing a communication line is cost effective and makes adding
new computers to the network relatively easy. However, a shared line
introduces delays. The computers on the network cannot use the com-
munication line at the same time. They have to take turns sending
information, which means they have to wait when the line is busy.

One technique to improve network delays is to divide large mes-
sages into segments, called packets, and then send the individual packets across
the network intermixed with pieces of other messages sent by other users. The
packets are collected at the destination and reassembled into the original message.
This situation is similar to a group of people using a conveyor belt to move a set
of boxes from one place to another. If only one person were allowed to use the
conveyor belt at a time, and that person had a large number of boxes to move,
the others would be waiting a long time before they could use it. By taking turns,
each person can put one box on at a time, and they all can get their work done.
It’s not as fast as having a conveyor belt of your own, but it’s not as slow as hav-
ing to wait until everyone else is finished.

local-area networks and wide-area networks
A local-area network (LAN) is designed to span short distances and connect a rel-
atively small number of computers. Usually a LAN connects the machines in only

figure 1.16 Point-to-point connections

Sharing a communication line
creates delays, but it is cost
effective and simplifies adding
new computers to the
network.

key
concept

22 CHAPTER 1 computer systems

one building or in a single room. LANs are convenient to install and manage and
are highly reliable. As computers became increasingly small and versatile, LANs

became an inexpensive way to share information throughout an organ-
ization. However, having a LAN is like having a telephone system that
allows you to call only the people in your own town. We need to be
able to share information across longer distances.

A wide-area network (WAN) connects two or more LANs, often
across long distances. Usually one computer on each LAN is dedicated to handling
the communication across a WAN. This technique relieves the other computers in
a LAN from having to perform the details of long-distance communication. Figure
1.17 shows several LANs connected into a WAN. The LANs connected by a WAN
are often owned by different companies or organizations, and might even be
located in different countries.

The impact of networks on computer systems has been dramatic. Computing
resources can now be shared among many users, and computer-based communi-
cation across the entire world is now possible. In fact, the use of networks is now
so pervasive that some computers require network resources in order to operate.

figure 1.17 LANs connected into a WAN

LAN

Long-distance
connection

One computer
in a LAN

A local-area network (LAN) is
an inexpensive way to share
information and resources
throughout an organization.

ke
y

co
nc

ep
t

1.2 networks 23

the Internet
Throughout the 1970s, a United States government organization called the
Advanced Research Projects Agency (ARPA) funded several projects to explore
network technology. One result of these efforts was the ARPANET, a
WAN that eventually became known as the Internet. The Internet is a
network of networks. The term Internet comes from the WAN concept
of internetworking—connecting many smaller networks together.

From the mid 1980s through the present day, the Internet has grown incredi-
bly. In 1983, there were fewer than 600 computers connected to the Internet. By
the year 2000, that number had reached over 10 million. As more and more com-
puters connect to the Internet, the task of keeping up with the larger number of
users and heavier traffic has been difficult. New technologies have replaced the
ARPANET several times since the initial development, each time providing more
capacity and faster processing.

A protocol is a set of rules that governs how two things communicate. The
software that controls the movement of messages across the Internet must con-
form to a set of protocols called TCP/IP (pronounced by spelling out the letters,
T-C-P-I-P). TCP stands for Transmission Control Protocol, and IP
stands for Internet Protocol. The IP software defines how information
is formatted and transferred from the source to the destination. The
TCP software handles problems such as pieces of information arriving
out of their original order or information getting lost, which can hap-
pen if too much information converges at one location at the same time.

Every computer connected to the Internet has an IP address that uniquely iden-
tifies it among all other computers on the Internet. An example of an IP address
is 204.192.116.2. Fortunately, the users of the Internet rarely have to deal with
IP addresses. The Internet allows each computer to be given a name. Like IP
addresses, the names must be unique. The Internet name of a computer is often
referred to as its Internet address. Two examples of Internet addresses are
spencer.villanova.edu and kant.gestalt-llc.com.

The first part of an Internet address is the local name of a specific computer.
The rest of the address is the domain name, which indicates the organization to
which the computer belongs. For example, villanova.edu is the domain
name for the network of computers at Villanova University, and
spencer is the name of a particular computer on that campus. Because
the domain names are unique, many organizations can have a computer

The Internet is a wide-area
network (WAN) that spans the
globe.

key
concept

TCP/IP is the set of software
protocols that govern the
movement of messages across
the Internet.

key
concept

Every computer connected to
the Internet has an IP address
that uniquely identifies it.

key
concept

24 CHAPTER 1 computer systems

named spencer without confusion. Individual departments might be assigned sub-
domains that are added to the basic domain name to uniquely distinguish their set
of computers within the larger organization. For example, the csc.villanova.edu
subdomain is devoted to the Department of Computing Sciences at Villanova
University.

The last part of each domain name, called a top-level domain (TLD), usually
indicates the type of organization to which the computer belongs. The TLD edu
indicates an educational institution. The TLD com refers to a commercial busi-
ness. For example, gestalt-llc.com refers to Gestalt, LLC, a company specializing
in software technologies. Another common TLD is org, used by nonprofit organ-
izations. Many computers, especially those outside of the United States, use a
TLD that denotes the country of origin, such as uk for the United Kingdom.
Recently, in response to a diminishing supply of domain names, some new top-
level domain names have been created, such as biz, info, and name.

When an Internet address is referenced, it gets translated to its corresponding
IP address, which is used from that point on. The software that does this trans-
lation is called the Domain Name System (DNS). Each organization connected to
the Internet operates a domain server that maintains a list of all computers at that
organization and their IP addresses. It works somewhat like telephone directory
assistance in that you provide the name, and the domain server gives back a num-
ber. If the local domain server does not have the IP address for the name, it con-
tacts another domain server that does.

The Internet has revolutionized computer processing. Initially, the primary use
of interconnected computers was to send electronic mail, but Internet capabilities
continue to improve. One of the most significant uses of the Internet is the World
Wide Web.

the World Wide Web
The Internet gives us the capability to exchange information. The World Wide
Web (also known as WWW or simply the Web) makes the exchange of informa-
tion easy. Web software provides a common user interface through which many
different types of information can be accessed with the click of a mouse.

The Web is based on the concepts of hypertext and hypermedia. The
term hypertext was first used in 1965 to describe a way to organize
information so that the flow of ideas was not constrained to a linear
progression. In fact, that concept was entertained as a way to manage

The World Wide Web is soft-
ware that makes sharing infor-
mation across a network easy.

ke
y

co
nc

ep
t

1.2 networks 25

large amounts of information as early as the 1940s. Researchers on the
Manhattan Project, who were developing the first atomic bomb, envisioned such
an approach. The underlying idea is that documents can be linked at various
points according to natural relationships so that the reader can jump from one
document to another, following the appropriate path for that reader’s needs.
When other media components are incorporated, such as graphics, sound, ani-
mations, and video, the resulting organization is called hypermedia.

A browser is a software tool that loads and formats Web documents for view-
ing. Mosaic, the first graphical interface browser for the Web, was released in
1993. The designer of a Web document defines links to other Web information
that might be anywhere on the Internet. Some of the people who developed
Mosaic went on to found the Netscape Communications Corp. and create the
Netscape Navigator browser, which is shown in Fig. 1.18. It is currently one of
the most popular systems for accessing information on the Web. Microsoft’s
Internet Explorer is another popular browser.

A computer dedicated to providing access to Web documents is called a Web
server. Browsers load and interpret documents provided by a Web server. Many
such documents are formatted using the HyperText Markup Language
(HTML). Appendix J gives an overview of Web publishing using
HTML. The Java programming language has an intimate relationship
with Web processing because links to Java programs can be embedded
in HTML documents and executed through Web browsers. We explore
this relationship in more detail in Chapter 2.

Uniform Resource Locators
Information on the Web is found by identifying a Uniform Resource Locator
(URL). A URL uniquely specifies documents and other information for a browser
to obtain and display. An example URL is:

http://www.yahoo.com

The Web site at this particular URL enables you to search the Web for infor-
mation using particular words or phrases.

A URL contains several pieces of information. The first piece is a
protocol, which determines the way the browser should communicate.
The second piece is the Internet address of the machine on which the
document is stored. The third piece of information is the file name of

A browser is a software tool
that loads and formats Web
documents for viewing. These
documents are often written
using the HyperText Markup
Language (HTML).

key
concept

A URL uniquely specifies docu-
ments and other information
found on the Web for a
browser to obtain and display.

key
concept

26 CHAPTER 1 computer systems

interest. If no file name is given, as is the case with the Yahoo URL, browsers
make a default selection (such as index.html).

Let’s look at another example URL:

http://www.gestalt-llc.com/vision.html

In this URL, the protocol is http, which stands for HyperText Transfer Protocol.
The machine referenced is www (a typical reference to a Web server), found at
domain gestalt-llc.com. Finally, vision.html is a file to be transferred to the
browser for viewing. Many other forms for URLs exist, but this form is the most
common.

figure 1.18 Netscape Navigator browsing an HTML document
(used with permission of ACM)

the Internet vs. the World Wide Web
The terms Internet and World Wide Web are sometimes used interchangeably, but
there are important differences between the two. The Internet makes it possible
to communicate via computers around the world. The Web makes that commu-
nication a straightforward and enjoyable activity.

The Web is essentially a distributed information service and is based on a set
of software applications. It is not a network. Although it is used effectively with
the Internet, it is not inherently bound to it. The Web can be used on a LAN that
is not connected to any other network or even on a single machine to display
HTML documents.

1.3 programming
The Java programming language was another important evolutionary step that
allowed software to be easily exchanged and executed via the Web. The rest of
this book explores the process of creating programs using Java. This section dis-
cusses the purpose of programming in general and introduces the Java program-
ming language.

problem solving
The purpose of writing a program is to solve a problem. Problem solving, in gen-
eral, consists of multiple steps:

1. Understanding the problem.

2. Breaking the problem into manageable pieces.

3. Designing a solution.

4. Considering alternatives to the solution and refining the solution.

5. Implementing the solution.

6. Testing the solution and fixing any problems that exist.

Although this approach applies to any kind of problem solving, it
works particularly well when developing software. We refine this series

1.3 programming 27

The purpose of writing a pro-
gram is to solve a problem.

key
concept

28 CHAPTER 1 computer systems

of activities and apply it to writing programs at various points throughout this
text.

The first step, understanding the problem, may sound obvious, but a lack of
attention to this step has been the cause of many misguided efforts. If we attempt
to solve a problem we don’t completely understand, we often end up solving the
wrong problem or at least going off on improper tangents. We must understand
the needs of the people who will use the solution. These needs often include sub-
tle nuances that will affect our overall approach to the solution.

After we thoroughly understand the problem, we then break the problem into
manageable pieces and design a solution. These steps go hand in hand. A solution
to any problem can rarely be expressed as one big activity. Instead, it is a series
of small cooperating tasks that interact to perform a larger task. When develop-
ing software, we don’t write one big program. We design separate pieces that are
responsible for certain parts of the solution, subsequently integrating them with
the other parts.

Our first inclination toward a solution may not be the best one. We
must always consider alternatives and refine the solution as necessary.
The earlier we consider alternatives, the easier it is to modify our
approach.

Implementing the solution is the act of taking the design and putting it in a
usable form. When developing a software solution to a problem, the implemen-
tation stage is the process of actually writing the program. Too often program-
ming is thought of as writing code. But in most cases, the final implementation of
the solution is one of the last and easiest steps. The act of designing the program
should be more interesting and creative than the process of implementing the
design in a particular programming language.

Finally, we test our solution to find any errors that exist so that we can fix
them and improve the quality of the software. Testing efforts attempt to verify
that the program correctly represents the design, which in turn provides a solu-
tion to the problem.

Throughout this text we explore programming techniques that allow us to ele-
gantly design and implement solutions to problems. Although we will often delve
into these specific techniques in detail, we should not forget that they are just
tools to help us solve problems.

The first solution we design to
solve a problem may not be
the best one.

ke
y

co
nc

ep
t

1.3 programming 29

the Java programming language
A program is written in a particular programming language that uses specific
words and symbols to express the problem solution. A programming language
defines a set of rules that determine exactly how a programmer can combine the
words and symbols of the language into programming statements, which are the
instructions that are carried out when the program is executed.

Since the inception of computers, many programming languages have been cre-
ated. We use the Java language in this book to demonstrate various programming
concepts and techniques. Although our main goal is to learn these underlying
software development concepts, an important side-effect will be to become pro-
ficient in the development of Java programs.

Java is a relatively new programming language compared to others. It was
developed in the early 1990s by James Gosling at Sun Microsystems. Java was
introduced to the public in 1995 and has gained tremendous popularity since.

One reason Java got some initial attention was because it was the first pro-
gramming language to deliberately embrace the concept of writing programs that
can be executed using the Web. The original hype about Java’s Web capabilities
initially obscured the far more important features that make it a useful general-
purpose programming language.

Java is an object-oriented programming language. The principles of object-ori-
ented software development are the cornerstone of this book, and we discuss
them throughout the text. Objects are the fundamental pieces that
make up a program. Other programming languages, such as C++,
allow a programmer to use objects but don’t reinforce that approach,
which can lead to confusing program designs.

Most importantly, Java is a good language to use to learn programming con-
cepts. It is fairly elegant in that it doesn’t get bogged down in unnecessary issues
as some other languages do. Using Java, we are able to focus on important issues
and not on superfluous details.

The Java language is accompanied by a library of extra software that we can
use when developing programs. This library provides the ability to create graph-
ics, communicate over networks, and interact with databases, among many other
features. Although we won’t be able to cover all aspects of the libraries, we will
explore many of them. The set of supporting libraries is huge, and quite versatile.

This book focuses on the
principles of object-oriented
programming.

key
concept

30 CHAPTER 1 computer systems

Java is used in commercial environments all over the world. It is one of the
fastest growing programming technologies of all time. So not only is it a good
language in which to learn programming concepts, it is also a practical language
that will serve you well in the future.

a Java program
Let’s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This particular program prints a quote by
Abraham Lincoln. The output is shown below the program listing.

All Java applications have a similar basic structure. Despite its small size and
simple purpose, this program contains several important features. Let’s carefully
dissect it and examine its pieces.

listing
1.1

//**

// Lincoln.java Author: Lewis/Loftus

//

// Demonstrates the basic structure of a Java application.

//**

public class Lincoln

{

//---

// Prints a presidential quote.

//---

public static void main (String[] args)

{

System.out.println ("A quote by Abraham Lincoln:");

System.out.println ("Whatever you are, be a good one.");

}

}

A quote by Abraham Lincoln:

Whatever you are, be a good one.

output

code30.html

1.3 programming 31

The first few lines of the program are comments, which start with the // sym-
bols and continue to the end of the line. Comments don’t affect what the program
does but are included to make the program easier to understand by
humans. Programmers can and should include comments as needed
throughout a program to clearly identify the purpose of the program
and describe any special processing. Any written comments or docu-
ments, including a user’s guide and technical references, are called
documentation. Comments included in a program are called inline
documentation.

The rest of the program is a class definition. This class is called Lincoln,
though we could have named it just about anything we wished. The class defini-
tion runs from the first opening brace ({) to the final closing brace (}) on the last
line of the program. All Java programs are defined using class definitions.

Inside the class definition are some more comments describing the purpose of
the main method, which is defined directly below the comments. A method is a
group of programming statements that are given a name. In this case, the name
of the method is main and it contains only two programming statements. Like a
class definition, a method is also delimited by braces.

All Java applications have a main method, which is where processing begins.
Each programming statement in the main method is executed, one at a time in
order, until the end of the method is reached. Then the program ends, or termi-
nates. The main method definition in a Java program is always preceded by the
words public, static, and void, which we examine later in the text.
The use of String and args does not come into play in this particu-
lar program. We describe these later also.

The two lines of code in the main method invoke another method
called println (pronounced print line). We invoke, or call, a method
when we want it to execute. The println method prints the specified characters
to the screen. The characters to be printed are represented as a character string,
enclosed in double quote characters (“). When the program is executed, it calls
the println method to print the first statement, calls it again to print the second
statement, and then, because that is the last line in the program, the program
terminates.

The code executed when the println method is invoked is not defined in this
program. The println method is part of the System.out object, which we
explore in more detail in Chapter 2.

Comments do not affect a pro-
gram’s processing; instead,
they serve to facilitate human
comprehension.

key
concept

The main method must
always be defined using the
words public, static, and
void.

key
concept

32 CHAPTER 1 computer systems

comments
Let’s examine comments in more detail. Comments are the only language feature
that allow programmers to compose and communicate their thoughts independ-
ent of the code. Comments should provide insight into the programmer’s original
intent. A program is often used for many years, and often many modifications are
made to it over time. The original programmer often will not remember the
details of a particular program when, at some point in the future, modifications
are required. Furthermore, the original programmer is not always available to
make the changes; thus, someone completely unfamiliar with the program will
need to understand it. Good documentation is therefore essential.

As far as the Java programming language is concerned, comments can be writ-
ten using any content whatsoever. Comments are ignored by the computer; they
do not affect how the program executes.

The comments in the Lincoln program represent one of two types of com-
ments allowed in Java. The comments in Lincoln take the following form:

// This is a comment.

This type of comment begins with a double slash (//) and continues to the end
of the line. You cannot have any characters between the two slashes. The com-
puter ignores any text after the double slash and to the end of the line. A com-
ment can follow code on the same line to document that particular line, as in the
following example:

System.out.println (“Monthly Report”); // always use this title

The second form a Java comment may have is:

/* This is another comment. */

This comment type does not use the end of a line to indicate the end of the com-
ment. Anything between the initiating slash-asterisk (/*) and the terminating
asterisk-slash (*/) is part of the comment, including the invisible newline charac-
ter that represents the end of a line. Therefore, this type of comment can extend
over multiple lines. No space can be between the slash and the asterisk.

If there is a second asterisk following the /* at the beginning of a comment,
the content of the comment can be used to automatically generate external doc-
umentation about your program using a tool called javadoc. (We do not discuss
this feature in this book, but we do include a description and examples of this
process on the book’s Web site. Throughout the book, we highlight additional
information and examples that you can find on the Web site.)

1.3 programming 33

The two basic comment types can be used to create various documentation
styles, such as:

// This is a comment on a single line.

//--

// Some comments such as those above methods or classes

// deserve to be blocked off to focus special

// attention on a particular aspect of your code. Note

// that each of these lines is technically a separate comment.

//--

/*

This is one comment

that spans several lines.

*/

Programmers often concentrate so much on writing code that they focus too
little on documentation. You should develop good commenting practices and fol-
low them habitually. Comments should be well written, often in complete sen-
tences. They should not belabor the obvious but should provide appropriate
insight into the intent of the code. The following examples are not good com-
ments:

System.out.println (“hello”); // prints hello

System.out.println (“test”); // change this later

The first comment paraphrases the obvious purpose of the line and does not add
any value to the statement. It is better to have no comment than a useless one.
The second comment is ambiguous. What should be changed later? When is
later? Why should it be changed?

It is considered good programming style to use comments in a con-
sistent way throughout an entire program. Appendix G presents guide-
lines for good programming practices and includes specific techniques
for documenting programs.

The Web site supporting this text describes how you can generate automatic
program documentation using a special form of Java comments and a soft-
ware tool called javadoc.

Inline documentation should
provide insight into your
code. It should not be ambigu-
ous or belabor the obvious.

key
concept

web
bonus

34 CHAPTER 1 computer systems

identifiers and reserved words
The various words used when writing programs are called identifiers. The identi-
fiers in the Lincoln program are class, Lincoln, public, static, void, main,
String, args, System, out, and println. These fall into three categories:

◗ words that we make up (Lincoln and args)

◗ words that another programmer chose (String, System, out, println,
and main)

◗ words that are reserved for special purposes in the language (class,
public, static, and void)

While writing the program, we simply chose to name the class Lincoln, but
we could have used one of many other possibilities. For example, we could have
called it Quote, or Abe, or GoodOne. The identifier args (which is short for argu-
ments) is often used in the way we use it in Lincoln, but we could have used just
about any identifier in its place.

The identifiers String, System, out, and println were chosen by other
programmers. These words are not part of the Java language. They are part of a
huge library of predefined code, a set of classes and methods that someone has
already written for us. The authors of that code chose the identifiers—we’re just
making use of them. We discuss this library of predefined code in more detail in
Chapter 2.

Reserved words are identifiers that have a special meaning in a programming
language and can only be used in predefined ways. In the Lincoln program, the
reserved words used are class, public, static, and void. Throughout the
book, we show Java reserved words in blue type. Figure 1.19 lists all of the Java
reserved words in alphabetical order. The words marked with an asterisk are
reserved for possible future use in later versions of the language but currently
have no meaning in Java. A reserved word cannot be used for any other purpose,
such as naming a class or method.

An identifier that we make up for use in a program can be composed of any
combination of letters, digits, the underscore character (_), and the dollar sign
($), but it cannot begin with a digit. Identifiers may be of any length. Therefore
total, label7, nextStockItem, NUM_BOXES, and $amount are all valid identi-
fiers, but 4th_word and coin#value are not valid.

Both uppercase and lowercase letters can be used in an identifier, and the
difference is important. Java is case sensitive, which means that two identifier
names that differ only in the case of their letters are considered to be different

1.3 programming 35

figure 1.19 Java reserved words

abstract

boolean

break

byte

case

catch

char

class

const*

continue

default

do

double

else

extends

false

final

finally

float

for

goto*

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

Identifier

An identifier is a letter followed by zero or more letters and digits.
A Java Letter includes the 26 English alphabetic characters in both
uppercase and lowercase, the $ and _ (underscore) characters, as well
as alphabetic characters from other languages. A Java Digit includes
the digits 0 though 9.

Examples:

total

MAX_HEIGHT

num1

Keyboard

Java Letter

Java Letter

Java Digit

36 CHAPTER 1 computer systems

identifiers. Therefore total, Total, ToTaL, and TOTAL are all different identi-
fiers. As you can imagine, it is not a good idea to use multiple identifiers that dif-
fer only in their case because they can be easily confused.

Although the Java language doesn’t require it, using a consistent case
format for each kind of identifier makes your identifiers easier to under-
stand. For example, we use title case (uppercase for the first letter of
each word) for class names. That is a Java convention, although it does
not technically have to be followed. Throughout the text, we describe
the preferred case style for each type of identifier as they are encoun-
tered. Appendix G presents various guidelines for naming identifiers.

While an identifier can be of any length, you should choose your names care-
fully. They should be descriptive but not verbose. You should avoid meaning-
less names such as a or x. An exception to this rule can be made if the short
name is actually descriptive, such as using x and y to represent (x, y) coordi-
nates on a two-dimensional grid. Likewise, you should not use unnecessarily
long names, such as the identifier theCurrentItemBeingProcessed. The
name currentItem would serve just as well.

As you might imagine, the use of identifiers that are verbose is a much less
prevalent problem than the use of names that are not descriptive. If you
must err, you should err on the side of readability, but a reasonable bal-
ance can almost always be found. Also, you should always be careful
when abbreviating words. You might think curStVal is a good name
to represent the current stock value, but another person trying to

understand the code may have trouble figuring out what you meant. It might not
even be clear to you two months after writing it.

A name in Java is a series of identifiers separated by the dot (period) charac-
ter. The name System.out is the way we designate the object through which we
invoked the println method. Names appear quite regularly in Java programs.

white space
All Java programs use white space to separate the words and symbols used in a
program. White space consists of blanks, tabs, and newline characters. The

phrase white space refers to the fact that, on a white sheet of paper
with black printing, the space between the words and symbols is white.
The way a programmer uses white space is important because it can be
used to emphasize parts of the code and can make a program easier to
read.

Java is case sensitive. The
uppercase and lowercase ver-
sions of a letter are distinct.
You should use a consistent
case convention for different
types of identifiers.

ke
y

co
nc

ep
t

Identifier names should be
descriptive and readable.ke

y
co

nc
ep

t

Appropriate use of white space
makes a program easier to
read and understand.

ke
y

co
nc

ep
t

Except when it’s used to separate words, the computer ignores white space. It
does not affect the execution of a program. This fact gives programmers a great
deal of flexibility in how they format a program. The lines of a program should
be divided in logical places and certain lines should be indented and aligned so
that the program’s underlying structure is clear.

Because white space is ignored, we can write a program in many different
ways. For example, taking white space to one extreme, we could put as many
words as possible on each line. The code in Listing 1.2, the Lincoln2 program,
is formatted quite differently from Lincoln but prints the same message.

Taking white space to the other extreme, we could write almost every word
and symbol on a different line, such as Lincoln3, shown in Listing 1.3.

All three versions of Lincoln are technically valid and will execute in the same
way, but they are radically different from a reader’s point of view. Both of the lat-
ter examples show poor style and make the program difficult to under-
stand. The guidelines for writing Java programs presented in Appendix
G include the appropriate use of white space. You may be asked to
adhere to these or similar guidelines when you write your programs. In
any case, you should adopt and consistently use a set of style guide-
lines that increase the readability of your code.

1.3 programming 37

listing
1.2

//**

// Lincoln2.java Author: Lewis/Loftus

//

// Demonstrates a poorly formatted, though valid, program.

//**

public class Lincoln2{public static void main(String[]args){

System.out.println("A quote by Abraham Lincoln:");

System.out.println("Whatever you are, be a good one.");}}

A quote by Abraham Lincoln:

Whatever you are, be a good one.

You should always adhere to a
set of guidelines that establish
the way you format and docu-
ment your programs.

key
concept

output

code37.html

1.4 programming languages
Suppose a particular person is giving travel directions to a friend. That person
might explain those directions in any one of several languages, such as English,
French, or Italian. The directions are the same no matter which language is used
to explain them, but the manner in which the directions are expressed is differ-
ent. Furthermore, the friend must be able understand the language being used in
order to follow the directions.

38 CHAPTER 1 computer systems

listing
1.3

//**

// Lincoln3.java Author: Lewis/Loftus

//

// Demonstrates another valid program that is poorly formatted.

//**

public class

Lincoln3

{

public

static

void

main

(

String

[]

args)

{

System.out.println (

“A quote by Abraham Lincoln:”)

; System.out.println

(

“Whatever you are, be a good one.”

)

;

}

}

A quote by Abraham Lincoln:

Whatever you are, be a good one.

output

code38.html

1.4 programming languages 39

Similarly, a problem can be solved by writing a program in one of many pro-
gramming languages, such as Java, Ada, C, C++, Pascal, and Smalltalk. The pur-
pose of the program is essentially the same no matter which language is used, but
the particular statements used to express the instructions, and the overall organ-
ization of those instructions, vary with each language. Furthermore, a computer
must be able to understand the instructions in order to carry them out.

This section explores various categories of programming languages and
describes the special programs used to prepare and execute them.

programming language levels
Programming languages are often categorized into the following four groups.
These groups basically reflect the historical development of computer languages:

◗ machine language

◗ assembly language

◗ high-level languages

◗ fourth-generation languages

In order for a program to run on a computer, it must be expressed in that com-
puter’s machine language. Each type of CPU has its own language. For that rea-
son, we can’t run a program specifically written for a Sun Workstation, with its
Sparc processor, on an IBM PC, with its Intel processor.

Each machine language instruction can accomplish only a simple task. For
example, a single machine language instruction might copy a value
into a register or compare a value to zero. It might take four separate
machine language instructions to add two numbers together and to
store the result. However, a computer can do millions of these instruc-
tions in a second, and therefore many simple commands can be quickly
executed to accomplish complex tasks.

Machine language code is expressed as a series of binary digits and is
extremely difficult for humans to read and write. Originally, programs were
entered into the computer using switches or some similarly tedious method. Early
programmers found these techniques to be time consuming and error prone.

These problems gave rise to the use of assembly language, which replaced
binary digits with mnemonics, short English-like words that represent commands
or data. It is much easier for programmers to deal with words than with binary

All programs must be trans-
lated to a particular CPU’s
machine language in order to
be executed.

key
concept

40 CHAPTER 1 computer systems

digits. However, an assembly language program cannot be executed directly on a
computer. It must first be translated into machine language.

Generally, each assembly language instruction corresponds to an equivalent
machine language instruction. Therefore, similar to machine language, each
assembly language instruction accomplishes only a simple operation. Although
assembly language is an improvement over machine code from a programmer’s
perspective, it is still tedious to use. Both assembly language and machine lan-
guage are considered low-level languages.

Today, most programmers use a high-level language to write software. A high-
level language is expressed in English-like phrases, and thus is easier for program-
mers to read and write. A single high-level language programming statement can
accomplish the equivalent of many—perhaps hundreds—of machine language
instructions. The term high-level refers to the fact that the programming state-
ments are expressed in a form approaching natural language, far removed from
the machine language that is ultimately executed. Java is a high-level language, as
are Ada, C, C++, and Smalltalk.

Figure 1.20 shows equivalent expressions in a high-level language, assembly
language, and machine language. The expressions add two numbers together. The
assembly language and machine language in this example are specific to a Sparc
processor.

The high-level language expression in Fig. 1.20 is readable and intuitive for
programmers. It is similar to an algebraic expression. The equivalent assembly
language code is somewhat readable, but it is more verbose and less intuitive. The
machine language is basically unreadable and much longer. In fact, only a small
portion of the binary machine code to add two numbers together is shown in Fig.
1.20. The complete machine language code for this particular expression is over
400 bits long.

High-level language code must be translated into machine language in order to
be executed. A high-level language insulates programmers from needing to know
the underlying machine language for the processor on which they are working.

Some programming languages are considered to operate at an even
higher level than high-level languages. They might include special facil-
ities for automatic report generation or interaction with a database.
These languages are called fourth-generation languages, or simply
4GLs, because they followed the first three generations of computer
programming: machine, assembly, and high-level.

Working with high-level lan-
guages allows the programmer
to ignore the underlying
details of machine language.

ke
y

co
nc

ep
t

1.4 programming languages 41

compilers and interpreters
Several special-purpose programs are needed to help with the process of devel-
oping new programs. They are sometimes called software tools because they are
used to build programs. Examples of basic software tools include an editor, a
compiler, and an interpreter.

Initially, you use an editor as you type a program into a computer and store it
in a file. There are many different editors with many different features. You
should become familiar with the editor you will use regularly because it can dra-
matically affect the speed at which you enter and modify your programs.

Each time you need to make a change to the code of your program, you open
it in an editor. Figure 1.21 shows a very basic view of the program development
process. After editing and saving your program, you attempt to translate it from
high-level code into a form that can be executed. That translation may result in
errors, in which case you return to the editor to make changes to the code to fix
the problems. Once the translation occurs successfully, you can execute the pro-
gram and evaluate the results. If the results are not what you want (or if you want
to enhance your existing program), you again return to the editor to make
changes.

The translation of source code into (ultimately) machine language for a par-
ticular type of CPU can occur in a variety of ways. A compiler is a program that
translates code in one language to equivalent code in another language. The orig-
inal code is called source code, and the language into which it is translated is

figure 1.20 A high-level expression and its assembly language
and machine language equivalent

High-Level Language Assembly Language Machine Language

a + b 1d [%fp–20], %o0

1d [%fp–24], %o1

add %o0, %o1, %o0

...

1101 0000 0000 0111

1011 1111 1110 1000

1101 0010 0000 0111

1011 1111 1110 1000

1001 0000 0000 0000

...

42 CHAPTER 1 computer systems

called the target language. For many traditional compilers, the source code is
translated directly into a particular machine language. In that case, the trans-
lation process occurs once (for a given version of the program), and the resulting
executable program can be run whenever needed.

An interpreter is similar to a compiler but has an important difference. An
interpreter interweaves the translation and execution activities. A small part of
the source code, such as one statement, is translated and executed. Then another
statement is translated and executed, and so on. One advantage of this technique
is that it eliminates the need for a separate compilation phase. However, the pro-
gram generally runs more slowly because the translation process occurs during
each execution.

The process often used to translate and execute Java programs combines the
use of a compiler and an interpreter. This process is pictured in Fig. 1.22. The

Java compiler translates Java source code into Java bytecode, which is
a representation of the program in a low-level form similar to machine
language code. The Java interpreter reads Java bytecode and executes
it on a specific machine. Another compiler could translate the bytecode
into a particular machine language for efficient execution on that
machine.

The difference between Java bytecode and true machine language code is that
Java bytecode is not tied to any particular processor type. This approach has the
distinct advantage of making Java architecture neutral, and therefore easily
portable from one machine type to another. The only restriction is that there must
be a Java interpreter or a bytecode compiler for each processor type on which the
Java bytecode is to be executed.

Since the compilation process translates the high-level Java source code into a
low-level representation, the interpretation process is more efficient than

figure 1.21 Editing and running a program

Edit and
save program

Translate program
into executable form

errors errors

Execute program and
evaluate results

A Java compiler translates Java
source code into Java byte-
code. A Java interpreter trans-
lates and executes the byte-
code.

ke
y

co
nc

ep
t

1.4 programming languages 43

interpreting high-level code directly. Executing a program by inter-
preting its bytecode is still slower than executing machine code
directly, but it is fast enough for most applications. Note that for effi-
ciency, Java bytecode could be compiled into machine code.

The Java compiler and interpreter are part of the Java Software
Development Kit (SDK), which is sometimes referred to simply as the Java
Development Kit (JDK). This kit also contains several other software tools that
may be useful to a programmer. The JDK can be downloaded for free from the
Sun Microsystem Web site (java.sun.com) or from this book’s Web site. Note that
the standard JDK tools are executed on the command line. That is, they are not
graphical programs with menus and buttons. The standard JDK tools also do not
include an editor, although any editor that can save a document as simple text can
be used.

Other programs, called Integrated Development Environments (IDEs), have
been created to support the development of Java programs. IDEs combine an edi-
tor, compiler, and other Java support tools into a single application. The specific
tools you will use to develop your programs depend on your environment.

figure 1.22 The Java translation and execution process

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

Java is architecture neutral
because Java bytecode is not
associated with any particular
hardware platform.

key
concept

44 CHAPTER 1 computer systems

syntax and semantics
Each programming language has its own unique syntax. The syntax rules of a
language dictate exactly how the vocabulary elements of the language can be
combined to form statements. These rules must be followed in order to create a
program. We’ve already discussed several Java syntax rules (for instance, the fact
that an identifier cannot begin with a digit is a syntax rule). The fact that braces
are used to delimit (begin and end) classes and methods is also a syntax rule.
Appendix L formally defines the basic syntax rules for the Java programming
language.

During compilation, all syntax rules are checked. If a program is not syntacti-
cally correct, the compiler will issue error messages and will not produce byte-
code. Java has a similar syntax to the programming languages C and C++, and
therefore the look and feel of the code is familiar to people with a background in
those languages. Because of these similarities, some people tend to think of Java
as a variant of C and C++. However, beyond the basic syntax issues, there are
many important differences between Java and these other languages. Appendix I
contains a summary of the differences between Java and C++.

The semantics of a statement in a programming language define what will hap-
pen when that statement is executed. Programming languages are generally
unambiguous, which means the semantics of a program are well defined. That is,
there is one and only one interpretation for each statement. On the other hand,
the natural languages that humans use to communicate, such as English and
French, are full of ambiguities. A sentence can often have two or more different
meanings. For example, consider the following sentence:

Time flies like an arrow.

The average human is likely to interpret this sentence as a general observation:
that time moves quickly in the same way that an arrow moves quickly. However,
if we interpret the word time as a verb (as in “run the 50-yard dash and I’ll time
you”) and the word flies as a noun (the plural of fly), the interpretation changes
completely. We know that arrows don’t time things, so we wouldn’t normally

This book’s Web site contains information about several specific Java develop-
ment environments.

web
bonus

1.4 programming languages 45

interpret the sentence that way, but it is a valid interpretation of the
words in the sentence. A computer would have a difficult time trying
to determine which meaning is intended. Moreover, this statement
could describe the preferences of an unusual insect known as a “time
fly,” which might be found near an archery range. After all, fruit flies
like a banana.

The point is that the same exact English sentence can have multiple valid
meanings. A computer language cannot allow such ambiguities to exist. If a pro-
gramming language instruction could have two different meanings, a computer
would not be able to determine which one to follow.

errors
Several different kinds of problems can occur in software, particularly during
program development. The term computer error is often misused and varies in
meaning depending on the person using it. From a user’s point of view, anything
that goes awry when interacting with a machine is often called a computer error.
For example, suppose you charged a $23 item to your credit card, but when you
received the bill, the item was listed at $230. After you have the problem fixed,
the credit card company apologizes for the “computer error.” Did the
computer arbitrarily add a zero to the end of the number, or did it per-
haps multiply the value by 10? Of course not. A computer follows the
commands we give it and operates on the data we provide. If our pro-
grams are wrong or our data inaccurate, then we cannot expect the
results to be correct. A common phrase used to describe this situation
is “garbage in, garbage out.”

You will encounter three kinds of errors as you develop programs:

◗ compile-time error

◗ runtime error

◗ logical error

The compiler checks to make sure you are using the correct syntax. If you
have any statements that do not conform to the syntactic rules of the language,
the compiler will produce a syntax error. The compiler also tries to find other
problems, such as the use of incompatible types of data. The syntax might be
technically correct, but you are still attempting to do something that the lan-
guage doesn’t semantically allow. Any error identified by the compiler is called
a compile-time error. If a compile-time error occurs, an executable version of the
program is not created.

A computer follows our
instructions exactly. The pro-
grammer is responsible for
the accuracy and reliability of
a program.

key
concept

The syntax rules of a pro-
gramming language dictate
the form of a program. The
semantics dictate the meaning
of the program statements.

key
concept

46 CHAPTER 1 computer systems

The second kind of problem occurs during program execution. It is
called a runtime error, and it causes the program to terminate abnor-
mally. For example, if we attempt to divide by zero, the program will
“crash” and halt execution at that point. Because the requested opera-
tion is undefined, the system simply abandons its attempt to continue

processing your program. The best programs are robust; that is, they avoid as
many run time errors as possible. For example, the program code could guard
against the possibility of dividing by zero and handle the situation appropriately
if it arises. In Java, many runtime errors are represented as exceptions that can be
caught and dealt with accordingly. We discuss exceptions in Chapter 8.

The third kind of software problem is a logical error. In this case, the software
compiles and executes without complaint, but it produces incorrect results. For
example, a logical error occurs when a value is calculated incorrectly or when a
graphical button does not appear in the correct place. A programmer must test
the program thoroughly, comparing the expected results to those that actually
occur. When defects are found, they must be traced back to the source of the
problem in the code and corrected. The process of finding and correcting defects
in a program is called debugging. Logical errors can manifest themselves in many
ways, and the actual root cause might be quite difficult to discover.

language evolution
As computer technology evolves, so must the languages we use to program them.
The Java programming language has undergone various changes since its cre-
ation. This text uses the most recent Java technology. Specifically, this book uses
the Java 2 Platform, which simply refers to the most advanced collection of Java
language features, software libraries, and tools. Several important advances have
been made since the previous version. The Java 2 Platform is organized into three
major groups:

◗ Java 2 Platform, Standard Edition (J2SE)

◗ Java 2 Platform, Enterprise Edition (J2EE)

◗ Java 2 Platform, Micro Edition (J2ME)

This book focuses on the Standard Edition, which, as the name implies, is the
mainstream version of the language and associated tools.

As we discussed earlier in this chapter, the Java Development Kit (JDK) is the
set of software tools provided by Sun Microsystems that can be used for creating

A Java program must be
syntactically correct or the
compiler will not produce
bytecode.

ke
y

co
nc

ep
t

Java software. These tools include a compiler and an interpreter, among others.
The most recent version of the JDK (at the time of this printing), which corre-
sponds to the latest version of the Standard Edition of the Java 2 Platform, is JDK
1.4. You might use the JDK to develop your programs, or you might use some
other development environment.

Some parts of early Java technologies have been deprecated, which means they
are considered old-fashioned and should not be used. When it is important, we
point out deprecated elements and discuss their state-of-the-art alternatives.

One particular area in which Java has evolved is in the software libraries that
support the development of graphical user interfaces (GUIs). Specifically, earlier
releases of Java used the Abstract Windowing Toolkit (AWT). Included with the
Java 2 Platform is a software library called Swing, which builds on the AWT and
extends its capabilities. The Swing library contains many elements that replace
older, less useful AWT elements. Whenever appropriate, we use Swing technology
in this text.

1.5 graphics
Graphics play a crucial role in computer systems. Throughout this book we
explore various aspects of graphics and discuss how they are accomplished. In
fact, the last one or two sections of each chapter are devoted to graphics topics.
(These sections can be skipped without losing continuity through the rest of the
text.) In this section, we explore the basic concepts of representing a picture in a
computer and displaying it on a screen.

A picture, like all other information stored on a computer, must be digitized
by breaking the information into pieces and representing those pieces as numbers.
In the case of pictures, we break the picture into pixels (picture elements), as we
mentioned earlier in this chapter. A pixel is a tiny region that represents a very
small piece of the picture. The complete picture is stored by storing the color of
each individual pixel.

A black and white picture can be stored by representing
each pixel using a single bit. If the bit is zero, that pixel is
white; if the bit is 1, it is black. The picture can be repro-
duced when needed by reassembling its pixels. The more
pixels used to represent a picture, the more realistic it looks
when it is reproduced. Figure 1.23 shows a black and white
picture that has been stored digitally and an enlargement of
a portion of that picture, which shows the individual pixels.

1.5 graphics 47

The pixels of a black and
white picture can be repre-
sented using a single bit each,
mapping 0 to white and 1 to
black.

key
concept

coordinate systems
When drawn, each pixel of a picture is mapped to a pixel on the screen. Each
computer system and programming language defines a coordinate system so that
we can refer to particular pixels.

A traditional two-dimensional Cartesian coordinate system has two axes that
meet at the origin. Values on either axis can be negative or positive. The Java pro-
gramming language has a relatively simple coordinate system in which all of the
visible coordinates are positive. Figure 1.24 shows a traditional coordinate sys-
tem and the Java coordinate system.

Each point in the Java coordinate system is represented using an (x, y) pair of
values. The top-left corner of any Java drawing area has coordinates (0, 0). The
x-axis coordinates get larger as you move to the right, and the y-axis coordinates
get larger as you move down.

A Java program does not have to be graphical in nature. However, if it is, each
graphical component in the program has its own coordinate system, with the ori-
gin (0, 0) in the top-left corner. This consistent approach makes it relatively easy
to manage various graphical elements.

figure 1.23 A digitized picture with a small portion magnified

48 CHAPTER 1 computer systems

representing color
Color pictures are divided into pixels, just as black and white pictures are.
However, because each pixel can be one of many possible colors, it is not suffi-
cient to represent each pixel using only one bit. There are various ways to repre-
sent the color of a pixel. This section explores one popular
technique.

Every color can be represented as a mix of three pri-
mary colors: red, green, and blue. In Java, as in many other
computer languages, colors are specified by three numbers
that are collectively referred to as an RGB value. RGB
stands for Red-Green-Blue. Each number represents the
contribution of a primary color. Using one byte (8 bits) to store each of the three
numbers, the numbers can range from 0 to 255. The level of each primary color
determines the overall color. For example, high values of red and green combined
with a low level of blue results in a shade of yellow.

In the graphics sections of other chapters we explore the use of color and how
to control it in a Java program.

figure 1.24 A traditional coordinate system and the Java coordinate system

Y Axis

X Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

1.5 graphics 49

The pixels of a color picture
can be represented using
three numbers, collectively
called the RGB value, which
represent the relative contri-
butions of three primary col-
ors: red, green, and blue.

key
concept

50 CHAPTER 1 computer systems

◗ A computer system consists of hardware and software that work in con-
cert to help us solve problems.

◗ To execute a program, the computer first copies the program from second-
ary memory to main memory. The CPU then reads the program instruc-
tions from main memory, executing them one at a time until the program
ends.

◗ The operating system provides a user interface and manages computer
resources.

◗ As far as the user is concerned, the interface is the program.

◗ Digital computers store information by breaking it into pieces and repre-
senting each piece as a number.

◗ Binary values are used to store all information in a computer because the
devices that store and manipulate binary information are inexpensive and
reliable.

◗ There are exactly 2N permutations of N bits. Therefore N bits can repre-
sent up to 2N unique items.

◗ The core of a computer is made up of the CPU and the main memory.
Main memory is used to store programs and data. The CPU executes a
program’s instructions one at a time.

◗ An address is a unique number associated with each memory location. It
is used when storing and retrieving data from memory.

◗ Data written to a memory location overwrites and destroys any informa-
tion that was previously stored at that location. Data read from a memory
location leaves the value in memory unaffected.

◗ Main memory is volatile, meaning the stored information is maintained
only as long as electric power is supplied. Secondary memory devices are
usually nonvolatile.

◗ The surface of a CD has both smooth areas and small pits. A pit repre-
sents a binary 1 and a smooth area represents a binary 0.

◗ A rewritable CD simulates the pits and smooth areas of a regular CD
using a coating that can be made amorphous or crystalline as needed.

◗ The von Neumann architecture and the fetch-decode-execute cycle form
the foundation of computer processing.

summary of
key concepts

summary of key concepts 51

◗ The speed of the system clock indicates how fast the CPU executes
instructions.

◗ A network consists of two or more computers connected together so they
can exchange information.

◗ Sharing a communication line creates delays, but it is cost effective and
simplifies adding new computers to the network.

◗ A local-area network (LAN) is an inexpensive way to share information
and resources throughout an organization.

◗ The Internet is a wide-area network (WAN) that spans the globe.

◗ TCP/IP is the set of software protocols that govern the movement of mes-
sages across the Internet.

◗ Every computer connected to the Internet has an IP address that uniquely
identifies it.

◗ The World Wide Web is software that makes sharing information across a
network easy.

◗ A browser is a software tool that loads and formats Web documents for
viewing. These documents are often written using the HyperText Markup
Language (HTML).

◗ A URL uniquely specifies documents and other information found on the
Web for a browser to obtain and display.

◗ The purpose of writing a program is to solve a problem.

◗ The first solution we design to solve a problem may not be the best one.

◗ This book focuses on the principles of object-oriented programming.

◗ Comments do not affect a program’s processing; instead, they serve to
facilitate human comprehension.

◗ The main method must always be defined using the words public,
static, and void.

◗ Inline documentation should provide insight into your code. It should not
be ambiguous or belabor the obvious.

◗ Java is case sensitive. The uppercase and lowercase versions of a letter are
distinct. You should use a consistent case convention for different types of
identifiers.

◗ Identifier names should be descriptive and readable.

◗ Appropriate use of white space makes a program easier to read and
understand.

52 CHAPTER 1 computer systems

◗ You should always adhere to a set of guidelines that establish the way you
format and document your programs.

◗ All programs must be translated to a particular CPU’s machine language
in order to be executed.

◗ Working with high-level languages allows the programmer to ignore the
underlying details of machine language.

◗ A Java compiler translates Java source code into Java bytecode. A Java
interpreter translates and executes the bytecode.

◗ Java is architecture neutral because Java bytecode is not associated with
any particular hardware platform.

◗ The syntax rules of a programming language dictate the form of a pro-
gram. The semantics dictate the meaning of the program statements.

◗ A computer follows our instructions exactly. The programmer is responsi-
ble for the accuracy and reliability of a program.

◗ A Java program must be syntactically correct or the compiler will not pro-
duce bytecode.

◗ The pixels of a black and white picture can be represented using a single
bit each, mapping 0 to white and 1 to black.

◗ The pixels of a color picture can be represented using three numbers,
collectively called the RGB value, which represent the relative contribu-
tions of three primary colors: red, green, and blue.

self-review questions
1.1 What is hardware? What is software?

1.2 What are the two primary functions of an operating system?

1.3 What happens to information when it is stored digitally?

1.4 How many unique items can be represented with the following?

◗ 2 bits

◗ 4 bits

◗ 5 bits

◗ 7 bits

self-review questions 53

1.5 How many bits are there in each of the following?

◗ 8 bytes

◗ 2 KB

◗ 4 MB

1.6 What are the two primary hardware components in a computer?
How do they interact?

1.7 What is a memory address?

1.8 What does volatile mean? Which memory devices are volatile and
which are nonvolatile?

1.9 What is a file server?

1.10 What is the total number of communication lines needed for a fully
connected point-to-point network of five computers? Six computers?

1.11 What is the origin of the word Internet?

1.12 Explain the parts of the following URLs:

◗ duke.csc.villanova.edu/jss/examples.html

◗ java.sun.com/products/index.html

1.13 What is the relationship between a high-level language and machine
language?

1.14 What is Java bytecode?

1.15 What is white space? How does it affect program execution? How
does it affect program readability?

1.16 Which of the following are not valid Java identifiers? Why?

◗ RESULT

◗ result

◗ 12345

◗ x12345y

◗ black&white

◗ answer_7

1.17 What do we mean by the syntax and semantics of a programming
language?

1.18 How can a black and white picture be represented using 1s and 0s?

54 CHAPTER 1 computer systems

exercises
1.1 Describe the hardware components of your personal computer or of

a computer in a lab to which you have access. Include the processor
type and speed, storage capacities of main and secondary memory,
and types of I/O devices. Explain how you determined your answers.

1.2 Why do we use the binary number system to store information on a
computer?

1.3 How many unique items can be represented with each of the
following?

◗ 1 bit

◗ 3 bits

◗ 6 bits

◗ 8 bits

◗ 10 bits

◗ 16 bits

1.4 If a picture is made up of 128 possible colors, how many bits would
be needed to store each pixel of the picture? Why?

1.5 If a language uses 240 unique letters and symbols, how many bits
would be needed to store each character of a document? Why?

1.6 How many bits are there in each of the following? How many bytes
are there in each?

◗ 12 KB

◗ 5 MB

◗ 3 GB

◗ 2 TB

1.7 Explain the difference between random access memory (RAM) and
read-only memory (ROM).

1.8 A disk is a random-access device but it is not RAM (random access
memory). Explain.

1.9 Determine how your computer, or a computer in a lab to which you
have access, is connected to others across a network. Is it linked to
the Internet? Draw a diagram to show the basic connections in your
environment.

exercises 55

1.10 Explain the differences between a local-area network (LAN) and a
wide-area network (WAN). What is the relationship between them?

1.11 What is the total number of communication lines needed for a fully
connected point-to-point network of eight computers? Nine comput-
ers? Ten computers? What is a general formula for determining this
result?

1.12 Explain the difference between the Internet and the World Wide
Web.

1.13 List and explain the parts of the URLs for:

◗ your school

◗ the Computer Science department of your school

◗ your instructor’s Web page

1.14 Use a Web browser to access information through the Web about the
following topics. For each one, explain the process you used to find
the information and record the specific URLs you found.

◗ the Philadelphia Phillies baseball team

◗ wine production in California

◗ the subway systems in two major cities

◗ vacation opportunities in the Caribbean

1.15 Give examples of the two types of Java comments and explain the
differences between them.

1.16 Which of the following are not valid Java identifiers? Why?

◗ Factorial

◗ anExtremelyLongIdentifierIfYouAskMe

◗ 2ndLevel

◗ level2

◗ MAX_SIZE

◗ highest$

◗ hook&ladder

1.17 Why are the following valid Java identifiers not considered good
identifiers?

◗ q

◗ totVal

◗ theNextValueInTheList

56 CHAPTER 1 computer systems

1.18 Java is case sensitive. What does that mean?

1.19 What do we mean when we say that the English language is
ambiguous? Give two examples of English ambiguity (other than
the example used in this chapter) and explain the ambiguity. Why is
ambiguity a problem for programming languages?

1.20 Categorize each of the following situations as a compile-time error,
runtime error, or logical error.

◗ multiplying two numbers when you meant to add them

◗ dividing by zero

◗ forgetting a semicolon at the end of a programming statement

◗ spelling a word wrong in the output

◗ producing inaccurate results

◗ typing a { when you should have typed (

1.21 Compare and contrast a traditional coordinate system and the coor-
dinate system used by Java graphical components.

1.22 How many bits are needed to store a color picture that is 400 pixels
wide and 250 pixels high? Assume color is represented using the
RGB technique described in this chapter and that no special com-
pression is done.

programming projects
1.1 Enter, compile, and run the following application:

public class Test

{

public static void main (String[] args)

{

System.out.println (“An Emergency Broadcast”);

}

}

1.2 Introduce the following errors, one at a time, to the program from
the programming project 1.1. Record any error messages that the

programming projects 57

compiler produces. Fix the previous error each time before you
introduce a new one. If no error messages are produced, explain
why. Try to predict what will happen before you make each change.

◗ change Test to test

◗ change Emergency to emergency

◗ remove the first quotation mark in the string

◗ remove the last quotation mark in the string

◗ change main to man

◗ change println to bogus

◗ remove the semicolon at the end of the println statement

◗ remove the last brace in the program

1.3 Write an application that prints, on separate lines, your name, your
birthday, your hobbies, your favorite book, and your favorite movie.
Label each piece of information in the output.

1.4 Write an application that prints the phrase Knowledge is Power:

◗ on one line

◗ on three lines, one word per line, with the words centered relative
to each other

◗ inside a box made up of the characters = and |

1.5 Write an application that prints the following diamond shape. Don’t
print any unneeded characters. (That is, don’t make any character
string longer than it has to be.)

*

*

project57.html

58 CHAPTER 1 computer systems

1.6 Write an application that displays your initials in large block letters.
Make each large letter out of the corresponding regular character.
For example:

JJJJJJJJJJJJJJJ AAAAAAAAA LLLL

JJJJJJJJJJJJJJJ AAAAAAAAAAA LLLL

JJJJ AAA AAA LLLL

JJJJ AAA AAA LLLL

JJJJ AAAAAAAAAAA LLLL

J JJJJ AAAAAAAAAAA LLLL

JJ JJJJ AAA AAA LLLL

JJJJJJJJJJJ AAA AAA LLLLLLLLLLLLLL

JJJJJJJJJ AAA AAA LLLLLLLLLLLLLL

For additional programming projects, click the CodeMate icons below:

1.7 1.8

answers to self-review questions
1.1 The hardware of a computer system consists of its physical compo-

nents such as a circuit board, monitor, or keyboard. Computer soft-
ware are the programs that are executed by the hardware and the
data that those programs use. Hardware is tangible, whereas soft-
ware is intangible. In order to be useful, hardware requires software
and software requires hardware.

1.2 The operating system provides a user interface and efficiently coordi-
nates the use of resources such as main memory and the CPU.

1.3 The information is broken into pieces, and those pieces are repre-
sented as numbers.

1.4 In general, N bits can represent 2N unique items. Therefore:

◗ 2 bits can represent 4 items because 22 = 4.

◗ 4 bits can represent 16 items because 24 = 16.

◗ 5 bits can represent 32 items because 25 = 32.

◗ 7 bits can represent 128 items because 27 = 128.

1.5 There are eight bits in a byte. Therefore:

◗ 8 bytes = 8 * 8 bits = 64 bits

project58a.html
project58b.html

answers to self-review questions 59

◗ 2 KB = 2 * 1,024 bytes = 2,048 bytes = 2,048 * 8 bits = 16,384 bits

◗ 4 MB = 4 * 1,048,576 bytes = 4,194,304 bytes = 4,194,304 * 8 bits
= 33,554,432 bits

1.6 The two primary hardware components are main memory and the
CPU. Main memory holds the currently active programs and data.
The CPU retrieves individual program instructions from main mem-
ory, one at a time, and executes them.

1.7 A memory address is a number that uniquely identifies a particular
memory location in which a value is stored.

1.8 Main memory is volatile, which means the information that is stored
in it will be lost if the power supply to the computer is turned off.
Secondary memory devices are nonvolatile; therefore the information
that is stored on them is retained even if the power goes off.

1.9 A file server is a network computer that is dedicated to storing and
providing programs and data that are needed by many network
users.

1.10 Counting the number of unique connections in Fig. 1.16, there are
10 communication lines needed to fully connect a point-to-point net-
work of five computers. Adding a sixth computer to the network
will require that it be connected to the original five, bringing the
total to 15 communication lines.

1.11 The word Internet comes from the word internetworking, a concept
related to wide-area networks (WANs). An internetwork connects
one network to another. The Internet is a WAN.

1.12 Breaking down the parts of each URL:

◗ duke is the name of a computer within the csc subdomain (the
Department of Computing Sciences) of the villanova.edu
domain, which represents Villanova University. The edu top-level
domain indicates that it is an educational organization. This URL
is requesting a file called examples.html from within a subdirec-
tory called jss.

◗ java is the name of a computer (Web server) at the sun.com
domain, which represents Sun Microsystems, Inc. The com top-level
domain indicates that it is a commercial business. This URL is
requesting a file called index.html from within a subdirectory
called products.

60 CHAPTER 1 computer systems

1.13 High-level languages allow a programmer to express a series of pro-
gram instructions in English-like terms that are relatively easy to
read and use. However, in order to execute, a program must be
expressed in a particular computer’s machine language, which con-
sists of a series of bits that are basically unreadable by humans. A
high-level language program must be translated into machine lan-
guage before it can be run.

1.14 Java bytecode is a low-level representation of a Java source code
program. The Java compiler translates the source code into byte-
code, which can then be executed using the Java interpreter. The
bytecode might be transported across the Web before being executed
by a Java interpreter that is part of a Web browser.

1.15 White space is a term that refers to the spaces, tabs, and newline
characters that separate words and symbols in a program. The com-
piler ignores extra white space; therefore, it doesn’t affect execution.
However, it is crucial to use white space appropriately to make a
program readable to humans.

1.16 All of the identifiers shown are valid except 12345 (since an identi-
fier cannot begin with a digit) and black&white (since an identifier
cannot contain the character &). The identifiers RESULT and result
are both valid, but should not be used together in a program because
they differ only by case. The underscore character (as in answer_7)
is a valid part of an identifier.

1.17 Syntax rules define how the symbols and words of a programming
language can be put together. The semantics of a programming lan-
guage instruction determine what will happen when that instruction
is executed.

1.18 A black and white picture can be drawn using a series of dots, called
pixels. Pixels that correspond to a value of 0 are displayed in white
and pixels that correspond to a value of 1 are displayed in black. By
using thousands of pixels, a realistic black and white photo can be
produced on a computer screen.

and use objects for the services

they provide. This ability is

fundamental to the process of

writing any program in an

object-oriented language such as

Java. We use objects to manipu-

late character strings, obtain

information from the user, per-

form complex calculations, and

format output. In the Graphics

Track of this chapter, we explore

the relationship between Java

and the Web, and delve into

Java’s abilities to manipulate

color and draw shapes.

◗ Establish the difference between
primitive data and objects.

◗ Declare and use variables.

◗ Perform mathematical
computations.

◗ Create objects and use them for
the services they provide.

◗ Explore the difference between a
Java application and a Java applet.

◗ Create graphical programs that
draw shapes.

chapter
objectives

This chapter explores the key elements
that we use in a program: objects and primitive

data. We develop the ability to create

2
objects and primitive data

62 CHAPTER 2 objects and primitive data

2.0 an introduction to objects
As we stated in Chapter 1, Java is an object-oriented language. As the name
implies, an object is a fundamental entity in a Java program. This book is cen-
tered on the idea of developing software by defining objects with which we can
interact and that interact with each other.

In addition to objects, a Java program also manages primitive data. Primitive
data include common, fundamental values such as numbers and characters. An
object usually represents something more specialized or complex, such as a bank
account. An object often contains primitive values and is in part defined by them.
For example, an object that represents a bank account might contain the account
balance, which is stored as a primitive numeric value.

A data type defines a set of values and the operations that can be
performed on those values. We perform operations on primitive types
using operators that are built into the programming language. For
example, the addition operator + is used to add two numbers together.
We discuss Java’s primitive data types and their operators later in this
chapter.

An object is defined by a class, which can be thought of as the data type of the
object. The operations that can be performed on the object are defined by the
methods in the class. As we discussed in Chapter 1, a method is a collection of
programming statements that is given a specific name so that we can invoke the
method as needed.

Once a class has been defined, multiple objects can be created from that class.
For example, once we define a class to represent the concept of a bank account,
we can create multiple objects that represent specific, individual bank accounts.
Each bank account object would keep track of its own balance. This is an exam-
ple of encapsulation, meaning that each object protects and manages its own
information. The methods defined in the bank account class would allow us to
perform operations on individual bank account objects. For instance, we might
withdraw money from a particular account. We can think of these operations as
services that the object performs. The act of invoking a method on an object
sometimes is referred to as sending a message to the object, requesting that the
service be performed.

Classes can be created from other classes using inheritance. That is, the defi-
nition of one class can be based on another class that already exists. Inheritance

The information we manage in
a Java program is either repre-
sented as primitive data or as
objects.

ke
y

co
nc

ep
t

2.0 an introduction to objects 63

is a form of software reuse, capitalizing on the similarities between various kinds
of classes that we may want to create. One class can be used to derive several new
classes. Derived classes can then be used to derive even more classes. This creates
a hierarchy of classes, where characteristics defined in one class are inherited by
its children, which in turn pass them on to their children, and so on. For exam-
ple, we might create a hierarchy of classes that represent various types of
accounts. Common characteristics are defined in high-level classes, and specific
differences are defined in derived classes.

Classes, objects, encapsulation, and inheritance are the primary ideas that
make up the world of object-oriented software. They are depicted in Fig. 2.1.

This chapter focuses on how to use objects and primitive data. In Chapter 4,
we explore how to define our own objects by writing our own classes and meth-
ods. In Chapter 7, we explore inheritance.

figure 2.1 Various aspects of object-oriented software

John's Bank Account
Balance: $5,257

Multiple encapsulated objects
can be created from one class

A class defines
a concept

Classes can be organized
into inheritance hierarchies

Bill's Bank Account
Balance: $1,245,069

Mary's Bank Account
Balance: $16,833

Bank Account

 Account

 Charge Account Bank Account

 Savings Account Checking Account

64 CHAPTER 2 objects and primitive data

2.1 using objects
In the Lincoln program in Chapter 1, we invoked a method through an object
as follows:

System.out.println (“Whatever you are, be a good one.”);

The System.out object represents an output device or file, which by default is
the monitor screen. To be more precise, the object’s name is out and it is stored
in the System class. We explore that relationship in more detail at the appropri-
ate point in the text.

The println method represents a service that the System.out object per-
forms for us. Whenever we request it, the object will print a string of characters
to the screen. We can say that we send the println message to the System.out
object to request that some text be printed.

Each piece of data that we send to a method is called a parameter. In this case,
the println method takes only one parameter: the string of characters to be
printed.

The System.out object also provides another service we can use: the print
method. Let’s look at both of these services in more detail.

the print and println methods
The difference between print and println is small but important. The print-
ln method prints the information sent to it, then moves to the beginning of the
next line. The print method is similar to println, but does not advance to the
next line when completed.

The program shown in Listing 2.1 is called Countdown, and it invokes both the
print and println methods.

Carefully compare the output of the Countdown program to the program code.
Note that the word Liftoff is printed on the same line as the first few words,
even though it is printed using the println method. Remember that the println
method moves to the beginning of the next line after the information passed to it
is printed.

Often it is helpful to use graphics to show objects and their interaction. Figure
2.2 shows part of the situation that occurs in the Countdown program. The
Countdown class, with its main method, is shown invoking the println method
of the System.out object.

2.1 using objects 65

listing
2.1

//**

// Countdown.java Author: Lewis/Loftus

//

// Demonstrates the difference between print and println.

//**

public class Countdown

{

//---

// Prints two lines of output representing a rocket countdown.

//---

public static void main (String[] args)

{

System.out.print ("Three... ");

System.out.print ("Two... ");

System.out.print ("One... ");

System.out.print ("Zero... ");

System.out.println ("Liftoff!"); // appears on first output line

System.out.println ("Houston, we have a problem.");

}

}

Three . . . Two . . . One . . . Zero . . . Liftoff!

Houston, we have a problem.

figure 2.2 Sending a message

Countdown System.out

printlnmain

output

code65.html

66 CHAPTER 2 objects and primitive data

We mentioned in the previous section that the act of invoking a method is
referred to, in object-oriented terms, as sending a message. The diagram in Figure
2.2 supports this interpretation by showing the method name—the message—on
the arrow. We could also have shown the information that makes up the rest of
the message: the parameters to the methods.

As we explore objects and classes in more detail throughout this book, we will
formalize the types of diagrams we use to represent various aspects of an object-
oriented program. The more complex our programs get, the more helpful such
diagrams become.

abstraction
An object is an abstraction, meaning that the precise details of how it works are
irrelevant from the point of view of the user of the object. We don’t really need
to know how the println method prints characters to the screen as long as we
can count on it to do its job. Of course, it is sometimes helpful to understand such
information, but it is not necessary in order to use the object.

Sometimes it is important to hide or ignore certain details. Humans are capa-
ble of mentally managing around seven (plus or minus two) pieces of information
in short-term memory. Beyond that, we start to lose track of some of the pieces.
However, if we group pieces of information together, those pieces can be managed
as one “chunk” in our minds. We don’t actively deal with all of the details in the
chunk, but we can still manage it as a single entity. Therefore, we can deal with
large quantities of information by organizing them into chunks. An object is a
construct that organizes information and allows us to hide the details inside. An
object is therefore a wonderful abstraction.

We use abstractions every day. Think about a car for a moment. You don’t nec-
essarily need to know how a four-cycle combustion engine works in order to
drive a car. You just need to know some basic operations: how to turn it on, how
to put it in gear, how to make it move with the pedals and steering wheel, and
how to stop it. These operations define the way a person interacts with the car.
They mask the details of what is happening inside the car that allow it to func-
tion. When you’re driving a car, you’re not usually thinking about the spark plugs
igniting the gasoline that drives the piston that turns the crankshaft that turns the
axle that turns the wheels. If you had to worry about all of these underlying
details, you’d probably never be able to operate something as complicated as a
car.

Initially, all cars had manual transmissions. The driver had to under-
stand and deal with the details of changing gears with the stick shift.
Eventually, automatic transmissions were developed, and the driver no
longer had to worry about shifting gears. Those details were hidden by
raising the level of abstraction.

Of course, someone has to deal with the details. The car manufac-
turer has to know the details in order to design and build the car in the first place.
A car mechanic relies on the fact that most people don’t have the expertise or
tools necessary to fix a car when it breaks.

Thus, the level of abstraction must be appropriate for each situation. Some
people prefer to drive a manual transmission car. A race car driver, for instance,
needs to control the shifting manually for optimum performance.

Likewise, someone has to create the code for the objects we use. Soon we will
define our own objects by defining classes and their methods. For now, we can
make use of objects that have been defined for us already. Abstraction makes that
possible.

2.2 string literals
A character string is an object in Java, defined by the class String. Because
strings are so fundamental to computer programming, Java provides the ability
to use a string literal, delimited by double quotation characters, as we’ve seen in
previous examples. We explore the String class and its methods in more detail
later in this chapter. For now, let’s explore two other useful details about strings:
concatenation and escape sequences.

string concatenation
The program called Facts shown in Listing 2.2 contains several println state-
ments. The first one prints a sentence that is somewhat long and will not fit on
one line of the program. A character string, delimited by the double quotation
character, cannot be split between two lines of code. One way to get around this
problem is to use the string concatenation operator, the plus sign (+). String con-
catenation produces one string in which the second string is appended to the first.
The string concatenation operation in the first println statement results in one
large string that is passed to the method and printed.

2.2 string literals 67

An abstraction hides details.
A good abstraction hides the
right details at the right time
so that we can manage
complexity.

key
concept

68 CHAPTER 2 objects and primitive data

Note that we don’t have to pass any information to the println method, as
shown in the second line of the Facts program. This call does not print any vis-

listing
2.2

//**

// Facts.java Author: Lewis/Loftus

//

// Demonstrates the use of the string concatenation operator and the

// automatic conversion of an integer to a string.

//**

public class Facts

{

//---

// Prints various facts.

//---

public static void main (String[] args)

{

// Strings can be concatenated into one long string

System.out.println ("We present the following facts for your "

+ "extracurricular edification:");

System.out.println ();

// A string can contain numeric digits

System.out.println ("Letters in the Hawaiian alphabet: 12");

// A numeric value can be concatenated to a string

System.out.println ("Dialing code for Antarctica: " + 672);

System.out.println ("Year in which Leonardo da Vinci invented "

+ "the parachute: " + 1515);

System.out.println ("Speed of ketchup: " + 40 + " km per year");

}

}

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12

Dialing code for Antarctica: 672

Year in which Leonardo da Vinci invented the parachute: 1515

Speed of ketchup: 40 km per year

output

code68.html

2.2 string literals 69

ible characters, but it does move to the next line of output. In this case, the call
to println passing in no parameters has the effect of printing a blank line.

The rest of the calls to println in the Facts program demonstrate another
interesting thing about string concatenation: Strings can be concatenated with
numbers. Note that the numbers in those lines are not enclosed in double quotes
and are therefore not character strings. In these cases, the number is automati-
cally converted to a string, and then the two strings are concatenated.

Because we are printing particular values, we simply could have included the
numeric value as part of the string literal, such as:

“Speed of ketchup: 40 km per year”

Digits are characters and can be included in strings as needed. We separate them
in the Facts program to demonstrate the ability to concatenate a string and a
number. This technique will be useful in upcoming examples.

As we’ve mentioned, the + operator is also used for arithmetic addition.
Therefore, what the + operator does depends on the types of data on which it
operates. If either or both of the operands of the + operator are strings, then
string concatenation is performed.

The Addition program shown in Listing 2.3 demonstrates the distinction
between string concatenation and arithmetic addition. The Addition program
uses the + operator four times. In the first call to println, both + operations per-
form string concatenation. This is because the operators execute left to right. The
first operator concatenates the string with the first number (24), creating a larg-
er string. Then that string is concatenated with the second number (45), creating
an even larger string, which gets printed.

In the second call to println, parentheses are used to group the + operation
with the two numbers. This forces that operation to happen first. Because both
operands are numbers, the numbers are added in the arithmetic sense, producing
the result 69. That number is then concatenated with the string, producing a larg-
er string that gets printed.

We revisit this type of situation later in this chapter when we formalize the
rules that define the order in which operators get evaluated.

escape sequences
Because the double quotation character (“) is used in the Java language to indi-
cate the beginning and end of a string, we must use a special technique to print
the quotation character. If we simply put it in a string (“””), the compiler gets

70 CHAPTER 2 objects and primitive data

confused because it thinks the second quotation character is the end of the string
and doesn’t know what to do with the third one. This results in a compile-time
error.

To overcome this problem, Java defines several escape sequences to represent
special characters. An escape sequence begins with the backslash character (\),
and indicates that the character or characters that follow should be interpreted in
a special way. Figure 2.3 lists the Java escape sequences.

The program in Listing 2.4, called Roses, prints some text resembling a poem.
It uses only one println statement to do so, despite the fact that the poem is sev-
eral lines long. Note the escape sequences used throughout the string. The \n
escape sequence forces the output to a new line, and the \t escape sequence rep-
resents a tab character. The \” escape sequence ensures that the quote character
is treated as part of the string, not the termination of it, which enables it to be
printed as part of the output.

listing
2.3

//**

// Addition.java Author: Lewis/Loftus

//

// Demonstrates the difference between the addition and string

// concatenation operators.

//**

public class Addition

{

//---

// Concatenates and adds two numbers and prints the results.

//---

public static void main (String[] args)

{

System.out.println ("24 and 45 concatenated: " + 24 + 45);

System.out.println ("24 and 45 added: " + (24 + 45));

}

}

24 and 45 concatenated: 2445

24 and 45 added: 69

output

code70.html

2.2 string literals 71

figure 2.3 Java escape sequences

Escape Sequence Meaning

\b

\t

\n

\r

\"

\'

\\

backspace

tab

newline

carriage return

double quote

single quote

backslash

listing
2.4

//**

// Roses.java Author: Lewis/Loftus

//

// Demonstrates the use of escape sequences.

//**

public class Roses

{

//---

// Prints a poem (of sorts) on multiple lines.

//---

public static void main (String[] args)

{

System.out.println ("Roses are red,\n\tViolets are blue,\n" +

"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +

"So I'd rather just be friends\n\tAt this point in our " +

"relationship.");

}

}

Roses are red,

Violets are blue,

Sugar is sweet,

But I have "commitment issues",

So I'd rather just be friends

At this point in our relationship.

output

code71.html

72 CHAPTER 2 objects and primitive data

2.3 variables and assignment
Most of the information we manage in a program is represented by variables.
Let’s examine how we declare and use them in a program.

variables
A variable is a name for a location in memory used to hold a data value. A vari-

able declaration instructs the compiler to reserve a portion of main
memory space large enough to hold a particular type of value and indi-
cates the name by which we refer to that location.

Consider the program PianoKeys, shown in Listing 2.5. The first
line of the main method is the declaration of a variable named keys
that holds an integer (int) value. The declaration also gives keys an

initial value of 88. If an initial value is not specified for a variable, the value is
undefined. Most Java compilers give errors or warnings if you attempt to use a
variable before you’ve explicitly given it a value.

Local Variable Declaration

Variable Declarator

A variable declaration consists of a Type followed by a list of vari-
ables. Each variable can be initialized in the declaration to the value
of the specified Expression. If the final modifier precedes the declara-
tion, the identifiers are declared as named constants whose values can-
not be changed once set.

Examples:

int total;

double num1, num2 = 4.356, num3;

char letter = ‘A’, digit = ‘7’;

final int MAX = 45;

Type Variable Declarator

,final

Identifier

= Expression

Array Initializer

A variable is a name for a
memory location used to hold
a value of a particular data
type.

ke
y

co
nc

ep
t

2.3 variables and assignment 73

In the PianoKeys program, two pieces of information are provided in the call
to the println method. The first is a string, and the second is the variable keys.
When a variable is referenced, the value currently stored in it is used. Therefore
when the call to println is executed, the value of keys is obtained. Because that
value is an integer, it is automatically converted to a string so it can be concate-
nated with the initial string. The concatenated string is passed to println and
printed.

Note that a variable declaration can have multiple variables of the same type
declared on one line. Each variable on the line can be declared with or without
an initializing value.

the assignment statement
Let’s examine a program that changes the value of a variable. Listing 2.6 shows
a program called Geometry. This program first declares an integer variable called
sides and initializes it to 7. It then prints out the current value of sides.

listing
2.5

//**

// PianoKeys.java Author: Lewis/Loftus

//

// Demonstrates the declaration, initialization, and use of an

// integer variable.

//**

public class PianoKeys

{

//---

// Prints the number of keys on a piano.

//---

public static void main (String[] args)

{

int keys = 88;

System.out.println ("A piano has " + keys + " keys.");

}

}

A piano has 88 keys.

output

code73.html

74 CHAPTER 2 objects and primitive data

The next line in main changes the value stored in the variable sides:

sides = 10;

This is called an assignment statement because it assigns a value to a variable.
When executed, the expression on the right-hand side of the assignment operator
(=) is evaluated, and the result is stored in the memory location indicated by the
variable on the left-hand side. In this example, the expression is simply a number,
10. We discuss expressions that are more involved than this in the next section.

listing
2.6

//**

// Geometry.java Author: Lewis/Loftus

//

// Demonstrates the use of an assignment statement to change the

// value stored in a variable.

//**

public class Geometry

{

//---

// Prints the number of sides of several geometric shapes.

//---

public static void main (String[] args)

{

int sides = 7; // declaration with initialization

System.out.println ("A heptagon has " + sides + " sides.");

sides = 10; // assignment statement

System.out.println ("A decagon has " + sides + " sides.");

sides = 12;

System.out.println ("A dodecagon has " + sides + " sides.");

}

}

A heptagon has 7 sides.

A decagon has 10 sides.

A dodecagon has 12 sides.

output

code74.html

2.3 variables and assignment 75

A variable can store only one value of its declared type. A new value
overwrites the old one. In this case, when the value 10 is assigned to
sides, the original value 7 is overwritten and lost forever. However,
when a reference is made to a variable, such as when it is printed, the
value of the variable is not changed.

The Java language is strongly typed, meaning that we are not
allowed to assign a value to a variable that is inconsistent with its
declared type. Trying to combine incompatible types will generate an
error when you attempt to compile the program. Therefore, the expres-
sion on the right-hand side of an assignment statement must evaluate
to a value compatible with the type of the variable on the left-hand
side.

constants
Sometimes we use data that is constant throughout a program. For instance,
we might write a program that deals with a theater that can hold no more than
427 people. It is often helpful to give a constant value a name, such as
MAX_OCCUPANCY, instead of using a literal value, such as 427, throughout the
code. Literal values such as 427 are sometimes referred to as “magic” numbers
because their meaning in a program is mystifying.

Constants are identifiers and are similar to variables except that they hold a
particular value for the duration of their existence. In Java, if you precede a dec-
laration with the reserved word final, the identifier is made a constant. By

Basic Assignment

The basic assignment statement uses the assignment operator (=) to
store the result of the Expression into the specified Identifier, usually
a variable.

Examples:

total = 57;

count = count + 1;

value = (min / 2) * lastValue;

ExpressionIdentifier = ;

A variable can store only one
value of its declared type.

key
concept

Java is a strongly typed lan-
guage. Each variable is associ-
ated with a specific type for
the duration of its existence,
and we cannot assign a value
of one type to a variable of an
incompatible type.

key
concept

convention, uppercase letters are used when naming constants to distinguish
them from regular variables, and individual words are separated using the
underscore character. For example, the constant describing the maximum occu-
pancy of a theater could be declared as follows:

final int MAX_OCCUPANCY = 427;

The compiler will produce an error message if you attempt to change
the value of a constant once it has been given its initial value. This is
another good reason to use them. Constants prevent inadvertent cod-
ing errors because the only valid place to change their value is in the ini-
tial assignment.

There is a third good reason to use constants. If a constant is used throughout
a program and its value needs to be modified, then you have to change it in only
one place. For example, if the capacity of the theater changes (because of a reno-
vation) from 427 to 535, then you have to change only one declaration, and all
uses of MAX_OCCUPANCY automatically reflect the change. If the literal 427 had
been used throughout the code, each use would have to be found and changed. If
you were to miss one or two, problems would surely arise.

2.4 primitive data types
There are eight primitive data types in Java: four subsets of integers, two subsets
of floating point numbers, a character data type, and a boolean data type.
Everything else is represented using objects. Let’s examine these eight primitive
data types in some detail.

integers and floating points
Java has two basic kinds of numeric values: integers, which have no
fractional part, and floating points, which do. There are four integer
data types (byte, short, int, and long) and two floating point data
types (float and double). All of the numeric types differ by the
amount of memory space used to store a value of that type, which
determines the range of values that can be represented. The size of each
data type is the same for all hardware platforms. All numeric types are
signed, meaning that both positive and negative values can be stored in
them. Figure 2.4 summarizes the numeric primitive types.

Remember from our discussion in Chapter 1 that a bit can be either a 1 or a
0. Because each bit can represent two different states, a string of n bits can be

76 CHAPTER 2 objects and primitive data

Constants are similar to vari-
ables, but they hold a particu-
lar value for the duration of
their existence.

ke
y

co
nc

ep
t

Java has two kinds of numeric
values: integers and floating
point. There are four integer
data types (byte, short, int,
and long) and two floating
point data types (float and
double).

ke
y

co
nc

ep
t

2.4 primitive data types 77

used to represent 2n different values. Appendix B describes number systems and
these kinds of relationships in more detail.

When designing a program, we sometimes need to be careful about picking
variables of appropriate size so that memory space is not wasted. For example, if
a value will not vary outside of a range of 1 to 1000, then a two-byte integer
(short) is large enough to accommodate it. On the other hand, when it’s not clear
what the range of a particular variable will be, we should provide a reasonable,
even generous, amount of space. In most situations memory space is not a seri-
ous restriction, and we can usually afford generous assumptions.

Note that even though a float value supports very large (and very small) num-
bers, it only has seven significant digits. Therefore if it is important to accurately
maintain a value such as 50341.2077, we need to use a double.

A literal is an explicit data value used in a program. The various numbers used
in programs such as Facts and Addition and PianoKeys are all integer literals.
Java assumes all integer literals are of type int, unless an L or l is appended to
the end of the value to indicate that it should be considered a literal of type long,
such as 45L.

Likewise, Java assumes that all floating point literals are of type double. If we
need to treat a floating point literal as a float, we append an F or f to the end

figure 2.4 The Java numeric primitive types

byte

short

int

long

float

double

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

–128

–32,768

–2,147,483,648

–9,223,372,036,854,775,808

Approximately –3.4E+38
with 7 significant digits

Approximately –1.7E+308
with 15 significant digits

127

32,767

2,147,483,647

9,223,372,036,854,775,807

Approximately 3.4E+38
with 7 significant digits

Approximately 1.7E+308
with 15 significant digits

Type Storage Min Value Max Value

The book’s Web site includes a description of the internal storage rep-
resentation of primitive data types.

web
bonus

78 CHAPTER 2 objects and primitive data

of the value, as in 2.718F or 123.45f. Numeric literals of type double can be
followed by a D or d if desired.

The following are examples of numeric variable declarations in Java:

int answer = 42;

byte smallNumber1, smallNumber2;

long countedStars = 86827263927L;

float ratio = 0.2363F;

double delta = 453.523311903;

characters
Characters are another fundamental type of data used and managed on a com-
puter. Individual characters can be treated as separate data items, and as we’ve
seen in several example programs, they can be combined to form character
strings.

A character literal is expressed in a Java program with single quotes, such as
‘b’ or ‘J’ or ‘;’. You will recall that string literals are delineated using double
quotation marks, and that the String type is not a primitive data type in Java, it
is a class name. We discuss the String class in detail later in this chapter.

Note the difference between a digit as a character (or part of a string) and a
digit as a number (or part of a larger number). The number 602 is a numeric value

Decimal Integer Literal

An integer literal is composed of a series of digits followed by an
optional suffix to indicate that it should be considered a long integer.
Negation of a literal is considered a separate operation.

Examples:

5

2594

4920328L

0

1 - 9 0 - 9 L

l

2.4 primitive data types 79

that can be used in an arithmetic calculation. But in the string “602 Greenbriar
Court” the 6, 0, and 2 are characters, just like the rest of the characters that make
up the string.

The characters we can manage are defined by a character set, which is simply
a list of characters in a particular order. Each programming language supports a
particular character set that defines the valid values for a character variable in
that language. Several character sets have been proposed, but only a few have
been used regularly over the years. The ASCII character set is a popular choice.
ASCII stands for the American Standard Code for Information Interchange. The
basic ASCII set uses seven bits per character, providing room to support 128 dif-
ferent characters, including:

◗ uppercase letters, such as ‘A’, ‘B’, and ‘C’

◗ lowercase letters, such as ‘a’, ‘b’, and ‘c’

◗ punctuation, such as the period (‘.’), semicolon (‘;’), and comma (‘,’)

◗ the digits ‘0’ through ‘9’

◗ the space character, ‘ ‘

◗ special symbols, such as the ampersand (‘&’), vertical bar (‘|’), and back-
slash (‘\’)

◗ control characters, such as the carriage return, null, and end-of-text marks

The control characters are sometimes called nonprinting or invisible characters
because they do not have a specific symbol that represents them. Yet they are as
valid as any other character and can be stored and used in the same ways. Many
control characters have special meaning to certain software applications.

As computing became a worldwide endeavor, users demanded a more flexible
character set containing other language alphabets. ASCII was extended to use
eight bits per character, and the number of characters in the set doubled to 256.
The extended ASCII contains many accented and diacritical characters not used
in English.

However, even with 256 characters, the ASCII character set cannot represent
the world’s alphabets, especially given the various Asian alphabets and their
many thousands of ideograms. Therefore the developers of the Java programming
language chose the Unicode character set, which uses 16 bits per character, sup-
porting 65,536 unique characters. The characters and symbols from many lan-
guages are included in the Unicode definition. ASCII is a subset of the Unicode
character set. Appendix C discusses the Unicode character set in more detail.

In Java, the data type char represents a single character. The following are
some examples of character variable declarations in Java:

char topGrade = ‘A’;

char symbol1, symbol2, symbol3;

char terminator = ‘;’, separator = ‘ ‘;

booleans
A boolean value, defined in Java using the reserved word boolean, has only two
valid values: true and false. A boolean variable is usually used to indicate
whether a particular condition is true, but it can also be used to represent any sit-
uation that has two states, such as a light bulb being on or off.

A boolean value cannot be converted to any other data type, nor can any other
data type be converted to a boolean value. The words true and false are
reserved in Java as boolean literals and cannot be used outside of this context.

The following are some examples of boolean variable declarations in Java:

boolean flag = true;

boolean tooHigh, tooSmall, tooRough;

boolean done = false;

2.5 arithmetic expressions
An expression is a combination of one or more operators and operands.
Expressions usually perform a calculation. The value calculated does not have to
be a number, but it often is. The operands used in the operations might be liter-

als, constants, variables, or other sources of data. The manner in which
expressions are evaluated and used is fundamental to programming.

For now we will focus on arithmetic expressions that use numeric
operands and produce numeric results. The usual arithmetic operations
are defined for both integer and floating point numeric types, including
addition (+), subtraction (–), multiplication (*), and division (/). Java
also has another arithmetic operation: The remainder operator (%)

returns the remainder after dividing the second operand into the first. The sign of
the result of a remainder operation is the sign of the numerator. Therefore, 17%4
equals 1, –20%3 equals –2, 10%–5 equals 0, and 3%8 equals 3.

80 CHAPTER 2 objects and primitive data

Many programming statements
involve expressions. Expres-
sions are combinations of one
or more operands and the
operators used to perform a
calculation.

ke
y

co
nc

ep
t

2.5 arithmetic expressions 81

As you might expect, if either or both operands to any numeric operator are
floating point values, the result is a floating point value. However, the division
operator produces results that are less intuitive, depending on the types of the
operands. If both operands are integers, the / operator performs integer division,
meaning that any fractional part of the result is discarded. If one or the other or
both operands are floating point values, the / operator performs floating point
division, and the fractional part of the result is kept. For example, the result of
10/4 is 2, but the results of 10.0/4 and 10/4.0 and 10.0/4.0 are all 2.5.

operator precedence
Operators can be combined to create more complex expressions. For example,
consider the following assignment statement:

result = 14 + 8 / 2;

The entire right-hand side of the assignment is evaluated, and then the result is
stored in the variable. But what is the result? It is 11 if the addition is performed
first, or it is 18 if the division is performed first. The order of operator evaluation
makes a big difference. In this case, the division is performed before the addition,
yielding a result of 18. You should note that in this and subsequent examples we
have used literal values rather than variables to simplify the expression. The order
of operator evaluation is the same if the operands are variables or any other
source of data.

All expressions are evaluated according to an operator precedence hierarchy
that establishes the rules that govern the order in which operations are evaluat-
ed. In the case of arithmetic operators, multiplication, division, and the remain-
der operator all have equal precedence and are performed before addi-
tion and subtraction. Any arithmetic operators at the same level of
precedence are performed left to right. Therefore we say the arithmetic
operators have a left-to-right association.

Precedence, however, can be forced in an expression by using paren-
theses. For instance, if we really wanted the addition to be performed
first in the previous example, we could write the expression as follows:

result = (14 + 8) / 2;

Any expression in parentheses is evaluated first. In complicated expressions, it
is good practice to use parentheses even when it is not strictly necessary in order
to make it clear how the expression is evaluated.

Java follows a well-defined set
of rules that govern the order
in which operators will be eval-
uated in an expression. These
rules form an operator prece-
dence hierarchy.

key
concept

82 CHAPTER 2 objects and primitive data

Parentheses can be nested, and the innermost nested expressions are evaluated
first. Consider the following expression:

result = 3 * ((18 – 4) / 2);

In this example, the result is 21. First, the subtraction is performed, forced by the
inner parentheses. Then, even though multiplication and division are at the same
level of precedence and usually would be evaluated left to right, the division is
performed first because of the outer parentheses. Finally, the multiplication is per-
formed.

After the arithmetic operations are complete, the computed result is stored in
the variable on the left-hand side of the assignment operator (=). In other words,
the assignment operator has a lower precedence than any of the arithmetic oper-
ators.

Figure 2.5 shows a precedence table with the relationships between the arith-
metic operators, parentheses, and the assignment operator. Appendix D includes
a full precedence table showing all Java operators.

A unary operator has only one operand, while a binary operator has two. The
+ and – arithmetic operators can be either unary or binary. The binary versions
accomplish addition and subtraction, and the unary versions represent positive
and negative numbers. For example, 1 is an example of using the unary negation
operator to make the value negative.

figure 2.5 Precedence among some of the Java operators

1

2

3

4

+

–

*

/

%

+

–

+

=

unary plus

unary minus

multiplication

division

remainder

addition

subtraction

string concatenation

assignment

R to L

L to R

L to R

R to L

Precedence
Level Operator Operation Associates

2.5 arithmetic expressions 83

For an expression to be syntactically correct, the number of left parentheses
must match the number of right parentheses and they must be properly nested.
The following examples are not valid expressions:

result = ((19 + 8) % 3) – 4); // not valid

result = (19 (+ 8 %) 3 – 4); // not valid

The program in Listing 2.7, called TempConverter, converts a Celsius
temperature value to its equivalent Fahrenheit value. Note that the operands to
the division operation are double to ensure that the fractional part of the number

listing
2.7

//**

// TempConverter.java Author: Lewis/Loftus

//

// Demonstrates the use of primitive data types and arithmetic

// expressions.

//**

public class TempConverter

{

//---

// Computes the Fahrenheit equivalent of a specific Celsius

// value using the formula F = (9/5)C + 32.

//---

public static void main (String[] args)

{

final int BASE = 32;

final double CONVERSION_FACTOR = 9.0 / 5.0;

int celsiusTemp = 24; // value to convert

double fahrenheitTemp;

fahrenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

System.out.println ("Celsius Temperature: " + celsiusTemp);

System.out.println ("Fahrenheit Equivalent: " + fahrenheitTemp);

}

}

Celsius Temperature: 24

Fahrenheit Equivalent: 75.2

output

code83.html

84 CHAPTER 2 objects and primitive data

is kept. The precedence rules dictate that the multiplication happens before the
addition in the final conversion computation, which is what we want.

data conversion
Because Java is a strongly typed language, each data value is associated with a
particular type. It is sometimes helpful or necessary to convert a data value of one
type to another type, but we must be careful that we don’t lose important infor-
mation in the process. For example, suppose a short variable that holds the num-
ber 1000 is converted to a byte value. Because a byte does not have enough bits
to represent the value 1000, some bits would be lost in the conversion, and the
number represented in the byte would not keep its original value.

A conversion between one primitive type and another falls into one of two
categories: widening conversions and narrowing conversions. Widening conver-
sions are the safest because they usually do not lose information. They are called
widening conversions because they go from one data type to another type that
uses an equal or greater amount of space to store the value. Figure 2.6 lists the
Java widening conversions.

For example, it is safe to convert from a byte to a short because a byte is
stored in 8 bits and a short is stored in 16 bits. There is no loss of information.
All widening conversions that go from an integer type to another integer type, or
from a floating point type to another floating point type, preserve the numeric
value exactly.

Although widening conversions do not lose any information about the mag-
nitude of a value, the widening conversions that result in a floating point value
can lose precision. When converting from an int or a long to a float, or from

figure 2.6 Java widening conversions

byte

short

char

int

long

float

short, int, long, float, or double

int, long, float, or double

int, long, float, or double

long, float, or double

float or double

double

From To

2.5 arithmetic expressions 85

a long to a double, some of the least significant digits may be lost. In this case,
the resulting floating point value will be a rounded version of the integer value,
following the rounding techniques defined in the IEEE 754 floating point
standard.

Narrowing conversions are more likely to lose information than
widening conversions are. They often go from one type to a type that
uses less space to store a value, and therefore some of the information
may be compromised. Narrowing conversions can lose both numeric
magnitude and precision. Therefore, in general, they should be avoid-
ed. Figure 2.7 lists the Java narrowing conversions.

An exception to the space-shrinking situation in narrowing conversions is
when we convert a byte (8 bits) or short (16 bits) to a char (16 bits). These are
still considered narrowing conversions because the sign bit is incorporated into
the new character value. Since a character value is unsigned, a negative integer
will be converted into a character that has no particular relationship to the
numeric value of the original integer.

Note that boolean values are not mentioned in either widening or narrowing
conversions. A boolean value cannot be converted to any other primitive type
and vice versa.

In Java, conversions can occur in three ways:

◗ assignment conversion

◗ arithmetic promotion

◗ casting

figure 2.7 Java narrowing conversions

byte

short

char

int

long

char

byte or char

byte or short

byte, short, or char

byte, short, char, or int

float byte, short, char, int, or long

double byte, short, char, int, long, or float

From To

Avoid narrowing conversions
because they can lose
information.

key
concept

86 CHAPTER 2 objects and primitive data

Assignment conversion occurs when a value of one type is assigned to a vari-
able of another type during which the value is converted to the new type. Only
widening conversions can be accomplished through assignment. For example, if
money is a float variable and dollars is an int variable, then the following
assignment statement automatically converts the value in dollars to a float:

money = dollars;

Therefore, if dollars contains the value 25, after the assignment, money con-
tains the value 25.0. However, if we attempt to assign money to dollars, the
compiler will issue an error message alerting us to the fact that we are attempt-
ing a narrowing conversion that could lose information. If we really want to do
this assignment, we have to make the conversion explicit using a cast.

Arithmetic promotion occurs automatically when certain arithmetic operators
need to modify their operands in order to perform the operation. For example,
when a floating point value called sum is divided by an integer value called count,
the value of count is promoted to a floating point value automatically, before the
division takes place, producing a floating point result:

result = sum / count;

Casting is the most general form of conversion in Java. If a conversion can be
accomplished at all in a Java program, it can be accomplished using a cast. A cast
is a Java operator that is specified by a type name in parentheses. It is placed in
front of the value to be converted. For example, to convert money to an integer
value, we could put a cast in front of it:

dollars = (int) money;

The cast returns the value in money, truncating any fractional part. If money
contained the value 84.69, then after the assignment, dollars would contain the
value 84. Note, however, that the cast does not change the value in money. After
the assignment operation is complete, money still contains the value 84.69.

Casts are helpful in many situations where we need to treat a value temporar-
ily as another type. For example, if we want to divide the integer value total by
the integer value count and get a floating point result, we could do it as follows:

result = (float) total / count;

First, the cast operator returns a floating point version of the value in total.
This operation does not change the value in total. Then, count is treated as a
floating point value via arithmetic promotion. Now the division operator will

perform floating point division and produce the intended result. If the cast had
not been included, the operation would have performed integer division and trun-
cated the answer before assigning it to result. Also note that because the cast
operator has a higher precedence than the division operator, the cast operates on
the value of total, not on the result of the division.

2.6 creating objects
A variable can hold either a primitive value or a reference to an object. Like vari-
ables that hold primitive types, a variable that serves as an object reference must
be declared. A class is used to define an object, and the class name can be thought
of as the type of an object. The declarations of object references have a similar
structure to the declarations of primitive variables.

The following declaration creates a reference to a String object:

String name;

That declaration is like the declaration of an integer, in that the type is followed
by the variable name we want to use. However, no string object actually exists
yet. To create an object, we use the new operator:

name = new String (“James Gosling”);

The act of creating an object using the new operator is called instan-
tiation. An object is said to be an instance of a particular class. After
the new operator creates the object, a constructor is invoked to help set
it up initially. A constructor has the same name as the class and is sim-
ilar to a method. In this example, the parameter to the constructor is a
string literal that specifies the characters that the string object will hold.

The act of declaring the object reference variable and creating the object itself
can be combined into one step by initializing the variable in the declaration, just
as we do with primitive types:

String name = new String (“James Gosling”);

After an object has been instantiated, we use the dot operator to access its
methods. We’ve used the dot operator many times in previous programs, such as
in calls to System.out.println. The dot operator is appended directly after the
object reference, followed by the method being invoked. For example, to invoke

2.6 creating objects 87

The new operator returns a
reference to a newly created
object.

key
concept

88 CHAPTER 2 objects and primitive data

the length method defined in the String class, we use the dot operator on the
name reference variable:

count = name.length()

The length method does not take any parameters, but the parentheses are still
necessary to indicate that a method is being invoked. Some methods produce a
value that is returned when the method completes. The purpose of the length
method of the String class is to determine and return the length of the string (the
number of characters it contains). In this example, the returned value is assigned
to the variable count. For the string “James Gosling”, the length method
returns 13 (this includes the space between the first and last names). Some meth-
ods do not return a value.

An object reference variable (such as name) actually stores the address where
the object is stored in memory. We explore the nuances of object references,
instantiation, and constructors in later chapters.

the String class
Let’s examine the String class in more detail. Strings in Java are objects repre-
sented by the String class. Figure 2.8 lists some of the more useful methods of
the String class. The method headers are listed, and they indicate the type of
information that must be passed to the method. The type shown in front of the
method name is called the return type of the method and indicates the type of
information that will be returned, if anything. A return type of void indicates
that the method does not return a value. The returned value can be used in the
calling method as needed.

Once a String object is created, its value cannot be lengthened, shortened, nor
can any of its characters change. Thus we say that a String object is immutable.
However, several methods in the String class return new String objects that are
often the result of modifying the original string’s value.

Note also that some of the String methods refer to the index of a particular
character. A character in a string can be specified by its position, or index, in the
string. The index of the first character in a string is zero, the index of the next
character is one, and so on. Therefore in the string “Hello”, the index of the
character ‘H’ is zero and the character at index four is ‘o’.

Several String methods are exercised in the program called StringMutation,
shown in Listing 2.8.

2.6 creating objects 89

Figure 2.9 shows the String objects that are created in the StringMutation
program. Compare this diagram to the program code and the output. Keep in
mind that this is not a single String object that changes its data; this program
creates five separate String objects using various methods of the String class.

figure 2.8 Some methods of the String class

String (String str)

Constructor: creates a new string object with the same characters as str.

char charAt (int index)

Returns the character at the specified index.

int compareTo (String str)

Returns an integer indicating if this string is lexically before (a negative return
value), equal to (a zero return value), or lexically after (a positive return value),
the string str.

String concat (String str)

Returns a new string consisting of this string concatenated with str.

boolean equals (String str)

Returns true if this string contains the same characters as str (including
case) and false otherwise.

boolean equalsIgnoreCase (String str)

Returns true if this string contains the same characters as str (without
regard to case) and false otherwise.

int length ()

Returns the number of characters in this string.

String replace (char oldChar, char newChar)

Returns a new string that is identical with this string except that every
occurrence of oldChar is replaced by newChar.

String substring (int offset, int endIndex)

Returns a new string that is a subset of this string starting at index offset
and extending through endIndex-1.

String toLowerCase ()

Returns a new string identical to this string except all uppercase letters are
converted to their lowercase equivalent.

String toUpperCase ()

Returns a new string identical to this string except all lowercase letters are
converted to their uppercase equivalent.

90 CHAPTER 2 objects and primitive data

listing
2.8

//**

// StringMutation.java Author: Lewis/Loftus

//

// Demonstrates the use of the String class and its methods.

//**

public class StringMutation

{

//---

// Prints a string and various mutations of it.

//---

public static void main (String[] args)

{

String phrase = new String ("Change is inevitable");

String mutation1, mutation2, mutation3, mutation4;

System.out.println ("Original string: \"" + phrase + "\"");

System.out.println ("Length of string: " + phrase.length());

mutation1 = phrase.concat (", except from vending machines.");

mutation2 = mutation1.toUpperCase();

mutation3 = mutation2.replace ('E', 'X');

mutation4 = mutation3.substring (3, 30);

// Print each mutated string

System.out.println ("Mutation #1: " + mutation1);

System.out.println ("Mutation #2: " + mutation2);

System.out.println ("Mutation #3: " + mutation3);

System.out.println ("Mutation #4: " + mutation4);

System.out.println ("Mutated length: " + mutation4.length());

}

}

Original string: "Change is inevitable"

Length of string: 20

Mutation #1: Change is inevitable, except from vending machines.

Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.

Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.

Mutation #4: NGX IS INXVITABLX, XXCXPT F

Mutated length: 27

output

code90.html

Even though they are not primitive types, strings are so fundamental and so
often used that Java defines string literals delimited by double quotation marks,
as we’ve seen in various examples. This is a shortcut notation. Whenever a string
literal appears, a String object is created. Therefore the following declaration is
valid:

String name = “James Gosling”;

That is, for String objects, the explicit use of the new operator and the call to
the constructor can be eliminated. In most cases, we will use this simplified
syntax.

2.7 class libraries and packages
A class library is a set of classes that supports the development of programs. A
compiler often comes with a class library. Class libraries can also be obtained
separately through third-party vendors. The classes in a class library contain
methods that are often valuable to a programmer because of the special func-
tionality they offer. In fact, programmers often become dependent on the meth-
ods in a class library and begin to think of them as part of the language. However,
technically, they are not in the language definition.

2.7 class libraries and packages 91

figure 2.9 The String objects created in the StringMutation program

phrase mutation1

mutation2 mutation3

mutation4

"CHANGE IS INEVITABLE,
EXCEPT FROM VENDING

MACHINES"

"Change is inevitable,
except from vending

machines."
"Change is inevitable"

"CHANGE IS INXVITABLX,
XXCXPT FROM VXNDING

MACHINXS"

"NGX IS INXVITABLX,
XXCXPT F"

92 CHAPTER 2 objects and primitive data

The String class, for instance, is not an inherent part of the Java
language. It is part of the Java standard class library that can be found
in any Java development environment. The classes that make up the
library were created by employees at Sun Microsystems, the people
who created the Java language.

The class library is made up of several clusters of related classes, which are
sometimes called Java APIs, or Application Programmer Interface. For example,
we may refer to the Java Database API when we’re talking about the set of class-
es that help us write programs that interact with a database. Another example of
an API is the Java Swing API, which refers to a set of classes that define special
graphical components used in a graphical user interface (GUI). Sometimes the
entire standard library is referred to generically as the Java API, though we gen-
erally avoid that use.

The classes of the Java standard class library are also grouped into packages,
which, like the APIs, let us group related classes by one name. Each
class is part of a particular package. The String class, for example, is
part of the java.lang package. The System class is part of the
java.lang package as well. Figure 2.10 shows the organizations of
packages in the overall library.

The package organization is more fundamental and language based than the
API names. Though there is a general correspondence between package and API
names, the groups of classes that make up a given API might cross packages. We
primarily refer to classes in terms of their package organization in this text.

Figure 2.11 describes some of the packages that are part of the Java standard
class library. These packages are available on any platform that supports Java
software development. Many of these packages support highly specific program-
ming techniques and will not come into play in the development of basic pro-
grams.

Various classes of the Java standard class library are discussed throughout this
book. Appendix M serves as a general reference for many of the classes in the
Java class library.

the import declaration
The classes of the package java.lang are automatically available for use when
writing a program. To use classes from any other package, however, we must
either fully qualify the reference, or use an import declaration.

The Java standard class library
is a useful set of classes that
anyone can use when writing
Java programs.

ke
y

co
nc

ep
t

A package is a Java language
element used to group related
classes under a common name.ke

y
co

nc
ep

t

2.7 class libraries and packages 93

When you want to use a class from a class library in a program, you could use
its fully qualified name, including the package name, every time it is referenced.
For example, every time you want to refer to the Random class that is defined in
the java.util package, you can write java.util.Random. However, complete-
ly specifying the package and class name every time it is needed quickly becomes
tiring. Java provides the import declaration to simplify these references.

The import declaration identifies the packages and classes that will be used in
a program so that the fully qualified name is not necessary with each reference.
The following is an example of an import declaration:

import java.util.Random;

This declaration asserts that the Random class of the java.util package may
be used in the program. Once this import declaration is made, it is sufficient to
use the simple name Random when referring to that class in the program.

Another form of the import declaration uses an asterisk (*) to indicate that any
class inside the package might be used in the program. Therefore, the following

figure 2.10 Classes organized into packages in the
Java standard class library

Package

Java Standard Class Library

Class

94 CHAPTER 2 objects and primitive data

declaration allows all classes in the java.util package to be referenced in the
program without the explicit package name:

import java.util.*;

If only one class of a particular package will be used in a program, it is usual-
ly better to name the class specifically in the import statement. However, if two
or more will be used, the * notation is fine. Once a class is imported, it is as if its
code has been brought into the program. The code is not actually moved, but that
is the effect.

The classes of the java.lang package are automatically imported because
they are fundamental and can be thought of as basic extensions to the language.

figure 2.11 Some packages in the Java standard class library

Package Provides support to

java.applet

java.awt

java.beans

java.io

java.lang

java.math

java.net

java.rmi

java.security

Create programs (applets) that are easily transported across the Web.

Draw graphics and create graphical user interfaces;
AWT stands for Abstract Windowing Toolkit.

Define software components that can be easily combined
into applications.

Perform a wide variety of input and output functions.

General support; it is automatically imported into all Java programs.

Perform calculations with arbitrarily high precision.

Communicate across a network.

Create programs that can be distributed across multiple computers;
RMI stands for Remote Method Invocation.

Enforce security restrictions.

java.sql

java.text

java.util

javax.swing

Interact with databases;
SQL stands for Structured Query Language.

Format text for output.

General utilities.

Create graphical user interfaces with components that extend
the AWT capabilities.

javax.xml.parsers Process XML documents; XML stands for eXtensible Markup Language.

2.7 class libraries and packages 95

Therefore, any class in the java.lang package, such as String, can be used
without an explicit import statement. It is as if all programs automatically con-
tain the following statement:

import java.lang.*;

the Random class
The need for random numbers occurs frequently when writing software. Games
often use a random number to represent the roll of a die or the shuffle of a deck
of cards. A flight simulator may use random numbers to determine how often a
simulated flight has engine trouble. A program designed to help high school stu-
dents prepare for the SATs may use random numbers to choose the next question
to ask.

The Random class implements a pseudorandom number generator. A random
number generator picks a number at random out of a range of values. A program
that serves this role is technically pseudorandom, because a program has no
means to actually pick a number randomly. A pseudorandom number generator
might perform a series of complicated calculations, starting with an initial seed
value, and produces a number. Though they are technically not random (because
they are calculated), the values produced by a pseudorandom number generator

Import Declaration

An import declaration specifies an Identifier (the name of a class)
that will be referenced in a program, and the Name of the package in
which it is defined. The * wildcard indicates that any class from a par-
ticular package may be referenced.

Examples:

import java.util.*;

import cs1.Keyboard;

import Name Identifier.

*

;

96 CHAPTER 2 objects and primitive data

usually appear random, at least random enough for most situations. Figure 2.12
lists some of the methods of the Random class.

The nextInt method can be called with no parameters, or we can pass it a sin-
gle integer value. The version that takes no parameters generates a random num-
ber across the entire range of int values, including negative numbers. Usually,
though, we need a random number within a more specific range. For instance, to
simulate the roll of a die we might want a random number in the range of 1 to 6.
If we pass a value, say N, to nextInt, the method returns a value from 0 to N–1.
For example, if we pass in 100, we’ll get a return value that is greater than or
equal to 0 and less than or equal to 99.

Note that the value that we pass to the nextInt method is also the number of
possible values we can get in return. We can shift the range as needed by adding
or subtracting the proper amount. To get a random number in the range 1 to 6,
we can call nextInt(6) to get a value from 0 to 5, and then add 1.

The nextFloat method of the Random class returns a float value that is
greater than or equal to 0.0 and less than 1.0. If desired, we can use multiplica-
tion to scale the result, cast it into an int value to truncate the fractional part,
then shift the range as we do with integers.

The program shown in Listing 2.9 produces several random numbers in vari-
ous ranges.

figure 2.12 Some methods of the Random class

Random ()

Constructor: creates a new pseudorandom number generator.

float nextFloat ()

Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt ()

Returns a random number that ranges over all possible int values (positive and
negative).

int nextInt (int num)

 Returns a random number in the range 0 to num-1.

2.7 class libraries and packages 97

listing
2.9

//**

// RandomNumbers.java Author: Lewis/Loftus

//

// Demonstrates the import statement, and the creation of pseudo-

// random numbers using the Random class.

//**

import java.util.Random;

public class RandomNumbers

{

//---

// Generates random numbers in various ranges.

//---

public static void main (String[] args)

{

Random generator = new Random();

int num1;

float num2;

num1 = generator.nextInt();

System.out.println ("A random integer: " + num1);

num1 = generator.nextInt(10);

System.out.println ("From 0 to 9: " + num1);

num1 = generator.nextInt(10) + 1;

System.out.println ("From 1 to 10: " + num1);

num1 = generator.nextInt(15) + 20;

System.out.println ("From 20 to 34: " + num1);

num1 = generator.nextInt(20) - 10;

System.out.println ("From -10 to 9: " + num1);

num2 = generator.nextFloat();

System.out.println ("A random float [between 0-1]: " + num2);

num2 = generator.nextFloat() * 6; // 0.0 to 5.999999

num1 = (int) num2 + 1;

System.out.println ("From 1 to 6: " + num1);

}

}

code97.html

98 CHAPTER 2 objects and primitive data

2.8 invoking class methods
Some methods can be invoked through the class name in which they are defined,
without having to instantiate an object of the class first. These are called class
methods or static methods. Let’s look at some examples.

the Math class
The Math class provides a large number of basic mathematical functions. The
Math class is part of the Java standard class library and is defined in the
java.lang package. Figure 2.13 lists several of its methods.

The reserved word static indicates that the method can be invoked through
the name of the class. For example, a call to Math.abs(total) will return the
absolute value of the number stored in total. A call to Math.pow(7, 4) will
return 7 raised to the fourth power. Note that you can pass integer values to a
method that accepts a double parameter. This is a form of assignment conver-
sion, which we discussed earlier in this chapter.

We’ll make use of some Math methods in examples after examining the
Keyboard class.

the Keyboard class
The Keyboard class contains methods that help us obtain input data that the user
types on the keyboard. The methods of the Keyboard class are static and are
therefore invoked through the Keyboard class name.

A random integer: -889285970

0 to 9: 6

1 to 10: 9

10 to 29: 18

A random float [between 0-1] : 0.8815305

1 to 6: 2

listing
2.9 continued

output

2.8 invoking class methods 99

One very important characteristic of the Keyboard class must be made clear:
The Keyboard class is not part of the Java standard class library. It has been writ-
ten by the authors of this book to help you read user input. It is defined as part of
a package called cs1 (that’s cs-one, not cs-el). Because it is not part of the Java stan-
dard class library, it will not be found on generic Java development environments.

figure 2.13 Some methods of the Math class

static int abs (int num)

Returns the absolute value of num.

static double acos (double num)

static double asin (double num)

static double atan (double num)

Returns the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)

Returns the angle cosine, sine, or tangent of angle, which is measured
in radians.

static double ceil (double num)

Returns the ceiling of num, which is the smallest whole number greater
than or equal to num.

static double exp (double power)

Returns the value e raised to the specified power.

static double floor (double num)

Returns the floor of num, which is the largest whole number less than
or equal to num.

static double pow (double num, double power)

Returns the value num raised to the specified power.

static double random ()

Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (double num)

Returns the square root of num, which must be positive.

100 CHAPTER 2 objects and primitive data

You may have to configure your environment so that it knows where to
find the Keyboard class.

The process of reading input from the user in Java can get somewhat
involved. The Keyboard class allows you to ignore those details for
now. We explore these issues later in the book, at which point we fully
explain the details currently hidden by the Keyboard class.

For now we will use the Keyboard class for the services it provides, just as we
do any other class. In that sense, the Keyboard class is a good example of object
abstraction. We rely on classes and objects for the services they provide. It doesn’t
matter if they are part of a library, if a third party writes them, or if we write them
ourselves. We use and interact with them in the same way. Figure 2.14 lists the
input methods of the Keyboard class.

Let’s look at some examples that use the Keyboard class. The program shown
in Listing 2.10, called Echo, simply reads a string that is typed by the user and
echoes it back to the screen.

The Keyboard class is not
part of the Java standard
library. It is therefore not avail-
able on all Java development
platforms.

ke
y

co
nc

ep
t

figure 2.14 Some methods of the Keyboard class

static boolean readBoolean ()

static byte readByte ()

static char readChar ()

static double readDouble ()

static float readFloat ()

static int readInt ()

static long readLong ()

static short readShort ()

static String readString ()

Returns a value of the indicated type obtained from user keyboard input.

For each example in this book that uses the Keyboard class, the Web site
contains a version of the program that does not use it (for comparison
purposes).

2.8 invoking class methods 101

The Quadratic program, shown in Listing 2.11 uses the Keyboard and Math
classes. Recall that a quadratic equation has the following general form:

ax2 + bx + c

listing
2.10

//**

// Echo.java Author: Lewis/Loftus

//

// Demonstrates the use of the readString method of the Keyboard

// class.

//**

import cs1.Keyboard;

public class Echo

{

//---

// Reads a character string from the user and prints it.

//---

public static void main (String[] args)

{

String message;

System.out.println ("Enter a line of text:");

message = Keyboard.readString();

System.out.println ("You entered: \"" + message + "\"");

}

}

Enter a line of text:

Set your laser printer on stun!

You entered: "Set your laser printer on stun!"

output

code101.html

102 CHAPTER 2 objects and primitive data

The Quadratic program reads values that represent the coefficients in a quad-
ratic equation (a, b, and c), and then evaluates the quadratic formula to deter-
mine the roots of the equation. The quadratic formula is:

roots = –b � ��
b�

2

�–� 2

4� �

�� a

a� �� c
��

listing
2.11

//**

// Quadratic.java Author: Lewis/Loftus

//

// Demonstrates a calculation based on user input.

//**

import cs1.Keyboard;

public class Quadratic

{

//---

// Determines the roots of a quadratic equation.

//---

public static void main (String[] args)

{

int a, b, c; // ax^2 + bx + c

System.out.print ("Enter the coefficient of x squared: ");

a = Keyboard.readInt();

System.out.print ("Enter the coefficient of x: ");

b = Keyboard.readInt();

System.out.print ("Enter the constant: ");

c = Keyboard.readInt();

// Use the quadratic formula to compute the roots.

// Assumes a positive discriminant.

double discriminant = Math.pow(b, 2) - (4 * a * c);

double root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);

double root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

code102.html

2.9 formatting output 103

listing
2.11 continued

System.out.println ("Root #1: " + root1);

System.out.println ("Root #2: " + root2);

}

}

Enter the coefficient of x squared: 3

Enter the coefficient of x: 8

Enter the constant: 4

Root #1: -0.6666666666666666

Root #2: -2.0

output

2.9 formatting output
The NumberFormat class and the DecimalFormat class are used to format infor-
mation so that it looks appropriate when printed or displayed. They are both part
of the Java standard class library and are defined in the java.text package.

the NumberFormat class
The NumberFormat class provides generic formatting capabilities for numbers.
You don’t instantiate a NumberFormat object using the new operator. Instead, you
request an object from one of the methods that you can invoke through the class
itself. The reasons for this approach involve issues that we haven’t covered yet,
but we explain them in due course. Figure 2.15 lists some of the methods of the
NumberFormat class.

Two of the methods in the NumberFormat class, getCurrencyInstance and
getPercentInstance, return an object that is used to format numbers. The
getCurrencyInstance method returns a formatter for monetary values where-
as the getPercentInstance method returns an object that formats a percentage.
The format method is invoked through a formatter object and returns a String
that contains the number formatted in the appropriate manner.

The Price program shown in Listing 2.12 uses both types of formatters. It
reads in a sales transaction and computes the final price, including tax.

104 CHAPTER 2 objects and primitive data

figure 2.15 Some methods of the NumberFormat class

String format (double number)

Returns a string containing the specified number formatted according to
this object's pattern.

static NumberFormat getCurrencyInstance()

Returns a NumberFormat object that represents a currency format for the
current locale.

static NumberFormat getPercentInstance()

Returns a NumberFormat object that represents a percentage format for
the current locale.

listing
2.12

//**

// Price.java Author: Lewis/Loftus

//

// Demonstrates the use of various Keyboard and NumberFormat

// methods.

//**

import cs1.Keyboard;

import java.text.NumberFormat;

public class Price

{

//---

// Calculates the final price of a purchased item using values

// entered by the user.

//---

public static void main (String[] args)

{

final double TAX_RATE = 0.06; // 6% sales tax

int quantity;

double subtotal, tax, totalCost, unitPrice;

System.out.print (“Enter the quantity: “);

quantity = Keyboard.readInt();

code104.html

2.9 formatting output 105

the DecimalFormat class
Unlike the NumberFormat class, the DecimalFormat class is instantiated in the
traditional way using the new operator. Its constructor takes a string that repre-
sents the pattern that will guide the formatting process. We can then use the
format method to format a particular value. At a later point, if we want to
change the pattern that the formatter object uses, we can invoke the
applyPattern method. Figure 2.16 describes these methods.

The pattern defined by the string that is passed to the DecimalFormat con-
structor gets fairly elaborate. Various symbols are used to represent particular
formatting guidelines.

listing
2.12 continued

System.out.print (“Enter the unit price: “);

unitPrice = Keyboard.readDouble();

subtotal = quantity * unitPrice;

tax = subtotal * TAX_RATE;

totalCost = subtotal + tax;

// Print output with appropriate formatting

NumberFormat money = NumberFormat.getCurrencyInstance();

NumberFormat percent = NumberFormat.getPercentInstance();

System.out.println (“Subtotal: “ + money.format(subtotal));

System.out.println (“Tax: “ + money.format(tax) + “ at “

+ percent.format(TAX_RATE));

System.out.println (“Total: “ + money.format(totalCost));

}

}

Enter the quantity: 5

Enter the unit price: 3.87

Subtotal: $19.35

Tax: $1.16 at 6%

Total: $20.51

output

The pattern defined by the string “0.###”, for example, indicates that at least
one digit should be printed to the left of the decimal point and should be a zero
if the integer portion of the value is zero. It also indicates that the fractional por-
tion of the value should be rounded to three digits. This pattern is used in the
CircleStats program shown in Listing 2.13, which reads the radius of a circle
from the user and computes its area and circumference. Trailing zeros, such as in
the circle’s area of 78.540, are not printed.

2.10 an introduction to applets
There are two kinds of Java programs: Java applets and
Java applications. A Java applet is a Java program that is
intended to be embedded into an HTML document, trans-
ported across a network, and executed using a Web brows-
er. A Java application is a stand-alone program that can be
executed using the Java interpreter. All programs present-
ed thus far in this book have been Java applications.

106 CHAPTER 2 objects and primitive data

figure 2.16 Some methods of the DecimalFormat class

DecimalFormat (String pattern)

Constructor: creates a new DecimalFormat object with the specified
pattern.

void applyPattern (String pattern)

Applies the specified pattern to this DecimalFormat object.

String format (double number)

Returns a string containing the specified number formatted according to

The book’s Web site contains additional information about techniques for for-
matting information, including a discussion of the various patterns that can
be defined for the DecimalFormat class.

Applets are Java programs that
are usually transported across
a network and executed using
a Web browser. Java applica-
tions are stand-alone programs
that can be executed using the
Java interpreter.

ke
y

co
nc

ep
t

2.10 an introduction to applets 107

listing
2.13

//**

// CircleStats.java Author: Lewis/Loftus

//

// Demonstrates the formatting of decimal values using the

// DecimalFormat class.

//**

import cs1.Keyboard;

import java.text.DecimalFormat;

public class CircleStats

{

//---

// Calculates the area and circumference of a circle given its

// radius.

//---

public static void main (String[] args)

{

int radius;

double area, circumference;

System.out.print ("Enter the circle's radius: ");

radius = Keyboard.readInt();

area = Math.PI * Math.pow(radius, 2);

circumference = 2 * Math.PI * radius;

// Round the output to three decimal places

DecimalFormat fmt = new DecimalFormat ("0.###");

System.out.println ("The circle's area: " + fmt.format(area));

System.out.println ("The circle's circumference: "

+ fmt.format(circumference));

}

}

Enter the circle's radius: 5

The circle's area: 78.54

The circle's circumference: 31.416

output

code107.html

108 CHAPTER 2 objects and primitive data

The Web enables users to send and receive various types of media, such as text,
graphics, and sound, using a point-and-click interface that is extremely conven-
ient and easy to use. A Java applet was the first kind of executable program that
could be retrieved using Web software. Java applets are considered just another
type of media that can be exchanged across the Web.

Though Java applets are generally intended to be transported across a net-
work, they don’t have to be. They can be viewed locally using a Web browser. For
that matter, they don’t even have to be executed through a Web browser at all. A
tool in Sun’s Java Software Development Kit called appletviewer can be used to
interpret and execute an applet. We use appletviewer to display most of the
applets in the book. However, usually the point of making a Java applet is to pro-
vide a link to it on a Web page and allow it to be retrieved and executed by Web
users anywhere in the world.

Java bytecode (not Java source code) is linked to an HTML document and sent
across the Web. A version of the Java interpreter embedded in a Web browser is
used to execute the applet once it reaches its destination. A Java applet must be
compiled into bytecode format before it can be used with the Web.

There are some important differences between the structure of a Java applet
and the structure of a Java application. Because the Web browser that executes
an applet is already running, applets can be thought of as a part of a larger pro-
gram. As such they do not have a main method where execution starts. The
paint method in an applet is automatically invoked by the applet. Consider the
program in Listing 2.14, in which the paint method is used to draw a few shapes
and write a quotation by Albert Einstein to the screen.

The two import statements at the beginning of the program explicitly indicate
the packages that are used in the program. In this example, we need the Applet
class, which is part of the java.applet package, and various graphics capabili-
ties defined in the java.awt package.

A class that defines an applet extends the Applet class, as indicated in
the header line of the class declaration. This process is making use of the object-
oriented concept of inheritance, which we explore in more detail in Chapter 7.
Applet classes must also be declared as public.

The paint method is one of several applet methods that have particular sig-
nificance. It is invoked automatically whenever the graphic elements of the applet
need to be painted to the screen, such as when the applet is first run or when
another window that was covering it is moved.

2.10 an introduction to applets 109

listing
2.14

//**

// Einstein.java Author: Lewis/Loftus

//

// Demonstrates a basic applet.

//**

import java.applet.Applet;

import java.awt.*;

public class Einstein extends Applet

{

//---

// Draws a quotation by Albert Einstein among some shapes.

//---

public void paint (Graphics page)

{

page.drawRect (50, 50, 40, 40); // square

page.drawRect (60, 80, 225, 30); // rectangle

page.drawOval (75, 65, 20, 20); // circle

page.drawLine (35, 60, 100, 120); // line

page.drawString ("Out of clutter, find simplicity.", 110, 70);

page.drawString ("-- Albert Einstein", 130, 100);

}

}

display

110 CHAPTER 2 objects and primitive data

Note that the paint method accepts a Graphics object as a parameter. A
Graphics object defines a particular graphics context with which we can inter-
act. The graphics context passed into an applet’s paint method represents the
entire applet window. Each graphics context has its own coordinate system. In
later examples, we will have multiple components, each with its own graphic
context.

A Graphics object allows us to draw various shapes using methods such as
drawRect, drawOval, drawLine, and drawString. The parameters passed to the
drawing methods specify the coordinates and sizes of the shapes to be drawn. We
explore these and other methods that draw shapes in the next section.

executing applets using the Web
In order for the applet to be transmitted over the Web and executed by a brows-
er, it must be referenced in a HyperText Markup Language (HTML) document.
An HTML document contains tags that specify formatting instructions and iden-
tify the special types of media that are to be included in a document. A Java pro-
gram is considered a specific media type, just as text, graphics, and sound are.

An HTML tag is enclosed in angle brackets. Appendix J contains a tutorial on
HTML that explores various tag types. The following is an example of an applet
tag:

<applet code=”Einstein.class” width=350 height=175>

</applet>

This tag dictates that the bytecode stored in the file Einstein.class should be
transported over the network and executed on the machine that wants to view
this particular HTML document. The applet tag also indicates the width and
height of the applet.

Note that the applet tag refers to the bytecode file of the Einstein applet, not
to the source code file. Before an applet can be transported using the Web, it must
be compiled into its bytecode format. Then, as shown in Fig. 2.17, the document
can be loaded using a Web browser, which will automatically interpret and exe-
cute the applet.

2.11 drawing shapes
The Java standard class library provides many classes that let us present and
manipulate graphical information. The Graphics class is fundamental to all such
processing.

the Graphics class
The Graphics class is defined in the java.awt package. It contains various meth-
ods that allow us to draw shapes, including lines, rectangles, and ovals. Figure
2.18 lists some of the fundamental drawing methods of the Graphics class. Note
that these methods also let us draw circles and squares, which are just specific
types of ovals and rectangles, respectively. We discuss additional drawing meth-
ods of the Graphics class later in the book at appropriate points.

The methods of the Graphics class allow us to specify
whether we want a shape filled or unfilled. An unfilled
shape shows only the outline of the shape and is otherwise
transparent (you can see any underlying graphics). A filled
shape is solid between its boundaries and covers any under-
lying graphics.

2.11 drawing shapes 111

figure 2.17 The Java translation and execution process, including applets

Across the
Internet

using HTML

Local computer
Remote computer

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

Web browser

Java
interpreter

Most shapes can be drawn
filled (opaque) or unfilled (as
an outline).

key
concept

112 CHAPTER 2 objects and primitive data

All of these methods rely on the Java coordinate system, which we discussed
in Chapter 1. Recall that point (0,0) is in the upper-left corner, such that x val-
ues get larger as we move to the right, and y values get larger as we move down.
Any shapes drawn at coordinates that are outside the visible area will not be seen.

Many of the Graphics drawing methods are self-explanatory, but some
require a little more discussion. Note, for instance, that an oval drawn by the

figure 2.18 Some methods of the Graphics class

void drawArc (int x, int y, int width, int height, int

startAngle, int arcAngle)

Paints an arc along the oval bounded by the rectangle defined by x, y, width,
and height. The arc starts at startAngle and extends for a distance defined by
arcAngle.

void drawLine (int x1, int y1, int x2, int y2)

Paints a line from point (x1, y1) to point (x2, y2).

void drawOval (int x, int y, int width, int height)

Paints an oval bounded by the rectangle with an upper left corner of (x, y) and
dimensions width and height.

void drawRect (int x, int y, int width, int height)

Paints a rectangle with upper left corner (x, y) and dimensions width and
height.

void drawString (String str, int x, int y)

Paints the character string str at point (x, y), extending to the right.

void fillArc (int x, int y, int width, int height,

int startAngle, int arcAngle)

void fillOval (int x, int y, int width, int height)

void fillRect (int x, int y, int width, int height)

Same as their draw counterparts, but filled with the current foreground color.

Color getColor ()

Returns this graphics context's foreground color.

void setColor (Color color)

Sets this graphics context's foreground color to the specified color.

2.11 drawing shapes 113

drawOval method is defined by the coordinate of the
upper-left corner and dimensions that specify the width
and height of a bounding rectangle. Shapes with curves
such as ovals are often defined by a rectangle that encom-
passes their perimeters. Figure 2.19 depicts a bounding rec-
tangle for an oval.

An arc can be thought of as a segment of an oval. To
draw an arc, we specify the oval of which the arc is a part
and the portion of the oval in which we’re interested. The
starting point of the arc is defined by the start angle and the
ending point of the arc is defined by the arc angle. The arc
angle does not indicate where the arc ends, but rather its
range. The start angle and the arc angle are measured in degrees. The origin for
the start angle is an imaginary horizontal line passing through the center of the
oval and can be referred to as 0o; as shown in Fig. 2.20.

figure 2.19 An oval and its bounding rectangle

height

width

A bounding rectangle is often
used to define the position and
size of curved shapes such as
ovals.

key
concept

figure 2.20 An arc defined by an oval, a start angle, and an arc angle

drawArc (10, 10, 60, 30, 20, 90)

height
30

width 60

90°

90°

20°
0°

20°

110°

<10, 10>

An arc is a segment of an oval;
the segment begins at a specif-
ic start angle and extends for a
distance specified by the arc
angle.

key
concept

114 CHAPTER 2 objects and primitive data

the Color class
In Java, a programmer uses the Color class, which is part
of the java.awt package, to define and manage colors.
Each object of the Color class represents a single color.
The class contains several instances of itself to provide a
basic set of predefined colors. Figure 2.21 lists the prede-
fined colors of the Color class.

The Color class also contains methods to define and manage many other col-
ors. Recall from Chapter 1 that colors can be defined using the RGB technique
for specifying the contributions of three additive primary colors: red, green, and
blue.

The book’s Web site contains additional information and examples about
drawing shapes.

A Color class contains several
common predefined colors.

ke
y

co
nc

ep
t

figure 2.21 Predefined colors in the Color class

black

blue

cyan

gray

dark gray

light gray

green

magenta

orange

pink

red

white

yellow

Color.black

Color.blue

Color.cyan

Color.gray

Color.darkGray

Color.lightGray

Color.green

Color.magenta

Color.orange

Color.pink

Color.red

Color.white

Color.yellow

0, 0, 0

0, 0, 255

0, 255, 255

128, 128, 128

64, 64, 64

192, 192, 192

0, 255, 0

255, 0, 255

255, 200, 0

255, 175, 175

255, 0, 0

255, 255, 255

255, 255, 0

Color Object RGB Value

web
bonus

Every graphics context has a current foreground color that is used whenever
shapes or strings are drawn. Every surface that can be drawn on has a back-
ground color. The foreground color is set using the setColor method of the
Graphics class, and the background color is set using the setBackground
method of the component on which we are drawing, such as the applet.

Listing 2.15 shows an applet called Snowman. It uses various drawing and color
methods to draw a winter scene featuring a snowman. Review the code carefully
to note how each shape is drawn to create the overall picture.

listing
2.15

//**

// Snowman.java Author: Lewis/Loftus

//

// Demonstrates basic drawing methods and the use of color.

//**

import java.applet.Applet;

import java.awt.*;

public class Snowman extends Applet

{

//---

// Draws a snowman.

//---

public void paint (Graphics page)

{

final int MID = 150;

final int TOP = 50;

setBackground (Color.cyan);

page.setColor (Color.blue);

page.fillRect (0, 175, 300, 50); // ground

page.setColor (Color.yellow);

page.fillOval (-40, -40, 80, 80); // sun

page.setColor (Color.white);

2.11 drawing shapes 115

116 CHAPTER 2 objects and primitive data

listing
2.15 continued

page.fillOval (MID-20, TOP, 40, 40); // head

page.fillOval (MID-35, TOP+35, 70, 50); // upper torso

page.fillOval (MID-50, TOP+80, 100, 60); // lower torso

page.setColor (Color.black);

page.fillOval (MID-10, TOP+10, 5, 5); // left eye

page.fillOval (MID+5, TOP+10, 5, 5); // right eye

page.drawArc (MID-10, TOP+20, 20, 10, 190, 160); // smile

page.drawLine (MID-25, TOP+60, MID-50, TOP+40); // left arm

page.drawLine (MID+25, TOP+60, MID+55, TOP+60); // right arm

page.drawLine (MID-20, TOP+5, MID+20, TOP+5); // brim of hat

page.fillRect (MID-15, TOP-20, 30, 25); // top of hat

}

}

display

2.11 drawing shapes 117

Note that the snowman figure is based on two constant values called MID and
TOP, which define the midpoint of the snowman (left to right) and the top of the
snowman’s head. The entire snowman figure is drawn relative to these values.
Using constants like these makes it easier to create the snowman and to make
modifications later. For example, to shift the snowman to the right or left in our
picture, only one constant declaration would have to change.

118 CHAPTER 2 objects and primitive data

◗ The information we manage in a Java program is either represented as
primitive data or as objects.

◗ An abstraction hides details. A good abstraction hides the right details at
the right time so that we can manage complexity.

◗ A variable is a name for a memory location used to hold a value of a
particular data type.

◗ A variable can store only one value of its declared type.

◗ Java is a strongly typed language. Each variable is associated with a spe-
cific type for the duration of its existence, and we cannot assign a value of
one type to a variable of an incompatible type.

◗ Constants are similar to variables, but they hold a particular value for the
duration of their existence.

◗ Java has two kinds of numeric values: integers and floating point. There
are four integer data types (byte, short, int, and long) and two floating
point data types (float and double).

◗ Many programming statements involve expressions. Expressions are
combinations of one or more operands and the operators used to perform
a calculation.

◗ Java follows a well-defined set of rules that govern the order in which
operators will be evaluated in an expression. These rules form an operator
precedence hierarchy.

◗ Avoid narrowing conversions because they can lose information.

◗ The new operator returns a reference to a newly created object.

◗ The Java standard class library is a useful set of classes that anyone can
use when writing Java programs.

◗ A package is a Java language element used to group related classes under
a common name.

◗ The Keyboard class is not part of the Java standard library. It is therefore
not available on all Java development platforms.

◗ Applets are Java programs that are usually transported across a network
and executed using a Web browser. Java applications are stand-alone pro-
grams that can be executed using the Java interpreter.

◗ Most shapes can be drawn filled (opaque) or unfilled (as an outline).

summary of
key concepts

self-review questions 119

◗ A bounding rectangle is often used to define the position and size of
curved shapes such as ovals.

◗ An arc is a segment of an oval; the segment begins at a specific start angle
and extends for a distance specified by the arc angle.

◗ The Color class contains several common predefined colors.

self-review questions
2.1 What are the primary concepts that support object-oriented

programming?

2.2 Why is an object an example of abstraction?

2.3 What is primitive data? How are primitive data types different from
objects?

2.4 What is a string literal?

2.5 What is the difference between the print and println methods?

2.6 What is a parameter?

2.7 What is an escape sequence? Give some examples.

2.8 What is a variable declaration?

2.9 How many values can be stored in an integer variable?

2.10 What are the four integer data types in Java? How are they
different?

2.11 What is a character set?

2.12 What is operator precedence?

2.13 What is the result of 19%5 when evaluated in a Java expression?
Explain.

2.14 What is the result of 13/4 when evaluated in a Java expression?
Explain.

2.15 Why are widening conversions safer than narrowing conversions?

2.16 What does the new operator accomplish?

2.17 What is a Java package?

2.18 Why doesn’t the String class have to be specifically imported into
our programs?

2.19 What is a class method (also called a static method)?

2.20 What is the difference between a Java application and a Java applet?

120 CHAPTER 2 objects and primitive data

exercises
2.1 Explain the following programming statement in terms of objects

and the services they provide:

System.out.println (“I gotta be me!”);

2.2 What output is produced by the following code fragment? Explain.

System.out.print (“Here we go!”);

System.out.println (“12345”);

System.out.print (“Test this if you are not sure.”);

System.out.print (“Another.”);

System.out.println ();

System.out.println (“All done.”);

2.3 What is wrong with the following program statement? How can it
be fixed?

System.out.println (“To be or not to be, that

is the question.”);

2.4 What output is produced by the following statement? Explain.

System.out.println (“50 plus 25 is “ + 50 + 25);

2.5 What is the output produced by the following statement? Explain.

System.out.println (“He thrusts his fists\n\tagainst” +

“ the post\nand still insists\n\the sees the \”ghost\””);

2.6 Given the following declarations, what result is stored in each of the
listed assignment statements?

int iResult, num1 = 25, num2 = 40, num3 = 17, num4 = 5;

double fResult, val1 = 17.0, val2 = 12.78;

◗ iResult = num1 / num4;

◗ fResult = num1 / num4;

◗ iResult = num3 / num4;

◗ fResult = num3 / num4;

◗ fResult = val1 / num4;

◗ fResult = val1 / val2;

◗ iResult = num1 / num2;

◗ fResult = (double) num1 / num2;

◗ fResult = num1 / (double) num2;

exercises 121

◗ fResult = (double) (num1 / num2);

◗ iResult = (int) (val1 / num4);

◗ fResult = (int) (val1 / num4);

◗ fResult = (int) ((double) num1 / num2);

◗ iResult = num3 % num4;

◗ iResult = num 2 % num3;

◗ iResult = num3 % num2;

◗ iResult = num2 % num4;

2.7 For each of the following expressions, indicate the order in which
the operators will be evaluated by writing a number beneath each
operator.

◗ a – b – c – d

◗ a – b + c – d

◗ a + b / c / d

◗ a + b / c * d

◗ a / b * c * d

◗ a % b / c * d

◗ a % b % c % d

◗ a – (b – c) – d

◗ (a – (b – c)) – d

◗ a – ((b – c) – d)

◗ a % (b % c) * d * e

◗ a + (b – c) * d – e

◗ (a + b) * c + d * e

◗ (a + b) * (c / d) % e

2.8 What output is produced by the following code fragment?

String m1, m2, m3;

m1 = “Quest for the Holy Grail”;

m2 = m1.toLowerCase();

m3 = m1 + “ “ + m2;

System.out.println (m3.replace(‘h’, ‘z’));

2.9 Write an assignment statement that computes the square root of the
sum of num1 and num2 and assigns the result to num3.

2.10 Write a single statement that computes and prints the absolute value
of total.

122 CHAPTER 2 objects and primitive data

2.11 What is the effect of the following import statement?

import java.awt.*;

2.12 Assuming that a Random object has been created called generator,
what is the range of the result of each of the following expressions?

generator.nextInt(20)

generator.nextInt(8) + 1

generator.nextInt(45) + 10

generator.nextInt(100) – 50

2.13 Write code to declare and instantiate an object of the Random class
(call the object reference variable rand). Then write a list of expres-
sions using the nextInt method that generates random numbers in
the following specified ranges, including the endpoints. Use the ver-
sion of the nextInt method that accepts a single integer parameter.

◗ 0 to 10

◗ 0 to 500

◗ 1 to 10

◗ 1 to 500

◗ 25 to 50

◗ –10 to 15

2.14 Write code statements to create a DecimalFormat object that will
round a formatted value to 4 decimal places. Then write a state-
ment that uses that object to print the value of result, properly
formatted.

2.15 Explain the role played by the Web in the translation and execution
of some Java programs.

2.16 Assuming you have a Graphics object called page, write a state-
ment that will draw a line from point (20, 30) to point (50, 60).

2.17 Assuming you have a Graphics object called page, write a state-
ment that will draw a rectangle with length 70 and width 35, such
that its upper-left corner is at point (10, 15).

2.18 Assuming you have a Graphics object called page, write a state-
ment that will draw a circle centered on point (50, 50) with a radius
of 20 pixels.

programming projects 123

2.19 The following lines of code draw the eyes of the snowman in the
Snowman applet. The eyes seem centered on the face when drawn,
but the first parameters of each call are not equally offset from the
midpoint. Explain.

page.fillOval (MID-10, TOP+10, 5, 5);

page.fillOval (MID+5, TOP+10, 5, 5);

programming projects
2.1 Create a revised version of the Lincoln application from Chapter 1

such that quotes appear around the quotation.

2.2 Write an application that reads three integers and prints their
average.

2.3 Write an application that reads two floating point numbers and
prints their sum, difference, and product.

2.4 Create a revised version of the TempConverter application to con-
vert from Fahrenheit to Celsius. Read the Fahrenheit temperature
from the user.

2.5 Write an application that converts miles to kilometers. (One mile
equals 1.60935 kilometers.) Read the miles value from the user as a
floating point value.

2.6 Write an application that reads values representing a time duration
in hours, minutes, and seconds, and then print the equivalent total
number of seconds. (For example, 1 hour, 28 minutes, and 42 sec-
onds is equivalent to 5322 seconds.)

2.7 Create a revised version of the previous project that reverses the
computation. That is, read a value representing a number of sec-
onds, then print the equivalent amount of time as a combination of
hours, minutes, and seconds. (For example, 9999 seconds is equiva-
lent to 2 hours, 46 minutes, and 39 seconds.)

2.8 Write an application that reads the (x,y) coordinates for two
points. Compute the distance between the two points using the fol-
lowing formula:

Distance = �(x�2�–� x�1)�2�+� (�y�2�+� y�1)�2�

project123a.html
project123b.html

124 CHAPTER 2 objects and primitive data

2.9 Write an application that reads the radius of a sphere and prints its
volume and surface area. Use the following formulas. Print the out-
put to four decimal places. r represents the radius.

Volume = �
4
3

��r3

Surface area = 4�r2

2.10 Write an application that reads the lengths of the sides of a triangle
from the user. Compute the area of the triangle using Heron’s formu-
la (below), in which s represents half of the perimeter of the triangle,
and a, b, and c represent the lengths of the three sides. Print the area
to three decimal places.

Area = �s(�s�–� a�)(�s�–� b�)(�s�–� c�)�
2.11 Write an application that computes the number of miles per gallon

(MPG) of gas for a trip. Accept as input a floating point number
that represents the total amount of gas used. Also accept two inte-
gers representing the odometer readings at the start and end of the
trip. Compute the number of kilometers per liter if you prefer.

2.12 Write an application that determines the value of the coins in a jar
and prints the total in dollars and cents. Read integer values that
represent the number of quarters, dimes, nickels, and pennies. Use a
currency formatter to print the output.

2.13 Write an application that creates and prints a random phone number
of the form XXX-XXX-XXXX. Include the dashes in the output. Do not
let the first three digits contain an 8 or 9 (but don’t be more restric-
tive than that), and make sure that the second set of three digits is
not greater than 742. Hint: Think through the easiest way to con-
struct the phone number. Each digit does not have to be determined
separately.

2.14 Create a personal Web page using HTML (see Appendix J).

2.15 Create a revised version of the Snowman applet with the following
modifications:

◗ Add two red buttons to the upper torso.

◗ Make the snowman frown instead of smile.

◗ Move the sun to the upper-right corner of the picture.

◗ Display your name in the upper-left corner of the picture.

◗ Shift the entire snowman 20 pixels to the right.

project124a.html
project124b.html

answers to self-review questions 125

2.16 Write an applet that writes your name using the drawString
method. Embed a link to your applet in an HTML document and
view it using a Web browser.

2.17 Write an applet that draws a smiling face. Give the face a nose, ears,
a mouth, and eyes with pupils.

2.18 Write an applet that draws the Big Dipper. Add some extra stars in
the night sky.

2.19 Write an applet that draws some balloons tied to strings. Make the
balloons various colors.

2.20 Write an applet that draws the Olympic logo. The circles in the logo
should be colored, from left to right, blue, yellow, black, green, and
red.

2.21 Write an applet that draws a house with a door (and doorknob),
windows, and a chimney. Add some smoke coming out of the chim-
ney and some clouds in the sky.

2.22 Write an applet that displays a business card of your own design.
Include both graphics and text.

2.23 Write an applet that displays your name in shadow text by drawing
your name in black, then drawing it again slightly offset in a lighter
color.

2.24 Write an applet the shows a pie chart with eight equal slices, all col-
ored differently.

answers to self-review questions
2.1 The primary elements that support object-oriented programming are

objects, classes, encapsulation, and inheritance. An object is defined
by a class, which contains methods that define the operations on
those objects (the services that they perform). Objects are encapsu-
lated such that they store and manage their own data. Inheritance is
a reuse technique in which one class can be derived from another.

2.2 An object is considered to be abstract because the details of the
object are hidden from, and largely irrelevant to, the user of the
object. Hidden details help us manage the complexity of software.

126 CHAPTER 2 objects and primitive data

2.3 Primitive data are basic values such as numbers or characters.
Objects are more complex entities that usually contain primitive data
that help define them.

2.4 A string literal is a sequence of characters delimited by double
quotes.

2.5 Both the print and println methods of the System.out object
write a string of characters to the monitor screen. The difference is
that, after printing the characters, the println performs a carriage
return so that whatever’s printed next appears on the next line. The
print method allows subsequent output to appear on the same line.

2.6 A parameter is data that is passed into a method when it is invoked.
The method usually uses that data to accomplish the service that it
provides. For example, the parameter to the println method indi-
cate what characters should be printed. The two numeric operands
to the Math.pow method are the operands to the power function that
is computed and returned.

2.7 An escape sequence is a series of characters that begins with the
backslash (\) and that implies that the following characters should
be treated in some special way. Examples: \n represents the newline
character, \t represents the tab character, and \” represents the quo-
tation character (as opposed to using it to terminate a string).

2.8 A variable declaration establishes the name of a variable and the
type of data that it can contain. A declaration may also have an
optional initialization, which gives the variable an initial value.

2.9 An integer variable can store only one value at a time. When a new
value is assigned to it, the old one is overwritten and lost.

2.10 The four integer data types in Java are byte, short, int, and long.
They differ in how much memory space is allocated for each and
therefore how large a number they can hold.

2.11 A character set is a list of characters in a particular order. A charac-
ter set defines the valid characters that a particular type of computer
or programming language will support. Java uses the Unicode char-
acter set.

2.12 Operator precedence is the set of rules that dictates the order in
which operators are evaluated in an expression.

answers to self-review questions 127

2.13 The result of 19%5 in a Java expression is 4. The remainder operator
% returns the remainder after dividing the second operand into the
first. Five goes into 19 three times, with 4 left over.

2.14 The result of 13/4 in a Java expression is 3 (not 3.25). The result is
an integer because both operands are integers. Therefore the / oper-
ator performs integer division, and the fractional part of the result is
truncated.

2.15 A widening conversion tends to go from a small data value, in terms
of the amount of space used to store it, to a larger one. A narrowing
conversion does the opposite. Information is more likely to be lost in
a narrowing conversion, which is why narrowing conversions are
considered to be less safe than widening ones.

2.16 The new operator creates a new instance (an object) of the specified
class. The constructor of the class is then invoked to help set up the
newly created object.

2.17 A Java package is a collection of related classes. The Java standard
class library is a group of packages that support common program-
ming tasks.

2.18 The String class is part of the java.lang package, which is auto-
matically imported into any Java program. Therefore, no separate
import declaration is needed.

2.19 A class or static method can be invoked through the name of the
class that contains it, such as Math.abs. If a method is not static, it
can be executed only through an instance (an object) of the class.

2.20 A Java applet is a Java program that can be executed using a Web
browser. Usually, the bytecode form of the Java applet is pulled
across the Internet from another computer and executed locally. A
Java application is a Java program that can stand on its own. It does
not require a Web browser in order to execute.

programmed activity, including

our interaction with objects and

the definition of the services

those objects provide. This chap-

ter examines several of these

programming statements as well

as some additional operators. It

begins by exploring the basic

activities that a programmer

goes through when developing

software. These activities form

the cornerstone of high-quality

software development and repre-

sent the first step toward a disci-

plined development process.

Finally, we use the statements we

examine in this chapter to aug-

ment our ability to produce

graphical output.

◗ Discuss basic program develop-
ment activities.

◗ Define the flow of control through
a program.

◗ Perform decision making using if
and switch statements.

◗ Define expressions that let us
make complex decisions.

◗ Perform statements repetitively
using while, do, and for
statements.

◗ Draw with the aid of conditionals
and loops.

chapter
objectives

All programming languages have specific
statements that allow you to perform

basic operations. These statements accomplish all

3
program statements

130 CHAPTER 3 program statements

3.0 program development
Creating software involves much more than just writing code. As you learn more
about the programming language statements that you can use in your problem
solutions, it is also important to develop good habits in the way you develop and
validate those solutions. This section introduces some of the basic programming
activities necessary for developing software.

Any proper software development effort consists of four basic development
activities:

◗ establishing the requirements

◗ creating a design

◗ implementing the code

◗ testing the implementation

It would be nice if these activities, in this order, defined a step-by-step approach
for developing software. However, although they may seem to be sequential, they
are almost never completely linear in reality. They overlap and interact. Let’s dis-
cuss each development stage briefly.

Software requirements specify what a program must accomplish. They indicate
the tasks that a program should perform, not how to perform them.
You may recall from Chapter 1 that programming is really about prob-
lem solving; we create a program to solve a particular problem.
Requirements are the clear expression of that problem. Until we truly
know what problem we are trying to solve, we can’t actually solve it.

The person or group who wants a software product developed (the client) will
often provide an initial set of requirements. However, these initial requirements
are often incomplete, ambiguous, or even contradictory. The software developer
must work with the client to refine the requirements until all key decisions about
what the system will do have been addressed.

Requirements often address user interface issues such as output format, screen
layouts, and graphical interface components. Essentially, the requirements estab-
lish the characteristics that make the program useful for the end user. They may
also apply constraints to your program, such as how fast a task must be per-
formed. They may also impose restrictions on the developer such as deadlines.

A software design indicates how a program will accomplish its requirements.
The design specifies the classes and objects needed in a program and defines how

Software requirements specify
what a program must accom-
plish.ke

y
co

nc
ep

t

3.0 program development 131

they interact. A detailed design might even specify the individual steps
that parts of the code will follow.

A civil engineer would never consider building a bridge without
designing it first. The design of software is no less essential. Many
problems that occur in software are directly attributable to a lack of good design
effort. Alternatives need to be considered and explored. Often, the first attempt
at a design is not the best solution. Fortunately, changes are relatively easy to
make during the design stage.

One of the most fundamental design issues is defining the algorithms to be
used in the program. An algorithm is a step-by-step process for solving a prob-
lem. A recipe is like an algorithm. Travel directions are like an algorithm. Every
program implements one or more algorithms. Every software developer should
spend time thinking about the algorithms involved before writing any code.

An algorithm is often described using pseudocode, which is a mixture of code
statements and English phrases. Pseudocode provides enough structure
to show how the code will operate without getting bogged down in the
syntactic details of a particular programming language and without
being prematurely constrained by the characteristics of particular pro-
gramming constructs.

When developing an algorithm, it’s important to analyze all of the
requirements involved with that part of the problem. This ensures that the algo-
rithm takes into account all aspects of the problem. The design of a program is
often revised many times before it is finalized.

Implementation is the process of writing the source code that will solve the
problem. More precisely, implementation is the act of translating the design into
a particular programming language. Too many programmers focus on imple-
mentation exclusively when actually it should be the least creative of all develop-
ment activities. The important decisions should be made when establishing the
requirements and creating the design.

Testing a program includes running it multiple times with various
inputs and carefully scrutinizing the results. Testing might also include
hand-tracing program code, in which the developer mentally plays the
role of the computer to see where the program logic goes awry.

The goal of testing is to find errors. By finding errors and fixing
them, we improve the quality of our program. It’s likely that later on someone
else will find errors that remained hidden during development, when the cost of

A software design specifies
how a program will accomplish
its requirements.

key
concept

An algorithm is a step-by-step
process for solving a problem,
often expressed in
pseudocode.

key
concept

Implementation should be the
least creative of all develop-
ment activities.

key
concept

that error is much higher. Taking the time to uncover problems as early as possi-
ble is always worth the effort.

Running a program with specific input and producing the correct results estab-
lishes only that the program works for that particular input. As more and more
test cases execute without revealing errors, our confidence in the program rises,
but we can never really be sure that all errors have been eliminated. There could
always be another error still undiscovered. Because of that, it is important to

thoroughly test a program with various kinds of input. When one prob-
lem is fixed, we should run previous tests again to make sure that while
fixing the problem we didn’t create another. This technique is called
regression testing.

Various models have been proposed that describe the specific way in
which requirements analysis, design, implementation, and testing

should be accomplished. For now we will simply keep these general activities in
mind as we learn to develop programs.

3.1 control flow
The order in which statements are executed in a running program is called the
flow of control. Unless otherwise specified, the execution of a program proceeds
in a linear fashion. That is, a running program starts at the first programming
statement and moves down one statement at a time until the program is complete.
A Java application begins executing with the first line of the main method and
proceeds step by step until it gets to the end of the main method.

Invoking a method alters the flow of control. When a method is called, con-
trol jumps to the code defined for that method. When the method completes, con-
trol returns to the place in the calling method where the invocation was made and
processing continues from there. In our examples thus far, we’ve invoked meth-
ods in classes and objects using the Java libraries, and we haven’t been concerned
about the code that defines those methods. We discuss how to write our own sep-
arate classes and methods in Chapter 4.

Within a given method, we can alter the flow of control through the
code by using certain types of programming statements. In particular,
statements that control the flow of execution through a method fall
into two categories: conditionals and loops.

132 CHAPTER 3 program statements

The goal of testing is to find
errors. We can never really be
sure that all errors have been
found.

ke
y

co
nc

ep
t

Conditionals and loops allow
us to control the flow of execu-
tion through a method.ke

y
co

nc
ep

t

A conditional statement is sometimes called a selection statement because it
allows us to choose which statement will be executed next. The conditional state-
ments in Java are the if statement, the if-else statement, and the switch state-
ment. These statements allow us to decide which statement to execute next. Each
decision is based on a boolean expression (also called a condition), which is an
expression that evaluates to either true or false. The result of the expression deter-
mines which statement is executed next.

For example, the cost of life insurance might be dependent on whether the
insured person is a smoker. If the person smokes, we calculate the cost using a
particular formula; if not, we calculate it using another. The role of a condition-
al statement is to evaluate a boolean condition (whether the person smokes) and
then to execute the proper calculation accordingly.

A loop, or repetition statement, allows us to execute a programming statement
over and over again. Like a conditional, a loop is based on a boolean expression
that determines how many times the statement is executed.

For example, suppose we wanted to calculate the grade point average of every
student in a class. The calculation is the same for each student; it is just performed
on different data. We would set up a loop that repeats the calculation for each
student until there are no more students to process.

Java has three types of loop statements: the while statement, the do statement,
and the for statement. Each type of loop statement has unique characteristics
that distinguish it from the others.

Conditionals and loops are fundamental to controlling the flow through a
method and are necessary in many situations. This chapter explores conditional
and loop statements as well as some additional operators.

3.2 the if statement
The if statement is a conditional statement found in many programming lan-
guages, including Java. The following is an example of an if statement:

if (total > amount)

total = total + (amount + 1);

An if statement consists of the reserved word if followed by a boolean
expression, or condition. The condition is enclosed in parentheses and must

3.2 the if statement 133

evaluate to true or false. If the condition is true, the statement is exe-
cuted and processing continues with the next statement. If the condition
is false, the statement is skipped and processing continues immediately
with the next statement. In this example, if the value in total is greater
than the value in amount, the assignment statement is executed; other-

wise, the assignment statement is skipped. Figure 3.1 shows this processing.

Note that the assignment statement in this example is indented under the
header line of the if statement. This communicates that the assignment statement

is part of the if statement; it implies that the if statement governs
whether the assignment statement will be executed. This indentation is
extremely important for the human reader.

The example in Listing 3.1 reads the age of the user and then makes
a decision as to whether to print a particular sentence based on the age
that is entered.

The Age program echoes the age value that is entered in all cases. If
the age is less than the value of the constant MINOR, the statement about youth is
printed. If the age is equal to or greater than the value of MINOR, the println
statement is skipped. In either case, the final sentence about age being a state of
mind is printed.

134 CHAPTER 3 program statements

figure 3.1 The logic of an if statement

true

statement

condition
evaluated

false

An if statement allows a pro-
gram to choose whether to
execute a particular statement.ke

y
co

nc
ep

t

Even though the compiler does
not care about indentation,
proper indentation is important
for human readability; it shows
the relationship between one
statement and another.

ke
y

co
nc

ep
t

3.2 the if statement 135

listing
3.1

//**

// Age.java Author: Lewis/Loftus

//

// Demonstrates the use of an if statement.

//**

import cs1.Keyboard;

public class Age

{

//---

// Reads the user's age and prints comments accordingly.

//---

public static void main (String[] args)

{

final int MINOR = 21;

System.out.print ("Enter your age: ");

int age = Keyboard.readInt();

System.out.println ("You entered: " + age);

if (age < MINOR)

System.out.println ("Youth is a wonderful thing. Enjoy.");

System.out.println ("Age is a state of mind.");

}

}

Enter your age: 35

You entered: 35

Age is a state of mind.

output

code135.html

136 CHAPTER 3 program statements

equality and relational operators
Boolean expressions evaluate to either true or false and are fundamental to our
ability to make decisions. Java has several operators that produce a true or false
result. The == and != operators are called equality operators; they test if two val-
ues are equal or not equal, respectively. Note that the equality operator consists
of two equal signs side by side and should not be mistaken for the assignment
operator that uses only one equal sign.

The following if statement prints a sentence only if the variables total and
sum contain the same value:

if (total == sum)

System.out.println (“total equals sum”);

Likewise, the following if statement prints a sentence only if the variables
total and sum do not contain the same value:

if (total != sum)

System.out.println (“total does NOT equal sum”);

In the Age program we used the < operator to decide whether one value was
less than another. The less than operator is one of several relational operators that
let us decide the relationships between values. Figure 3.2 lists the Java equality
and relational operators.

The equality and relational operators have precedence lower than the arith-
metic operators. Therefore, arithmetic operations are evaluated first, followed by
equality and relational operations. As always, parentheses can be used to explic-
itly specify the order of evaluation.

figure 3.2 Java equality and relational operators

==

!=

<

<=

>

>=

equal to

not equal to

less than

less than or equal to

greater than

greater than or equal to

Operator Meaning

3.2 the if statement 137

Let’s look at a few more examples of basic if statements.

if (size >= MAX)

size = 0;

This if statement causes the variable size to be set to zero if its current value is
greater than or equal to the value in the constant MAX.

The condition of the following if statement first adds three values together,
then compares the result to the value stored in numBooks.

if (numBooks < stackCount + inventoryCount + duplicateCount)

reorder = true;

If numBooks is less than the other three values combined, the boolean variable
reorder is set to true. The addition operations are performed before the less
than operator because the arithmetic operators have a higher precedence than the
relational operators.

The following if statement compares the value returned from a call to
nextInt to the calculated result of dividing the constant HIGH by 5. The odds of
this code picking a winner are approximately 1 in 5.

if (generator.nextInt(HIGH) < HIGH / 5)

System.out.println (“You are a randomly selected winner!”);

the if-else statement
Sometimes we want to do one thing if a condition is true and another thing if that
condition is false. We can add an else clause to an if statement, making it an
if-else statement, to handle this kind of situation. The following is an example of
an if-else statement:

if (height <= MAX)

adjustment = 0;

else

adjustment = MAX – height;

If the condition is true, the first assignment statement is executed; if
the condition is false, the second assignment statement is executed.
Only one or the other will be executed because a boolean condition will
evaluate to either true or false. Note that proper indentation is used
again to communicate that the statements are part of the governing if
statement.

An if-else statement allows
a program to do one thing if a
condition is true and another
thing if the condition is false.

key
concept

138 CHAPTER 3 program statements

The Wages program shown in Listing 3.2 uses an if-else statement to com-
pute the proper payment amount for an employee.

In the Wages program, if an employee works over 40 hours in a week, the pay-
ment amount takes into account the overtime hours. An if-else statement is
used to determine whether the number of hours entered by the user is greater than
40. If it is, the extra hours are paid at a rate one and a half times the normal rate.
If there are no overtime hours, the total payment is based simply on the number
of hours worked and the standard rate.

Let’s look at another example of an if-else statement:

if (roster.getSize() == FULL)

roster.expand();

else

roster.addName (name);

This example makes use of an object called roster. Even without knowing what
roster represents, or from what class it was created, we can see that it has at
least three methods: getSize, expand, and addName. The condition of the if

If Statement

An if statement tests the boolean Expression and, if true, executes
the first Statement. The optional else clause identifies the Statement
that should be executed if the Expression is false.

Examples:

if (total < 7)

System.out.println (“Total is less than 7.”);

if (firstCh != ‘a’)

count++;

else

count = count / 2;

if () Statement

else Statement

Expression

3.2 the if statement 139

listing
3.2

//**

// Wages.java Author: Lewis/Loftus

//

// Demonstrates the use of an if-else statement.

//**

import java.text.NumberFormat;

import cs1.Keyboard;

public class Wages

{

//---

// Reads the number of hours worked and calculates wages.

//---

public static void main (String[] args)

{

final double RATE = 8.25; // regular pay rate

final int STANDARD = 40; // standard hours in a work week

double pay = 0.0;

System.out.print ("Enter the number of hours worked: ");

int hours = Keyboard.readInt();

System.out.println ();

// Pay overtime at "time and a half"

if (hours > STANDARD)

pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);

else

pay = hours * RATE;

NumberFormat fmt = NumberFormat.getCurrencyInstance();

System.out.println ("Gross earnings: " + fmt.format(pay));

}

}

Enter the number of hours worked: 46

Gross earnings: $404.25

output

code139.html

140 CHAPTER 3 program statements

statement calls getSize and compares the result to the constant FULL. If the con-
dition is true, the expand method is invoked (apparently to expand the size of the
roster). If the roster is not yet full, the variable name is passed as a parameter to
the addName method.

using block statements
We may want to do more than one thing as the result of evaluating a boolean
condition. In Java, we can replace any single statement with a block statement. A
block statement is a collection of statements enclosed in braces. We’ve already
seen these braces used to delimit the main method and a class definition. The pro-
gram called Guessing, shown in Listing 3.3, uses an if-else statement in which
the statement of the else clause is a block statement.

If the guess entered by the user equals the randomly chosen answer, an appro-
priate acknowledgement is printed. However, if the answer is incorrect, two
statements are printed, one that states that the guess is wrong and one that prints
the actual answer. A programming project at the end of this chapter expands the
concept of this example into the Hi-Lo game, which can only be done after we
explore loops in more detail.

Note that if the block braces were not used, the sentence stating that the
answer is incorrect would be printed if the answer was wrong, but the sentence
revealing the correct answer would be printed in all cases. That is, only the first
statement would be considered part of the else clause.

Remember that indentation means nothing except to the human reader.
Statements that are not blocked properly can lead to the programmer making
improper assumptions about how the code will execute. For example, the fol-
lowing code is misleading:

if (depth > 36.238)

delta = 100;

else

System.out.println (“WARNING: Delta is being reset to ZERO”);

delta = 0; // not part of the else clause!

The indentation (not to mention the logic of the code) implies that the variable
delta is reset only when depth is less than 36.238. However, without using a
block, the assignment statement that resets delta to zero is not governed by the
if-else statement at all. It is executed in either case, which is clearly not what
is intended.

3.2 the if statement 141

listing
3.3

//**

// Guessing.java Author: Lewis/Loftus

//

// Demonstrates the use of a block statement in an if-else.

//**

import cs1.Keyboard;

import java.util.Random;

public class Guessing

{

//---

// Plays a simple guessing game with the user.

//---

public static void main (String[] args)

{

final int MAX = 10;

int answer, guess;

Random generator = new Random();

answer = generator.nextInt(MAX) + 1;

System.out.print ("I'm thinking of a number between 1 and "

+ MAX + ". Guess what it is: ");

guess = Keyboard.readInt();

if (guess == answer)

System.out.println ("You got it! Good guessing!");

else

{

System.out.println ("That is not correct, sorry.");

System.out.println ("The number was " + answer);

}

}

}

I'm thinking of a number between 1 and 10. Guess what it is: 7

That is not correct, sorry.

The number was 4

output

code141.html

142 CHAPTER 3 program statements

A block statement can be used anywhere a single statement is called for in Java
syntax. For example, the if portion of an if-else statement could be a block,
or the else portion could be a block (as we saw in the Guessing program), or
both parts could be block statements. For example:

if (boxes != warehouse.getCount())

{

System.out.println (“Inventory and warehouse do NOT match.”);

System.out.println (“Beginning inventory process again!”);

boxes = 0;

}

else

{

System.out.println (“Inventory and warehouse MATCH.”);

warehouse.ship();

}

In this if-else statement, the value of boxes is compared to a value obtained by
calling the getCount method of the warehouse object (whatever that is). If they
do not match exactly, two println statements and an assignment statement are
executed. If they do match, a different message is printed and the ship method
of warehouse is invoked.

nested if statements
The statement executed as the result of an if statement could be another if
statement. This situation is called a nested if. It allows us to make another deci-
sion after determining the results of a previous decision. The program in Listing
3.4, called MinOfThree, uses nested if statements to determine the smallest of
three integer values entered by the user.

Carefully trace the logic of the MinOfThree program, using various input sets
with the minimum value in all three positions, to see how it determines the low-
est value.

An important situation arises with nested if statements. It may seem that an
else clause after a nested if could apply to either if statement. For example:

if (code == ‘R’)

if (height <= 20)

System.out.println (“Situation Normal”);

else

System.out.println (“Bravo!”);

3.2 the if statement 143

listing
3.4

//**

// MinOfThree.java Author: Lewis/Loftus

//

// Demonstrates the use of nested if statements.

//**

import cs1.Keyboard;

public class MinOfThree

{

//---

// Reads three integers from the user and determines the smallest

// value.

//---

public static void main (String[] args)

{

int num1, num2, num3, min = 0;

System.out.println ("Enter three integers: ");

num1 = Keyboard.readInt();

num2 = Keyboard.readInt();

num3 = Keyboard.readInt();

if (num1 < num2)

if (num1 < num3)

min = num1;

else

min = num3;

else

if (num2 < num3)

min = num2;

else

min = num3;

System.out.println ("Minimum value: " + min);

}

}

Enter three integers:

45 22 69

Minimum value: 22

output

code143.html

Is the else clause matched to the inner if statement or the outer if statement?
The indentation in this example implies that it is part of the inner if statement,
and that is correct. An else clause is always matched to the closest unmatched if
that preceded it. However, if we’re not careful, we can easily mismatch it in our
mind and imply our intentions, but not reality, by misaligned indentation. This is
another reason why accurate, consistent indentation is crucial.

Braces can be used to specify the if statement to which an else
clause belongs. For example, if the previous example should have been
structured so that the string “Bravo!” is printed if code is not equal to
‘R’, we could force that relationship (and properly indent) as follows:

if (code == ‘R’)

{

if (height <= 20)

System.out.println (“Situation Normal”);

}

else

System.out.println (“Bravo!”);

By using the block statement in the first if statement, we establish that the else
clause belongs to it.

3.3 the switch statement
Another conditional statement in Java is called the switch statement, which caus-
es the executing program to follow one of several paths based on a single value.
We also discuss the break statement in this section because it is usually used with
a switch statement.

The switch statement evaluates an expression to determine a value and then
matches that value with one of several possible cases. Each case has statements
associated with it. After evaluating the expression, control jumps to the statement
associated with the first case that matches the value. Consider the following
example:

switch (idChar)

{

case ‘A’:

aCount = aCount + 1;

break;

case ‘B’:

144 CHAPTER 3 program statements

In a nested if statement, an
else clause is matched to the
closest unmatched if.ke

y
co

nc
ep

t

3.3 the switch statement 145

bCount = bCount + 1;

break;

case ‘C’:

cCount = cCount + 1;

break;

default:

System.out.println (“Error in Identification Character.”);

}

First, the expression is evaluated. In this example, the expression is a simple
char variable. Execution then transfers to the first statement identified by the
case value that matches the result of the expression. Therefore, if idChar contains
an ‘A’, the variable aCount is incremented. If it contains a ‘B’, the case for ‘A’
is skipped and processing continues where bCount is incremented.

If no case value matches that of the expression, execution continues with the
optional default case, indicated by the reserved word default. If no default case
exists, no statements in the switch statement are executed and processing con-
tinues with the statement after the switch. It is often a good idea to include a
default case, even if you don’t expect it to be executed.

When a break statement is encountered, processing jumps to the statement
following the switch statement. A break statement is usually used to break out
of each case of a switch statement. Without a break statement, processing con-
tinues into the next case of the switch. Therefore if the break state-
ment at the end of the ‘A’ case in the previous example was not there,
both the aCount and bCount variables would be incremented when the
idChar contains an ‘A’. Usually we want to perform only one case, so
a break statement is almost always used. Occasionally, though, the
“pass through” feature comes in handy.

The expression evaluated at the beginning of a switch statement must be an
integral type, meaning that it is either an int or a char. It cannot evaluate to a
boolean or floating point value, and even other integer types (byte, short, and
long) cannot be used. Furthermore, each case value must be a constant; it can-
not be a variable or other expression.

Note that the implicit boolean condition of a switch statement is based on
equality. The expression at the beginning of the statement is compared to each
case value to determine which one it equals. A switch statement cannot be used
to determine other relational operations (such as less than), unless some prelimi-
nary processing is done. For example, the GradeReport program in Listing 3.5
prints a comment based on a numeric grade that is entered by the user.

A break statement is usually
used at the end of each case
alternative of a switch state-
ment to jump to the end of the
switch.

key
concept

146 CHAPTER 3 program statements

Switch Statement

Switch Case

The switch statement evaluates the initial Expression and matches
its value with one of the cases. Processing continues with the
Statement corresponding to that case. The optional default case will
be executed if no other case matches.

Example:

switch (numValues)

{

case 0:

System.out.println (“No values were entered.”);

break;

case 1:

System.out.println (“One value was entered.”);

break;

case 2:

System.out.println (“Two values were entered.”);

break;

default:

System.out.println (“Too many values were entered.”);

}

switch ()
Switch Case

Expression { }

case

default

Expression :

:
Block Statement

3.3 the switch statement 147

listing
3.5

//**

// GradeReport.java Author: Lewis/Loftus

//

// Demonstrates the use of a switch statement.

//**

import cs1.Keyboard;

public class GradeReport

{

//---

// Reads a grade from the user and prints comments accordingly.

//---

public static void main (String[] args)

{

int grade, category;

System.out.print ("Enter a numeric grade (0 to 100): ");

grade = Keyboard.readInt();

category = grade / 10;

System.out.print ("That grade is ");

switch (category)

{

case 10:

System.out.println ("a perfect score. Well done.");

break;

case 9:

System.out.println ("well above average. Excellent.");

break;

case 8:

System.out.println ("above average. Nice job.");

break;

case 7:

System.out.println ("average.");

break;

case 6:

System.out.println ("below average. You should see the");

System.out.println ("instructor to clarify the material "

+ "presented in class.");

break;

code147.html

148 CHAPTER 3 program statements

In GradeReport, the category of the grade is determined by dividing the grade
by 10 using integer division, resulting in an integer value between 0 and 10
(assuming a valid grade is entered). This result is used as the expression of the
switch, which prints various messages for grades 60 or higher and a default sen-

tence for all other values.

Note that any switch statement could be implemented as a set of
nested if statements. However, nested if statements quickly become
difficult for a human reader to understand and are error prone to
implement and debug. But because a switch can evaluate only equali-
ty, sometimes nested if statements are necessary. It depends on the
situation.

3.4 boolean expressions revisited
Let’s examine a few more options regarding the use of boolean expressions.

logical operators
In addition to the equality and relational operators, Java has three logical opera-
tors that produce boolean results. They also take boolean operands. Figure 3.3
lists and describes the logical operators.

The ! operator is used to perform the logical NOT operation, which is also
called the logical complement. The logical complement of a boolean value yields

listing
3.5 continued

default:

System.out.println ("not passing.");

}

}

}

Enter a numeric grade (0 to 100): 86

That grade is above average. Nice job.

A switch statement could be
implemented as a series of
if-else statements, but the
switch is sometimes a more
convenient and readable con-
struct.

ke
y

co
nc

ep
t

output

3.4 boolean expressions revisited 149

its opposite value. That is, if a boolean variable called found has the value false,
then !found is true. Likewise, if found is true, then !found is false. The logical
NOT operation does not change the value stored in found.

A logical operation can be described by a truth table that lists all possible com-
binations of values for the variables involved in an expression. Because the logi-
cal NOT operator is unary, there are only two possible values for its one operand,
true or false. Figure 3.4 shows a truth table that describes the ! operator.

The && operator performs a logical AND operation. The result is true if both
operands are true, but false otherwise. Since it is a binary operator and each
operand has two possible values, there are four combinations to consider.

The result of the logical OR operator (||) is true if one or the other or both
operands are true, but false otherwise. It is also a binary operator. Figure 3.5
depicts a truth table that shows both the && and || operators.

The logical NOT has the highest precedence of the three logical operators, fol-
lowed by logical AND, then logical OR.

Logical operators are often used as part of a condition for a selection or repeti-
tion statement. For example, consider the following if statement:

if (!done && (count > MAX))

System.out.println (“Completed.”);

Under what conditions would the println statement be executed? The value
of the boolean variable done is either true or false, and the NOT operator

figure 3.3 Java logical operators

!

&&

||

logical NOT

logical AND

logical OR

true if a is false and false if a is true

true if a and b are both true and false otherwise

true if a or b or both are true and false otherwise

! a

a && b

a || b

Operator Description Example Result

figure 3.4 Truth table describing the logical NOT operator

a !a

false

true

true

false

150 CHAPTER 3 program statements

reverses that value. The value of count is either greater than MAX or it
isn’t. The truth table in Fig. 3.6 breaks down all of the possibilities.

An important characteristic of the && and || operators is that they
are “short-circuited.” That is, if their left operand is sufficient to decide
the boolean result of the operation, the right operand is not evaluated.

This situation can occur with both operators but for different reasons. If the left
operand of the && operator is false, then the result of the operation will be false
no matter what the value of the right operand is. Likewise, if the left operand of
the || is true, then the result of the operation is true no matter what the value of
the right operand is.

Sometimes you can capitalize on the fact that the operation is short-circuited.
For example, the condition in the following if statement will not attempt to
divide by zero if the left operand is false. If count has the value zero, the left side
of the && operation is false; therefore the whole expression is false and the right
side is not evaluated.

if (count != 0 && total/count > MAX)

System.out.println (“Testing.”);

figure 3.5 Truth table describing the logical AND and OR operators

false

false

false

true

false

false

false

true

true

true

true

true

false

true

false

true

a b a && b a || b

figure 3.6 A truth table for a specific condition

false

false

true

true

false

true

false

true

true

true

false

false

false

true

false

false

done !donecount > MAX !done && (count > MAX)

Logical operators return a
boolean value and are often
used to construct sophisticated
conditions.

ke
y

co
nc

ep
t

3.4 boolean expressions revisited 151

Be careful when you rely on these kinds of subtle programming language char-
acteristics. Not all programming languages work the same way. As we have men-
tioned several times, you should always strive to make it extremely clear to the
reader exactly how the logic of your program works.

comparing characters and strings
We know what it means when we say that one number is less than another, but
what does it mean to say one character is less than another? As we discussed in
Chapter 2, characters in Java are based on the Unicode character set, which
defines an ordering of all possible characters that can be used. Because the char-
acter ‘a’ comes before the character ‘b’ in the character set, we can say that ‘a’
is less than ‘b’.

We can use the equality and relational operators on character data. For exam-
ple, if two character variables ch1 and ch2 hold the values of two characters, we
might determine their relative ordering in the Unicode character set with an if
statement as follows:

if (ch1 > ch2)

System.out.println (ch1 + “ is greater than “ + ch2);

else

System.out.println (ch1 + “ is NOT greater than “ + ch2);

The Unicode character set is structured so that all lowercase alphabet-
ic characters (‘a’ through ‘z’) are contiguous and in alphabetical
order. The same is true of uppercase alphabetic characters (‘A’ through
‘Z’) and characters that represent digits (‘0’ through ‘9’). The digits
precede the uppercase alphabetic characters, which precede the lower-
case alphabetic characters. Before, after, and in between these groups
are other characters. (See the chart in Appendix C.)

These relationships make it easy to sort characters and strings of characters. If
you have a list of names, for instance, you can put them in alphabetical order
based on the inherent relationships among characters in the character set.

However, you should not use the equality or relational operators to compare
String objects. The String class contains a method called equals that returns
a boolean value that is true if the two strings being compared contain exactly the
same characters, and false otherwise. For example:

if (name1.equals(name2))

System.out.println (“The names are the same.”);

else

System.out.println (“The names are not the same.”);

The relative order of characters
in Java is defined by the
Unicode character set.

key
concept

152 CHAPTER 3 program statements

Assuming that name1 and name2 are String objects, this condition determines
whether the characters they contain are an exact match. Because both objects
were created from the String class, they both respond to the equals message.
Therefore the condition could have been written as name2.equals(name1) and
the same result would occur.

It is valid to test the condition (name1 == name2), but that actually tests to
see whether both reference variables refer to the same String object. That is, the
== operator tests whether both reference variables contain the same address.
That’s different than testing to see whether two different String objects contain
the same characters. We discuss this issue in more detail later in the book.

To determine the relative ordering of two strings, use the compareTo method
of the String class. The compareTo method is more versatile than the equals
method. Instead of returning a boolean value, the compareTo method returns an
integer. The return value is negative if the String object through which the
method is invoked precedes (is less than) the string that is passed in as a param-
eter. The return value is zero if the two strings contain the same characters. The
return value is positive if the String object through which the method is invoked
follows (is greater than) the string that is passed in as a parameter. For example:

int result = name1.compareTo(name2);

if (result < 0)

System.out.println (name1 + “ comes before “ + name2);

else

if (result == 0)

System.out.println (“The names are equal.”);

else

System.out.println (name1 + “ follows “ + name2);

Keep in mind that comparing characters and strings is based on the Unicode
character set (see Appendix C). This is called a lexicographic ordering. If all
alphabetic characters are in the same case (upper or lower), the lexicographic

ordering will be alphabetic ordering as well. However, when compar-
ing two strings, such as “able” and “Baker”, the compareTo method
will conclude that “Baker” comes first because all of the uppercase let-
ters come before all of the lowercase letters in the Unicode character
set. A string that is the prefix of another, longer string is considered to
precede the longer string. For example, when comparing two strings
such as “horse” and “horsefly”, the compareTo method will con-
clude that “horse” comes first.

The compareTo method can
be used to determine the rela-
tive order of strings. It deter-
mines lexicographic order,
which does not correspond
exactly to alphabetical order.

ke
y

co
nc

ep
t

comparing floats
Another interesting situation occurs when comparing floating point data. Specifi-
cally, you should rarely use the equality operator (==) when comparing floating
point values. Two floating point values are equal, according to the == operator,
only if all the binary digits of their underlying representations match. If the com-
pared values are the results of computation, it may be unlikely that they are
exactly equal even if they are close enough for the specific situation.

A better way to check for floating point equality is to compute the absolute
value of the difference between the two values and compare the result to some
tolerance level. For example, we may choose a tolerance level of 0.00001. If the
two floating point values are so close that their difference is less than the toler-
ance, then we are willing to consider them equal. Comparing two floating point
values, f1 and f2, could be accomplished as follows:

if (Math.abs(f1 - f2) < TOLERANCE)

System.out.println (“Essentially equal.”);

The value of the constant TOLERANCE should be appropriate for the situation.

3.5 more operators
Before moving on to repetition statements, let’s examine a few more Java opera-
tors to give us even more flexibility in the way we express our program com-
mands. Some of these operators are commonly used in loop processing.

increment and decrement operators
The increment operator (++) adds 1 to any integer or floating point value. The
two plus signs that make up the operator cannot be separated by white space. The
decrement operator (--) is similar except that it subtracts 1 from the value. They
are both unary operators because they operate on only one operand. The follow-
ing statement causes the value of count to be incremented.

count++;

The result is stored back into the variable count. Therefore it is functionally
equivalent to the following statement:

count = count + 1;

3.5 more operators 153

154 CHAPTER 3 program statements

The increment and decrement operators can be applied after the variable (such
as count++ or count--), creating what is called the postfix form of the opera-
tor. They can also be applied before the variable (such as ++count or --count),
in what is called the prefix form. When used alone in a statement, the prefix and
postfix forms are functionally equivalent. That is, it doesn’t matter if you write

count++;

or

++count;

However, when such a form is written as a statement by itself, it is usually writ-
ten in its postfix form.

When the increment or decrement operator is used in a larger expression, it
can yield different results depending on the form used. For example, if the vari-
able count currently contains the value 15, the following statement assigns the
value 15 to total and the value 16 to count:

total = count++;

However, the following statement assigns the value 16 to both total and count:

total = ++count;

The value of count is incremented in both situations, but the value used in the
larger expression depends on whether a prefix or postfix form of the increment
operator is used, as described in Fig. 3.7.

figure 3.7 Prefix and postfix forms of the
increment and decrement operators

count++

++count

count--

--count

add 1 to count

add 1 to count

subtract 1 from count

subtract 1 from count

the original value of count

the new value of count

the original value of count

the new value of count

Expression Operation Value of Expression

3.5 more operators 155

Because of the subtle differences between the prefix and postfix
forms of the increment and decrement operators, they should be used
with care. As always, favor the side of readability.

assignment operators
As a convenience, several assignment operators have been defined in Java that
combine a basic operation with assignment. For example, the += operator can be
used as follows:

total += 5;

It performs the same operation as the following statement:

total = total + 5;

The right-hand side of the assignment operator can be a full expression. The
expression on the right-hand side of the operator is evaluated, then that result is
added to the current value of the variable on the left-hand side, and that value is
stored in the variable. Therefore, the following statement:

total += (sum - 12) / count;

is equivalent to:

total = total + ((sum - 12) / count);

Many similar assignment operators are defined in Java, as listed in Fig. 3.8.
(Appendix E discusses additional operators.)

All of the assignment operators evaluate the entire expression on the right-
hand side first, then use the result as the right operand of the other operation.
Therefore, the following statement:

result *= count1 + count2;

is equivalent to:

result = result * (count1 + count2);

Likewise, the following statement:

result %= (highest - 40) / 2;

is equivalent to:

result = result % ((highest - 40) / 2);

The prefix and postfix incre-
ment and decrement operators
have subtle effects on pro-
grams because of differences
in when they are evaluated.

key
concept

156 CHAPTER 3 program statements

Some assignment operators perform particular functions depending on the
types of the operands, just as their corresponding regular operators do. For exam-
ple, if the operands to the += operator are strings, then the assignment operator
performs string concatenation.

the conditional operator
The Java conditional operator is a ternary operator because it requires three oper-
ands. The symbol for the conditional operator is usually written ?:, but it is not
like other operators in that the two symbols that make it up are always separat-
ed. The following is an example of an expression that contains the conditional
operator:

(total > MAX) ? total + 1 : total * 2;

figure 3.8 Java assignment operators

=

+=

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

&=

^=

^=

|=

|=

x = y

x = x + y

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

x = x << y

x = x >> y

x = x >>> y

x = x & y

x = x & y

x = x ^ y

x = x ^ y

x = x | y

x = x | y

x = y

x += y

x += y

x -= y

x *= y

x /= y

x %= y

x <<= y

x >>= y

x >>>= y

x &= y

x &= y

x ^= y

x ^= y

x |= y

x |= y

assignment

addition, then assignment

string concatenation, then assignment

subtraction, then assignment

multiplication, then assignment

division, then assignment

remainder, then assignment

left shift, then assignment

right shift with sign, then assignment

right shift with zero, then assignment

bitwise AND, then assignment

boolean AND, then assignment

bitwise XOR, then assignment

boolean XOR, then assignment

bitwise OR, then assignment

boolean OR, then assignment

Description Example Equivalent ExpressionOperator

Preceding the ? is a boolean condition. Following the ? are two expressions sep-
arated by the : symbol. The entire conditional expression returns the value of the
first expression if the condition is true, and the value of the second expression if
the condition is false. Keep in mind that this is an expression that returns a value,
and usually we want to do something with that value, such as assign it to a vari-
able:

total = (total > MAX) ? total + 1 : total * 2;

In many ways, the ?: operator serves like an abbreviated if-else statement.
Therefore the previous statement is functionally equivalent to, but sometimes
more convenient than, the following:

if (total > MAX)

total = total + 1;

else

total = total * 2;

The two expressions that define the larger conditional expression must evalu-
ate to the same type. Consider the following declaration:

int larger = (num1 > num2) ? num1 : num2;

If num1 is greater than num2, the value of num1 is returned and used to initialize
the variable larger. If not, the value of num2 is returned and used. Similarly, the
following statement prints the smaller of the two values:

System.out.println (“Smaller: “ + ((num1 < num2) ? num1 : num2));

The conditional operator is occasionally helpful to evaluate a short condition
and return a result. It is not a replacement for an if-else statement, however,
because the operands to the ?: operator are expressions, not necessarily full state-
ments. Even when the conditional operator is a viable alternative, you should use
it sparingly because it is often less readable than an if-else statement.

3.6 the while statement
As we discussed earlier in this chapter, a repetition statement (or loop) allows us
to execute another statement multiple times. A while statement is a loop that eval-
uates a boolean condition—just like an if statement does—and executes a state-
ment (called the body of the loop) if the condition is true. However, unlike the if
statement, after the body is executed, the condition is evaluated again. If it is still

3.6 the while statement 157

158 CHAPTER 3 program statements

true, the body is executed again. This repetition continues until the con-
dition becomes false; then processing continues with the statement after
the body of the while loop. Figure 3.9 shows this processing.

The Counter program shown in Listing 3.6 simply prints the values
from 1 to 5. Each iteration through the loop prints one value, then increments the
counter. A constant called LIMIT is used to hold the maximum value that count
is allowed to reach.

Note that the body of the while loop is a block containing two statements.
Because the value of count is incremented each time, we are guaranteed that
count will eventually reach the value of LIMIT.

Let’s look at another program that uses a while loop. The Average program
shown in Listing 3.7 reads a series of integer values from the user, sums them up,
and computes their average.

We don’t know how many values the user may enter, so we need to have a way
to indicate that the user is done entering numbers. In this program, we designate
zero to be a sentinel value that indicates the end of the input. The while loop
continues to process input values until the user enters zero. This assumes that zero
is not one of the valid numbers that should contribute to the average. A sentinel
value must always be outside the normal range of values entered.

Note that in the Average program, a variable called sum is used to maintain a
running sum, which means it is the sum of the values entered thus far. The vari-
able sum is initialized to zero, and each value read is added to and stored back
into sum.

figure 3.9 The logic of a while loop

true

statement

condition
evaluated

false

A while statement allows a
program to execute the same
statement multiple times.ke

y
co

nc
ep

t

3.6 the while statement 159

We also have to count the number of values that are entered so that after the
loop concludes we can divide by the appropriate value to compute the average.
Note that the sentinel value is not counted. Consider the unusual situation in
which the user immediately enters the sentinel value before entering any valid val-
ues. The value of count in this case will still be zero and the computation of the
average will result in a runtime error. Fixing this problem is left as a program-
ming project.

listing
3.6

//**

// Counter.java Author: Lewis/Loftus

//

// Demonstrates the use of a while loop.

//**

public class Counter

{

//---

// Prints integer values from 1 to a specific limit.

//---

public static void main (String[] args)

{

final int LIMIT = 5;

int count = 1;

while (count <= LIMIT)

{

System.out.println (count);

count = count + 1;

}

System.out.println ("Done");

}

}

1

2

3

4

5

Done

output

code159.html

160 CHAPTER 3 program statements

Let’s examine yet another program that uses a while loop. The
WinPercentage program shown in Listing 3.8 computes the winning percentage
of a sports team based on the number of games won.

We use a while loop in the WinPercentage program to validate the input,
meaning we guarantee that the user enters a value that we consider to be valid.
In this example, that means that the number of games won must be greater than
or equal to zero and less than or equal to the total number of games played. The
while loop continues to execute, repeatedly prompting the user for valid input,
until the entered number is indeed valid.

Validating input data, avoiding errors such as dividing by zero, and perform-
ing other actions that guarantee proper processing are important design steps. We
generally want our programs to be robust, which means that they handle poten-
tial problems as elegantly as possible.

While Statement

The while loop repeatedly executes the specified Statement as long
as the boolean Expression is true. The Expression is evaluated first;
therefore the Statement might not be executed at all. The Expression
is evaluated again after each execution of Statement until the
Expression becomes false.

Example:

while (total > max)

{

total = total / 2;

System.out.println (“Current total: “ + total);

}

while () StatementExpression

3.6 the while statement 161

listing
3.7

//**

// Average.java Author: Lewis/Loftus

//

// Demonstrates the use of a while loop, a sentinel value, and a

// running sum.

//**

import java.text.DecimalFormat;

import cs1.Keyboard;

public class Average

{

//---

// Computes the average of a set of values entered by the user.

// The running sum is printed as the numbers are entered.

//---

public static void main (String[] args)

{

int sum = 0, value, count = 0;

double average;

System.out.print ("Enter an integer (0 to quit): ");

value = Keyboard.readInt();

while (value != 0) // sentinel value of 0 to terminate loop

{

count++;

sum += value;

System.out.println ("The sum so far is " + sum);

System.out.print ("Enter an integer (0 to quit): ");

value = Keyboard.readInt();

}

System.out.println ();

System.out.println ("Number of values entered: " + count);

average = (double)sum / count;

DecimalFormat fmt = new DecimalFormat ("0.###");

code161.html

162 CHAPTER 3 program statements

infinite loops
It is the programmer’s responsibility to ensure that the condition of a loop will
eventually become false. If it doesn’t, the loop body will execute forever, or at

least until the program is interrupted. This situation, called an infinite
loop, is a common mistake.

The program shown in Listing 3.9 demonstrates an infinite loop. If
you execute this program, be prepared to interrupt it. On most systems,
pressing the Control-C keyboard combination (hold down the Control
key and press C) terminates a running program.

listing
3.7 continued

System.out.println ("The average is " + fmt.format(average));

}

}

Enter an integer (0 to quit): 25

The sum so far is 25

Enter an integer (0 to quit): 164

The sum so far is 189

Enter an integer (0 to quit): -14

The sum so far is 175

Enter an integer (0 to quit): 84

The sum so far is 259

Enter an integer (0 to quit): 12

The sum so far is 271

Enter an integer (0 to quit): -35

The sum so far is 236

Enter an integer (0 to quit): 0

Number of values entered: 6

The average is 39.333

We must design our programs
carefully to avoid infinite
loops. The body of the loop
must eventually make the loop
condition false.

ke
y

co
nc

ep
t

output

3.6 the while statement 163

listing
3.8

//**

// WinPercentage.java Author: Lewis/Loftus

//

// Demonstrates the use of a while loop for input validation.

//**

import java.text.NumberFormat;

import cs1.Keyboard;

public class WinPercentage

{

//---

// Computes the percentage of games won by a team.

//---

public static void main (String[] args)

{

final int NUM_GAMES = 12;

int won;

double ratio;

System.out.print ("Enter the number of games won (0 to "

+ NUM_GAMES + "): ");

won = Keyboard.readInt();

while (won < 0 || won > NUM_GAMES)

{

System.out.print ("Invalid input. Please reenter: ");

won = Keyboard.readInt();

}

ratio = (double)won / NUM_GAMES;

NumberFormat fmt = NumberFormat.getPercentInstance();

System.out.println ();

System.out.println ("Winning percentage: " + fmt.format(ratio));

}

}

code163.html

164 CHAPTER 3 program statements

In the Forever program, the initial value of count is 1 and it is decremented
in the loop body. The while loop will continue as long as count is less than or
equal to 25. Because count gets smaller with each iteration, the condition will
always be true.

Let’s look at some other examples of infinite loops:

int count = 1;

while (count != 50)

count += 2;

In this code fragment, the variable count is initialized to 1 and is moving in a pos-
itive direction. However, note that it is being incremented by 2 each time. This
loop will never terminate because count will never equal 50. It begins at 1 and
then changes to 3, then 5, and so on. Eventually it reaches 49, then changes to
51, then 53, and continues forever.

Now consider the following situation:

double num = 1.0;

while (num != 0.0)

num = num – 0.1;

Once again, the value of the loop control variable seems to be moving in the cor-
rect direction. And, in fact, it seems like num will eventually take on the value 0.0.
However, this loop is infinite (at least on most systems) because num will never
have a value exactly equal to 0.0. This situation is similar to one we discussed
earlier in this chapter when we explored the idea of comparing floating point val-
ues in the condition of an if statement. Because of the way the values are repre-
sented in binary, minute computational deficiencies occur internally that make a
direct comparison of floating point values (for equality) problematic.

Enter the number of games won (0 to 12): -5

Invalid input. Please reenter: 13

Invalid input. Please reenter: 7

Winning percentage: 58%

output

listing
3.8 continued

3.6 the while statement 165

listing
3.9

//**

// Forever.java Author: Lewis/Loftus

//

// Demonstrates an INFINITE LOOP. WARNING!!

//**

public class Forever

{

//---

// Prints ever-decreasing integers in an INFINITE LOOP!

//---

public static void main (String[] args)

{

int count = 1;

while (count <= 25)

{

System.out.println (count);

count = count - 1;

}

System.out.println ("Done"); // this statement is never reached

}

}

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

and so on until interrupted

output

code165.html

166 CHAPTER 3 program statements

nested loops
The body of a loop can contain another loop. This situation is called a nested
loop. Keep in mind that for each iteration of the outer loop, the inner loop exe-
cutes completely. Consider the following code fragment. How many times does
the string “Here again” get printed?

int count1, count2;

count1 = 1;

while (count1 <= 10)

{

count2 = 1;

while (count2 <= 50)

{

System.out.println (“Here again”);

count1++;

}

count2++;

}

The println statement is inside the inner loop. The outer loop executes 10 times,
as count1 iterates between 1 and 10. The inner loop executes 50 times, as
count2 iterates between 1 and 50. For each iteration of the outer loop, the inner
loop executes completely. Therefore the println statement is executed 500
times.

As with any loop situation, we must be careful to scrutinize the conditions of
the loops and the initializations of variables. Let’s consider some small changes to
this code. What if the condition of the outer loop were (count1 < 10) instead
of (count1 <= 10)? How would that change the total number of lines printed?
Well, the outer loop would execute 9 times instead of 10, so the println state-
ment would be executed 450 times. What if the outer loop were left as it was orig-
inally defined, but count2 were initialized to 10 instead of 1 before the inner
loop? The inner loop would then execute 40 times instead of 50, so the total num-
ber of lines printed would be 400.

Let’s look at another example of a nested loop. A palindrome is a string of
characters that reads the same forward or backward. For example, the following
strings are palindromes:

◗ radar

◗ drab bard

3.6 the while statement 167

◗ ab cde xxxx edc ba

◗ kayak

◗ deified

◗ able was I ere I saw elba

Note that some palindromes have an even number of characters, whereas oth-
ers have an odd number of characters. The PalindromeTester program shown
in Listing 3.10 tests to see whether a string is a palindrome. The user may test as
many strings as desired.

listing
3.10

//**

// PalindromeTester.java Author: Lewis/Loftus

//

// Demonstrates the use of nested while loops.

//**

import cs1.Keyboard;

public class PalindromeTester

{

//---

// Tests strings to see if they are palindromes.

//---

public static void main (String[] args)

{

String str, another = "y";

int left, right;

while (another.equalsIgnoreCase("y")) // allows y or Y

{

System.out.println ("Enter a potential palindrome:");

str = Keyboard.readString();

left = 0;

right = str.length() - 1;

while (str.charAt(left) == str.charAt(right) && left < right)

{

left++;

code167.html

168 CHAPTER 3 program statements

listing
3.10 continued

right--;

}

System.out.println();

if (left < right)

System.out.println ("That string is NOT a palindrome.");

else

System.out.println ("That string IS a palindrome.");

System.out.println();

System.out.print ("Test another palindrome (y/n)? ");

another = Keyboard.readString();

}

}

}

Enter a potential palindrome:

radar

That string IS a palindrome.

Test another palindrome (y/n)? y

Enter a potential palindrome:

able was I ere I saw elba

That string IS a palindrome.

Test another palindrome (y/n)? y

Enter a potential palindrome:

abcddcba

That string IS a palindrome.

Test another palindrome (y/n)? y

Enter a potential palindrome:

abracadabra

That string is NOT a palindrome.

Test another palindrome (y/n)? n

output

3.6 the while statement 169

The code for PalindromeTester contains two loops, one inside the other. The
outer loop controls how many strings are tested, and the inner loop scans through
each string, character by character, until it determines whether the string is a
palindrome.

The variables left and right store the indexes of two characters. They ini-
tially indicate the characters on either end of the string. Each iteration of the inner
loop compares the two characters indicated by left and right. We fall out of the
inner loop when either the characters don’t match, meaning the string is not a
palindrome, or when the value of left becomes equal to or greater than the value
of right, which means the entire string has been tested and it is a palindrome.

Note that the following phrases would not be considered palindromes by the
current version of the program:

◗ A man, a plan, a canal, Panama.

◗ Dennis and Edna sinned.

◗ Rise to vote, sir.

◗ Doom an evil deed, liven a mood.

◗ Go hang a salami; I’m a lasagna hog.

These strings fail our current criteria for a palindrome because of the spaces,
punctuation marks, and changes in uppercase and lowercase. However, if these
characteristics were removed or ignored, these strings read the same forward and
backward. Consider how the program could be changed to handle these situa-
tions. These modifications are included as a programming project at the end of
the chapter.

the StringTokenizer class
Let’s examine another useful class from the Java standard class library. The types
of problems this class helps us solve are inherently repetitious. Therefore the solu-
tions almost always involve loops.

To the Java compiler, a string is just a series of characters, but often we can
identify separate, important elements within a string. Extracting and processing
the data contained in a string is a common programming activity. The individual
elements that comprise the string are referred to as tokens, and therefore the
process of extracting these elements is called tokenizing the string. The characters
that are used to separate one token from another are called delimiters.

170 CHAPTER 3 program statements

For example, we may want to separate a sentence such as the following into
individual words:

“The quick brown fox jumped over the lazy dog”

In this case, each word is a token and the space character is the delimiter. As
another example, we may want to separate the elements of a URL such as:

“www.csc.villanova.edu/academics/courses”

The delimiters of interest in this case are the period (.) and the slash (/). In yet
another situation we may want to extract individual data values from a string,
such as:

“75.43 190.49 69.58 140.77”

The delimiter in this case is once again the space character. A second step in pro-
cessing this data is to convert the individual token strings into numeric values.
This kind of processing is performed by the code inside the Keyboard class. When
we invoke a Keyboard method such as readDouble or readInt, the data is ini-
tially read as a string, then tokenized, and finally converted into the appropriate
numeric form. If there are multiple values on one line, the Keyboard class keeps
track of them and extracts them as needed. We discuss Keyboard class process-
ing in more detail in Chapter 5.

The StringTokenizer class, which is part of the java.util package in the
Java standard class library, is used to separate a string into tokens. The default
delimiters used by the StringTokenizer class are the space, tab, carriage return,
and newline characters. Figure 3.10 lists some methods of the StringTokenizer
class. Note that the second constructor provides a way to specify another set of
delimiters for separating tokens. Once the StringTokenizer object is created, a
call to the nextToken method returns the next token from the string. The
hasMoreTokens method, which returns a boolean value, is often used in the
condition of a loop to determine whether more tokens are left to process in the
string.

The CountWords program shown in Listing 3.11 uses the StringTokenizer
class and a nested while loop to analyze several lines of text. The user types in
as many lines of text as desired, terminating them with a line that contains only
the word “DONE”. Each iteration of the outer loop processes one line of text. The
inner loop extracts and processes the tokens in the current line. The program
counts the total number of words and the total number of characters in the
words. After the sentinel value (which is not counted) is entered, the results are
displayed.

3.6 the while statement 171

Note that the punctuation characters in the strings are included with the tok-
enized words because the program uses only the default delimiters of the
StringTokenizer class. Modifying this program to ignore punctuation is left as
a programming project.

other loop controls
We’ve seen how the break statement can be used to break out of the cases of a
switch statement. The break statement can also be placed in the body of any
loop, even though this is usually inappropriate. Its effect on a loop is similar to
its effect on a switch statement. The execution of the loop is stopped, and the
statement following the loop is executed.

It is never necessary to use a break statement in a loop. An equivalent loop
can always be written without it. Because the break statement causes program
flow to jump from one place to another, using a break in a loop is not good prac-
tice. Its use is tolerated in a switch statement because an equivalent switch
statement cannot be written without it. However, you can and should avoid it in
a loop.

A continue statement has a similar effect on loop processing. The continue
statement is similar to a break, but the loop condition is evaluated again, and the
loop body is executed again if it is still true. Like the break statement, the
continue statement can always be avoided in a loop, and for the same reasons,
it should be.

figure 3.10 Some methods of the StringTokenizer class

StringTokenizer (String str)

Constructor: creates a new StringTokenizer object to parse the specified
string str based on white space.

StringTokenizer (String str, String delimiters)

Constructor: creates a new StringTokenizer object to parse the specified
string str based on the specified set of delimiters.

int countTokens ()

Returns the number of tokens still left to be processed in the string.

boolean hasMoreTokens ()

Returns true if there are tokens still left to be processed in the string.

String nextToken ()

Returns the next token in the string.

172 CHAPTER 3 program statements

listing
3.11

//**

// CountWords.java Author: Lewis/Loftus

//

// Demonstrates the use of the StringTokenizer class and nested

// loops.

//**

import cs1.Keyboard;

import java.util.StringTokenizer;

public class CountWords

{

//---

// Reads several lines of text, counting the number of words

// and the number of non-space characters.

//---

public static void main (String[] args)

{

int wordCount = 0, characterCount = 0;

String line, word;

StringTokenizer tokenizer;

System.out.println ("Please enter text (type DONE to quit):");

line = Keyboard.readString();

while (!line.equals("DONE"))

{

tokenizer = new StringTokenizer (line);

while (tokenizer.hasMoreTokens())

{

word = tokenizer.nextToken();

wordCount++;

characterCount += word.length();

}

line = Keyboard.readString();

}

System.out.println ("Number of words: " + wordCount);

System.out.println ("Number of characters: " + characterCount);

}

}

code172.html

3.7 the do statement
The do statement is similar to the while statement except that its ter-
mination condition is at the end of the loop body. Like the while loop,
the do loop executes the statement in the loop body until the condition
becomes false. The condition is written at the end of the loop to indi-
cate that it is not evaluated until the loop body is executed. Note that the body of
a do loop is always executed at least once. Figure 3.11 shows this processing.

3.7 the do statement 173

The book’s Web site contains a discussion of the break and continue
statements, but in general their use should be avoided.

figure 3.11 The logic of a do loop

false

statement

condition
evaluated

true

A do statement executes its
loop body at least once.

key
concept

listing
3.11 continued

Please enter text (type DONE to quit):

Mary had a little lamb; its fleece was white as snow.

And everywhere that Mary went, the fleece shed all

over and made quite a mess. Little lambs do not make

good house pets.

DONE

Number of words: 34

Number of characters: 141

output

web
bonus

174 CHAPTER 3 program statements

The program Counter2 shown in Listing 3.12 uses a do loop to print the num-
bers 1 to 5, just as we did in an earlier version of this program with a while loop.

Note that the do loop begins simply with the reserved word do. The body of
the do loop continues until the while clause that contains the boolean condition
that determines whether the loop body will be executed again. Sometimes it is dif-
ficult to determine whether a line of code that begins with the reserved word
while is the beginning of a while loop or the end of a do loop.

Let’s look at another example of the do loop. The program called
ReverseNumber, shown in Listing 3.13, reads an integer from the user and
reverses its digits mathematically.

The do loop in the ReverseNumber program uses the remainder operation to
determine the digit in the 1’s position, then adds it into the reversed number, then
truncates that digit from the original number using integer division. The do loop
terminates when we run out of digits to process, which corresponds to the point
when the variable number reaches the value zero. Carefully trace the logic of this
program with a few examples to see how it works.

If you know you want to perform the body of a loop at least once, then you
probably want to use a do statement. A do loop has many of the same properties
as a while statement, so it must also be checked for termination conditions to
avoid infinite loops.

Do Statement

The do loop repeatedly executes the specified Statement as long as
the boolean Expression is true. The Statement is executed at least
once, then the Expression is evaluated to determine whether the
Statement should be executed again.

Example:

do

{

System.out.print (“Enter a word:”);

word = Keyboard.readString();

System.out.println (word);

}

while (!word.equals(“quit”));

do ()whileStatement ;Expression

3.7 the do statement 175

listing
3.12

**

// Counter2.java Author: Lewis/Loftus

//

// Demonstrates the use of a do loop.

//**

public class Counter2

{

//---

// Prints integer values from 1 to a specific limit.

//---

public static void main (String[] args)

{

final int LIMIT = 5;

int count = 0;

do

{

count = count + 1;

System.out.println (count);

}

while (count < LIMIT);

System.out.println ("Done");

}

}

1

2

3

4

5

Done

output

code175.html

176 CHAPTER 3 program statements

listing
3.13

//**

// ReverseNumber.java Author: Lewis/Loftus

//

// Demonstrates the use of a do loop.

//**

import cs1.Keyboard;

public class ReverseNumber

{

//---

// Reverses the digits of an integer mathematically.

//---

public static void main (String[] args)

{

int number, lastDigit, reverse = 0;

System.out.print ("Enter a positive integer: ");

number = Keyboard.readInt();

do

{

lastDigit = number % 10;

reverse = (reverse * 10) + lastDigit;

number = number / 10;

}

while (number > 0);

System.out.println ("That number reversed is " + reverse);

}

}

Enter a positive integer: 2846

That number reversed is 6482

output

code176.html

3.8 the for statement 177

3.8 the for statement
The while and the do statements are good to use when you don’t ini-
tially know how many times you want to execute the loop body. The
for statement is another repetition statement that is particularly well
suited for executing the body of a loop a specific number of times that
can be determined before the loop is executed.

The Counter3 program shown in Listing 3.14 once again prints the numbers
1 through 5, except this time we use a for loop to do it.

The header of a for loop contains three parts separated by semicolons. Before
the loop begins, the first part of the header, called the initialization, is executed.
The second part of the header is the boolean condition, which is evaluated
before the loop body (like the while loop). If true, the body of the loop is exe-
cuted, followed by the execution of the third part of the header, which is called
the increment. Note that the initialization part is executed only once, but the

A for statement is usually
used when a loop will be exe-
cuted a set number of times.

key
concept

For Statement

For Init For Update

The for statement repeatedly executes the specified Statement as
long as the boolean Expression is true. The For Init portion of the
header is executed only once, before the loop begins. The For Update
portion executes after each execution of Statement.

Examples:

for (int value=1; value < 25; value++)

System.out.println (value + “ squared is “ + value*value);

for (int num=40; num > 0; num-=3)

sum = sum + num;

for
For Init

;
Expression

;
For Update

)(Statement

Local Variable Declaration

Statement Expression

,

Statement Expression

,

178 CHAPTER 3 program statements

increment part is executed after each iteration of the loop. Figure 3.12 shows
this processing.

A for loop can be a bit tricky to read until you get used to it. The execution
of the code doesn’t follow a “top to bottom, left to right” reading. The increment
code executes after the body of the loop even though it is in the header.

Note how the three parts of the for loop header map to the equivalent parts
of the original Counter program that uses a while loop. The initialization por-

listing
3.14

//**

// Counter3.java Author: Lewis/Loftus

//

// Demonstrates the use of a for loop.

//**

public class Counter3

{

//---

// Prints integer values from 1 to a specific limit.

//---

public static void main (String[] args)

{

final int LIMIT = 5;

for (int count=1; count <= LIMIT; count++)

System.out.println (count);

System.out.println ("Done");

}

}

1

2

3

4

5

Done

output

code178.html

3.8 the for statement 179

tion of the for loop header is used to declare the variable count as well as to give
it an initial value. We are not required to declare a variable there, but it is com-
mon practice in situations where the variable is not needed outside of the loop.
Because count is declared in the for loop header, it exists only inside the loop
body and cannot be referenced elsewhere. The loop control variable is set up,
checked, and modified by the actions in the loop header. It can be referenced
inside the loop body, but it should not be modified except by the actions defined
in the loop header.

The increment portion of the for loop header, despite its name, could decre-
ment a value rather than increment it. For example, the following loop prints the
integer values from 100 down to 1:

for (int num = 100; num > 0; num--)

System.out.println (num);

In fact, the increment portion of the for loop can perform any calculation, not
just a simple increment or decrement. Consider the program shown in Listing
3.15, which prints multiples of a particular value up to a particular limit.

figure 3.12 The logic of a for loop

falsetrue

statement

increment

initialization

condition
evaluated

180 CHAPTER 3 program statements

listing
3.15

//**

// Multiples.java Author: Lewis/Loftus

//

// Demonstrates the use of a for loop.

//**

import cs1.Keyboard;

public class Multiples

{

//---

// Prints multiples of a user-specified number up to a user-

// specified limit.

//---

public static void main (String[] args)

{

final int PER_LINE = 5;

int value, limit, mult, count = 0;

System.out.print ("Enter a positive value: ");

value = Keyboard.readInt();

System.out.print ("Enter an upper limit: ");

limit = Keyboard.readInt();

System.out.println ();

System.out.println ("The multiples of " + value + " between " +

value + " and " + limit + " (inclusive) are:");

for (mult = value; mult <= limit; mult += value)

{

System.out.print (mult + "\t");

// Print a specific number of values per line of output

count++;

if (count % PER_LINE == 0)

System.out.println();

}

}

}

code180.html

The increment portion of the for loop in the Multiples program adds the
value entered by the user after each iteration. The number of values printed per
line is controlled by counting the values printed and then moving to the next line
whenever count is evenly divisible by the PER_LINE constant.

The Stars program in Listing 3.16 shows the use of nested for loops. The
output is a triangle shape made of asterisk characters. The outer loop executes
exactly 10 times. Each iteration of the outer loop prints one line of the output.
The inner loop performs a different number of iterations depending on the line
value controlled by the outer loop. Each iteration of the inner loop prints one star
on the current line. Writing programs that print variations on this triangle con-
figuration are included in the programming projects at the end of the chapter.

comparing loops
The three loop statements (while, do, and for) are functionally equivalent. Any
particular loop written using one type of loop can be written using either of the
other two loop types. Which type of loop we use depends on the situation.

3.8 the for statement 181

Enter a positive value: 7

Enter an upper limit: 400

The multiples of 7 between 7 and 400 (inclusive) are:

7 14 21 28 35

42 49 56 63 70

77 84 91 98 105

112 119 126 133 140

147 154 161 168 175

182 189 196 203 210

217 224 231 238 245

252 259 266 273 280

287 294 301 308 315

322 329 336 343 350

357 364 371 378 385

392 399

listing
3.15 continued

output

182 CHAPTER 3 program statements

As we mentioned earlier, the primary difference between a while loop and a
do loop is when the condition is evaluated. If we know we want to execute the
loop body at least once, a do loop is usually the better choice. The body of a

listing
3.16

//**

// Stars.java Author: Lewis/Loftus

//

// Demonstrates the use of nested for loops.

//**

public class Stars

{

//---

// Prints a triangle shape using asterisk (star) characters.

//---

public static void main (String[] args)

{

final int MAX_ROWS = 10;

for (int row = 1; row <= MAX_ROWS; row++)

{

for (int star = 1; star <= row; star++)

System.out.print ("*");

System.out.println();

}

}

}

*

**

output

code182.html

while loop, on the other hand, might not be executed at all if the condition is ini-
tially false. Therefore we say that the body of a while loop is executed zero or
more times, but the body of a do loop is executed one or more times.

A for loop is like a while loop in that the condition is evaluated before the
loop body is executed. Figure 3.13 shows the general structure of equivalent for
and while loops.

We generally use a for loop when the number of times we want to iterate
through a loop is fixed or can be easily calculated. In many situations, it is sim-
ply more convenient to separate the code that sets up and controls the loop iter-
ations inside the for loop header from the body of the loop.

3.9 program development revisited
Now that we’ve added several more programming language statements and oper-
ators to our repertoire, let’s apply them to the program development activities
that we discussed at the beginning of this chapter. Suppose an instructor wants a
program that will analyze exam scores. The initial requirements are given as fol-
lows. The program will:

◗ accept a series of test scores as input

◗ compute the average test score

◗ determine the highest and lowest test scores

◗ display the average, highest, and lowest test scores

Our first task is requirements analysis. The initial requirements raise questions
that need to be answered before we can design a suitable solution. Clarifying

3.9 program development revisited 183

figure 3.13 The general structure of equivalent for and while loops

for (initialization; condition; increment)

 statement;

initialization;

while (condition)

{

 statement;

 increment;

}

184 CHAPTER 3 program statements

requirements often involves an extended dialog with the client. The client may
very well have a clear vision about what the program should do, but this list of
requirements does not provide enough detail.

For example, how many test scores should be processed? Is this program
intended to handle a particular class size or should it handle varying size classes?
Is the input stored in a data file or should it be entered interactively? Should the
average be computed to a specific degree of accuracy? Should the output be pre-
sented in any particular format?

Let’s assume that after conferring with the client, we establish that the program
needs to handle an arbitrary number of test scores each time it is run and that the
input should be entered interactively. Furthermore, the client wants the average
presented to two decimal places, but otherwise allows us (the developer) to spec-
ify the details of the output format.

Now let’s consider some design questions. Because there is no limit to the num-
ber of grades that can be entered, how should the user indicate that there are no
more grades? We can address this situation in several possible ways. The program
could prompt the user after each grade is entered, asking if there are more grades
to process. Or the program could prompt the user initially for the total number
of grades that will be entered, then read exactly that many grades. A third option:
When prompted for a grade, the instructor could enter a sentinel value that indi-
cates that there are no more grades to be entered.

The first option requires a lot more input from the user and therefore is too
cumbersome a solution. The second option seems reasonable, but it forces the
user to have an exact count of the number of grades to enter and therefore may
not be convenient. The third option is reasonable, but before we can pick an
appropriate sentinel value to end the input, we must ask additional questions.
What is the range of valid grades? What would be an appropriate value to use as
a sentinel value? After conferring with the client again, we establish that a stu-
dent cannot receive a negative grade, therefore the use of 1 as a sentinel value in
this situation will work.

Let’s sketch out an initial algorithm for this program. The pseudocode for a
program that reads in a list of grades and computes their average might be
expressed as follows:

prompt for and read the first grade.

while (grade does not equal -1)

{

increment count.

sum = sum + grade;

prompt for and read another grade.

3.9 program development revisited 185

}

average = sum / count;

print average

This algorithm addresses only the calculation of the average grade. Now we
must refine the algorithm to compute the highest and lowest grade. Further, the
algorithm does not deal elegantly with the unusual case of entering –1 for the first
grade. We can use two variables, max and min, to keep track of the highest and
lowest scores. The augmented pseudocode is now as follows:

prompt for and read the first grade.

max = min = grade;

while (grade does not equal -1)

{

increment count.

sum = sum + grade;

if (grade > max)

max = grade;

if (grade < min)

min = grade;

prompt for and read another grade.

}

if (count is not zero)

{

average = sum / count;

print average, highest, and lowest grades

}

Having planned out an initial algorithm for the program, the implementation
can proceed. Consider the solution to this problem shown in Listing 3.17.

Let’s examine how this program accomplishes the stated requirements and cri-
tique the implementation. After the variable declarations in the main method, we
prompt the user to enter the value of the first grade. Prompts should provide
information about any special input requirements. In this case, we inform the user
that entering a value of 1 will indicate the end of the input.

The variables max and min are initially set to the first value entered. Note that
this is accomplished using chained assignments. An assignment statement returns
a value and can be used as an expression. The value returned by an assignment
statement is the value that gets assigned. Therefore, the value of grade is first
assigned to min, then that value is assigned to max. In the unusual case that no
larger or smaller grade is ever entered, the initial values of max and min will not
change.

186 CHAPTER 3 program statements

listing
3.17

//**

// ExamGrades.java Author: Lewis/Loftus

//

// Demonstrates the use of various control structures.

//**

import java.text.DecimalFormat;

import cs1.Keyboard;

public class ExamGrades

{

//---

// Computes the average, minimum, and maximum of a set of exam

// scores entered by the user.

//---

public static void main (String[] args)

{

int grade, count = 0, sum = 0, max, min;

double average;

// Get the first grade and give max and min that initial value

System.out.print ("Enter the first grade (-1 to quit): ");

grade = Keyboard.readInt();

max = min = grade;

// Read and process the rest of the grades

while (grade >= 0)

{

count++;

sum += grade;

if (grade > max)

max = grade;

else

if (grade < min)

min = grade;

System.out.print ("Enter the next grade (-1 to quit): ");

grade = Keyboard.readInt ();

}

code186.html

3.9 program development revisited 187

The while loop condition specifies that the loop body will be executed as long
as the current grade being processed is greater than zero. Therefore, in this
implementation, any negative value will indicate the end of the input, even

listing
3.17 continued

// Produce the final results

if (count == 0)

System.out.println ("No valid grades were entered.");

else

{

DecimalFormat fmt = new DecimalFormat ("0.##");

average = (double)sum / count;

System.out.println();

System.out.println ("Total number of students: " + count);

System.out.println ("Average grade: " + fmt.format(average));

System.out.println ("Highest grade: " + max);

System.out.println ("Lowest grade: " + min);

}

}

}

Enter the first grade (-1 to quit): 89

Enter the next grade (-1 to quit): 95

Enter the next grade (-1 to quit): 82

Enter the next grade (-1 to quit): 70

Enter the next grade (-1 to quit): 98

Enter the next grade (-1 to quit): 85

Enter the next grade (-1 to quit): 81

Enter the next grade (-1 to quit): 73

Enter the next grade (-1 to quit): 69

Enter the next grade (-1 to quit): 77

Enter the next grade (-1 to quit): 84

Enter the next grade (-1 to quit): 82

Enter the next grade (-1 to quit): -1

Total number of students: 12

Average grade: 82.08

Highest grade: 98

Lowest grade: 69

output

though the prompt suggests a specific value. This change is a slight variation on
the original design and ensures that no negative values will be counted as grades.

The implementation uses a nested if structure to determine if the new grade
is a candidate for the highest or lowest grade. It cannot be both, so using an else
clause is slightly more efficient. There is no need to ask whether the grade is a
minimum if we already know it was a maximum.

If at least one positive grade was entered, then count is not equal to zero after
the loop, and the else portion of the if statement is executed. The average is
computed by dividing the sum of the grades by the number of grades. Note that
the if statement prevents us from attempting to divide by zero in situations
where no valid grades are entered. As we’ve mentioned before, we want to design
robust programs that handle unexpected or erroneous input without causing a
runtime error. The solution for this problem is robust up to a point because it pro-
cesses any numeric input without a problem, but it will fail if a nonnumeric value
(like a string) is entered at the grade prompt.

Although they are not specifically related to graphics, conditionals and loops
greatly enhance our ability to generate interesting graphics.

The program called Bullseye shown in Listing 3.18 uses a loop to draw a
specific number of rings of a target. The Bullseye program uses an if statement
to alternate the colors between black and white. Note that each ring is actually
drawn as a filled circle (an oval of equal width and length). Because we draw the
circles on top of each other, the inner circles cover the inner part of the larger cir-
cles, creating the ring effect. At the end, a final red circle is drawn for the bull’s-
eye.

Listing 3.19 shows the Boxes applet, in which several randomly sized rectan-
gles are drawn in random locations. If the width of a rectangle is below a certain
thickness (5 pixels), the box is filled with the color yellow. If the height is less than
the same minimal thickness, the box is filled with the color green. Otherwise, the
box is drawn, unfilled, in white.

3.10 drawing using conditionals and loops

188 CHAPTER 3 program statements

3.10 drawing using conditionals and loops 189

listing
3.18

//**

// Bullseye.java Author: Lewis/Loftus

//

// Demonstrates the use of conditionals and loops to guide drawing.

//**

import java.applet.Applet;

import java.awt.*;

public class Bullseye extends Applet

{

//---

// Paints a bullseye target.

//---

public void paint (Graphics page)

{

final int MAX_WIDTH = 300, NUM_RINGS = 5, RING_WIDTH = 25;

int x = 0, y = 0, diameter;

setBackground (Color.cyan);

diameter = MAX_WIDTH;

page.setColor (Color.white);

for (int count = 0; count < NUM_RINGS; count++)

{

if (page.getColor() == Color.black) // alternate colors

page.setColor (Color.white);

else

page.setColor (Color.black);

page.fillOval (x, y, diameter, diameter);

diameter -= (2 * RING_WIDTH);

x += RING_WIDTH;

y += RING_WIDTH;

}

190 CHAPTER 3 program statements

listing
3.18 continued

// Draw the red bullseye in the center

page.setColor (Color.red);

page.fillOval (x, y, diameter, diameter);

}

}

display

3.10 drawing using conditionals and loops 191

listing
3.19

//**

// Boxes.java Author: Lewis/Loftus

//

// Demonstrates the use of conditionals and loops to guide drawing.

//**

import java.applet.Applet;

import java.awt.*;

import java.util.Random;

public class Boxes extends Applet

{

//---

// Paints boxes of random width and height in a random location.

// Narrow or short boxes are highlighted with a fill color.

//---

public void paint(Graphics page)

{

final int NUM_BOXES = 50, THICKNESS = 5, MAX_SIDE = 50;

final int MAX_X = 350, MAX_Y = 250;

int x, y, width, height;

setBackground (Color.black);

Random generator = new Random();

for (int count = 0; count < NUM_BOXES; count++)

{

x = generator.nextInt (MAX_X) + 1;

y = generator.nextInt (MAX_Y) + 1;

width = generator.nextInt (MAX_SIDE) + 1;

height = generator.nextInt (MAX_SIDE) + 1;

if (width <= THICKNESS) // check for narrow box

{

page.setColor (Color.yellow);

page.fillRect (x, y, width, height);

}

else

192 CHAPTER 3 program statements

listing
3.19 continued

if (height <= THICKNESS) // check for short box

{

page.setColor (Color.green);

page.fillRect (x, y, width, height);

}

else

{

page.setColor (Color.white);

page.drawRect (x, y, width, height);

}

}

}

}

display

3.10 drawing using conditionals and loops 193

Note that in the Boxes program, the color is decided before each rectangle is
drawn. In the BarHeights applet, shown in Listing 3.20, we handle the situation
differently. The goal of BarHeights is to draw 10 vertical bars of random
heights, coloring the tallest bar in red and the shortest bar in yellow.

listing
3.20

//**

// BarHeights.java Author: Lewis/Loftus

//

// Demonstrates the use of conditionals and loops to guide drawing.

//**

import java.applet.Applet;

import java.awt.*;

import java.util.Random;

public class BarHeights extends Applet

{

//---

// Paints bars of varying heights, tracking the tallest and

// shortest bars, which are redrawn in color at the end.

//---

public void paint (Graphics page)

{

final int NUM_BARS = 10, WIDTH = 30, MAX_HEIGHT = 300, GAP =9;

int tallX = 0, tallest = 0, shortX = 0, shortest = MAX_HEIGHT;

int x, height;

Random generator = new Random();

setBackground (Color.black);

page.setColor (Color.blue);

x = GAP;

for (int count = 0; count < NUM_BARS; count++)

{

height = generator.nextInt(MAX_HEIGHT) + 1;

page.fillRect (x, MAX_HEIGHT-height, WIDTH, height);

// Keep track of the tallest and shortest bars

if (height > tallest)

194 CHAPTER 3 program statements

listing
3.20 continued

{

tallX = x;

tallest = height;

}

if (height < shortest)

{

shortX = x;

shortest = height;

}

x = x + WIDTH + GAP;

}

// Redraw the tallest bar in red

page.setColor (Color.red);

page.fillRect (tallX, MAX_HEIGHT-tallest, WIDTH, tallest);

// Redraw the shortest bar in yellow

page.setColor (Color.yellow);

page.fillRect (shortX, MAX_HEIGHT-shortest, WIDTH, shortest);

}

}

In the BarHeights program, we don’t know if the bar we are about to draw
is either the tallest or the shortest because we haven’t created them all yet.
Therefore we keep track of the position of both the tallest and shortest bars as
they are drawn. After all the bars are drawn, the program goes back and redraws
these two bars in the appropriate color.

3.10 drawing using conditionals and loops 195

listing
3.20 continued

display

196 CHAPTER 3 program statements

◗ Software requirements specify what a program must accomplish.

◗ A software design specifies how a program will accomplish its require-
ments.

◗ An algorithm is a step-by-step process for solving a problem, often
expressed in pseudocode.

◗ Implementation should be the least creative of all development activities.

◗ The goal of testing is to find errors. We can never really be sure that all
errors have been found.

◗ Conditionals and loops allow us to control the flow of execution through
a method.

◗ An if statement allows a program to choose whether to execute a par-
ticular statement.

◗ Even though the compiler does not care about indentation, proper inden-
tation is important for human readability; it shows the relationship
between one statement and another.

◗ An if-else statement allows a program to do one thing if a condition is
true and another thing if the condition is false.

◗ In a nested if statement, an else clause is matched to the closest
unmatched if.

◗ A break statement is usually used at the end of each case alternative of a
switch statement to jump to the end of the switch.

◗ A switch statement could be implemented as a series of if-else state-
ments, but the switch is sometimes a more convenient and readable con-
struct.

◗ Logical operators return a boolean value and are often used to construct
sophisticated conditions.

◗ The relative order of characters in Java is defined by the Unicode charac-
ter set.

◗ The compareTo method can be used to determine the relative order of
strings. It determines lexicographic order, which does not correspond
exactly to alphabetical order.

summary of
key concepts

self-review questions 197

◗ The prefix and postfix increment and decrement operators have subtle
effects on programs because of differences in when they are evaluated.

◗ A while statement allows a program to execute the same statement multi-
ple times.

◗ We must design our programs carefully to avoid infinite loops. The body
of the loop must eventually make the loop condition false.

◗ A do statement executes its loop body at least once.

◗ A for statement is usually used when a loop will be executed a set num-
ber of times.

self-review questions
3.1 Name the four basic activities that are involved in a software devel-

opment process.

3.2 What is an algorithm? What is pseudocode?

3.3 What is meant by the flow of control through a program?

3.4 What type of conditions are conditionals and loops based on?

3.5 What are the equality operators? The relational operators?

3.6 What is a nested if statement? A nested loop?

3.7 How do block statements help us in the construction of conditionals
and loops?

3.8 What happens if a case in a switch does not end with a break
statement?

3.9 What is a truth table?

3.10 How do we compare strings for equality?

3.11 Why must we be careful when comparing floating point values for
equality?

3.12 What is an assignment operator?

3.13 What is an infinite loop? Specifically, what causes it?

3.14 Compare and contrast a while loop and a do loop.

3.15 When would we use a for loop instead of a while loop?

198 CHAPTER 3 program statements

exercises
3.1 What happens in the MinOfThree program if two or more of the

values are equal? If exactly two of the values are equal, does it mat-
ter whether the equal values are lower or higher than the third?

3.2 Write four different program statements that increment the value of
an integer variable total.

3.3 What is wrong with the following code fragment? Rewrite it so that
it produces correct output.

if (total == MAX)

if (total < sum)

System.out.println (“total == MAX and is < sum.”);

else

System.out.println (“total is not equal to MAX”);

3.4 What is wrong with the following code fragment? Will this code
compile if it is part of an otherwise valid program? Explain.

if (length = MIN_LENGTH)

System.out.println (“The length is minimal.”);

3.5 What output is produced by the following code fragment?

int num = 87, max = 25;

if (num >= max*2)

System.out.println (“apple”);

System.out.println (“orange”);

System.out.println (“pear”);

3.6 What output is produced by the following code fragment?

int limit = 100, num1 = 15, num2 = 40;

if (limit <= limit)

{

if (num1 == num2)

System.out.println (“lemon”);

System.out.println (“lime”);

}

System.out.println (“grape”);

3.7 Put the following list of strings in lexicographic order as if deter-
mined by the compareTo method of the String class. Consult the
Unicode chart in Appendix C.

exercises 199

“fred”

“Ethel”

“?-?-?-?”

“{([])}”

“Lucy”

“ricky”

“book”

“******”

“12345”

“ “

“HEPHALUMP”

“bookkeeper”

“6789”

“;+<?”

“^^^^^^^^^^”

“hephalump”

3.8 What output is produced by the following code fragment?

int num = 0, max = 20;

while (num < max)

{

System.out.println (num);

num += for;

}

3.9 What output is produced by the following code fragment?

int num = 1, max = 20;

while (num < max)

{

if (num%2 == 0)

System.out.println (num);

num++;

}

3.10 What output is produced by the following code fragment?

for (int num = 0; num <= 200; num += 2)

System.out.println (num);

200 CHAPTER 3 program statements

3.11 What output is produced by the following code fragment?

for(int val = 200; val >= 0; val -= 1)

if (val % 4 != 0)

System.out.println (val);

3.12 Transform the following while loop into an equivalent do loop
(make sure it produces the same output).

int num = 1;

while (num < 20)

{

num++;

System.out.println (num);

}

3.13 Transform the while loop from the previous exercise into an equiva-
lent for loop (make sure it produces the same output).

3.14 What is wrong with the following code fragment? What are three
distinct ways it could be changed to remove the flaw?

count = 50;

while (count >= 0)

{

System.out.println (count);

count = count + 1;

}

3.15 Write a while loop that verifies that the user enters a positive inte-
ger value.

3.16 Write a do loop that verifies that the user enters an even integer
value.

3.17 Write a code fragment that reads and prints integer values entered by
a user until a particular sentinel value (stored in SENTINEL) is
entered. Do not print the sentinel value.

3.18 Write a for loop to print the odd numbers from 1 to 99 (inclusive).

3.19 Write a for loop to print the multiples of 3 from 300 down to 3.

3.20 Write a code fragment that reads 10 integer values from the user and
prints the highest value entered.

3.21 Write a code fragment that determines and prints the number of
times the character ‘a’ appears in a String object called name.

programming projects 201

3.22 Write a code fragment that prints the characters stored in a String
object called str backward.

3.23 Write a code fragment that prints every other character in a String
object called word starting with the first character.

programming projects
3.1 Create a modified version of the Average program that prevents a

runtime error when the user immediately enters the sentinel value
(without entering any valid values).

3.2 Design and implement an application that reads an integer value rep-
resenting a year from the user. The purpose of the program is to
determine if the year is a leap year (and therefore has 29 days in
February) in the Gregorian calendar. A year is a leap year if it is
divisible by 4, unless it is also divisible by 100 but not 400. For
example, the year 2003 is not a leap year, but 2004 is. The year
1900 is not a leap year because it is divisible by 100, but the year
2000 is a leap year because even though it is divisible by 100, it is
also divisible by 400. Produce an error message for any input value
less than 1582 (the year the Gregorian calendar was adopted).

3.3 Modify the solution to the previous project so that the user can eval-
uate multiple years. Allow the user to terminate the program using
an appropriate sentinel value. Validate each input value to ensure it
is greater than or equal to 1582.

3.4 Design and implement an application that reads an integer value and
prints the sum of all even integers between 2 and the input value,
inclusive. Print an error message if the input value is less than 2.
Prompt accordingly.

3.5 Design and implement an application that reads a string from the
user and prints it one character per line.

3.6 Design and implement an application that determines and prints the
number of odd, even, and zero digits in an integer value read from
the keyboard.

3.7 Design and implement an application that produces a multiplication
table, showing the results of multiplying the integers 1 through 12
by themselves.

project201a.html
project201b.html

202 CHAPTER 3 program statements

3.8 Modify the CountWords program so that it does not include punctu-
ation characters in its character count. Hint: This requires changing
the set of delimiters used by the StringTokenizer class.

3.9 Create a revised version of the Counter2 program such that the
println statement comes before the counter increment in the body
of the loop. Make sure the program still produces the same output.

3.10 Design and implement an application that prints the first few verses
of the traveling song “One Hundred Bottles of Beer.” Use a loop
such that each iteration prints one verse. Read the number of verses
to print from the user. Validate the input. The following are the first
two verses of the song:

100 bottles of beer on the wall

100 bottles of beer

If one of those bottles should happen to fall

99 bottles of beer on the wall

99 bottles of beer on the wall

99 bottles of beer

If one of those bottles should happen to fall

98 bottles of beer on the wall

3.11 Design and implement an application that plays the Hi-Lo guessing
game with numbers. The program should pick a random number
between 1 and 100 (inclusive), then repeatedly prompt the user to
guess the number. On each guess, report to the user that he or she is
correct or that the guess is high or low. Continue accepting guesses
until the user guesses correctly or chooses to quit. Use a sentinel
value to determine whether the user wants to quit. Count the num-
ber of guesses and report that value when the user guesses correctly.
At the end of each game (by quitting or a correct guess), prompt to
determine whether the user wants to play again. Continue playing
games until the user chooses to stop.

3.12 Create a modified version of the PalindromeTester program so
that the spaces, punctuation, and changes in uppercase and lower-
case are not considered when determining whether a string is a
palindrome. Hint: These issues can be handled in several ways.
Think carefully about your design.

project202.html

programming projects 203

3.13 Create modified versions of the Stars program to print the follow-
ing patterns. Create a separate program to produce each pattern.
Hint: Parts b, c, and d require several loops, some of which print a
specific number of spaces.

a.********** b. * c.********** d. *

********* ** ********* ***

******** *** ******** *****

******* **** ******* *******

****** ***** ****** *********

***** ****** ***** *********

**** ******* **** *******

*** ******** *** *****

** ********* ** ***

* ********** * *

3.14 Design and implement an application that prints a table showing a
subset of the Unicode characters and their numeric values. Print five
number/character pairs per line, separated by tab characters. Print
the table for numeric values from 32 (the space character) to 126
(the ~ character), which corresponds to the printable ASCII subset of
the Unicode character set. Compare your output to the table in
Appendix C. Unlike the table in Appendix C, the values in your
table can increase as they go across a row.

3.15 Design and implement an application that reads a string from the
user, then determines and prints how many of each lowercase vowel
(a, e, i, o, and u) appear in the entire string. Have a separate counter
for each vowel. Also count and print the number of nonvowel char-
acters.

3.16 Design and implement an application that plays the Rock-Paper-
Scissors game against the computer. When played between two peo-
ple, each person picks one of three options (usually shown by a hand
gesture) at the same time, and a winner is determined. In the game,
Rock beats Scissors, Scissors beats Paper, and Paper beats Rock. The
program should randomly choose one of the three options (without
revealing it), then prompt for the user’s selection. At that point, the
program reveals both choices and prints a statement indicating if the
user won, the computer won, or if it was a tie. Continue playing
until the user chooses to stop, then print the number of user wins,
losses, and ties.

project203.html

204 CHAPTER 3 program statements

3.17 Design and implement an application that prints the verses of the
song “The Twelve Days of Christmas,” in which each verse adds one
line. The first two verses of the song are:

On the 1st day of Christmas my true love gave to me

A partridge in a pear tree.

On the 2nd day of Christmas my true love gave to me

Two turtle doves, and

A partridge in a pear tree.

Use a switch statement in a loop to control which lines get printed.
Hint: Order the cases carefully and avoid the break statement. Use a
separate switch statement to put the appropriate suffix on the day
number (1st, 2nd, 3rd, etc.). The final verse of the song involves all
12 days, as follows:

On the 12th day of Christmas, my true love gave to me

Twelve drummers drumming,

Eleven pipers piping,

Ten lords a leaping,

Nine ladies dancing,

Eight maids a milking,

Seven swans a swimming,

Six geese a laying,

Five golden rings,

Four calling birds,

Three French hens,

Two turtle doves, and

A partridge in a pear tree.

3.18 Design and implement an application that simulates a simple slot
machine in which three numbers between 0 and 9 are randomly
selected and printed side by side. Print an appropriate statement if
all three of the numbers are the same, or if any two of the numbers
are the same. Continue playing until the user chooses to stop.

project204.html

programming projects 205

3.19 Create a modified version of the ExamGrades program to validate
the grades entered to make sure they are in the range 0 to 100,
inclusive. Print an error message if a grade is not valid, then contin-
ue to collect grades. Continue to use the sentinel value to indicate
the end of the input, but do not print an error message when the
sentinel value is entered. Do not count an invalid grade or include it
as part of the running sum.

3.20 Design and implement an applet that draws 20 horizontal, evenly
spaced parallel lines of random length.

3.21 Design and implement an applet that draws the side view of stair
steps from the lower left to the upper right.

3.22 Design and implement an applet that draws 100 circles of random
color and random diameter in random locations. Ensure that in each
case the entire circle appears in the visible area of the applet.

3.23 Design and implement an applet that draws 10 concentric circles of
random radius.

3.24 Design and implement an applet that draws a brick wall pattern in
which each row of bricks is offset from the row above and below it.

3.25 Design and implement an applet that draws a quilt in which a simple
pattern is repeated in a grid of squares.

3.26 Design and implement an applet that draws a simple fence with ver-
tical, equally spaced slats backed by two horizontal support boards.
Behind the fence show a simple house in the background. Make sure
the house is visible between the slats in the fence.

3.27 Design and implement an applet that draws a rainbow. Use tightly
spaced concentric arcs to draw each part of the rainbow in a partic-
ular color.

3.28 Design and implement an applet that draws 20,000 points in ran-
dom locations within the visible area of the applet. Make the points
on the left half of the applet appear in red and the points on the
right half of the applet appear in green. Draw a point by drawing a
line with a length of only one pixel.

3.29 Design and implement an applet that draws 10 circles of random
radius in random locations. Fill in the largest circle in red.

206 CHAPTER 3 program statements

answers to self-review questions
3.1 The four basic activities in software development are requirements

analysis (deciding what the program should do), design (deciding
how to do it), implementation (writing the solution in source code),
and testing (validating the implementation).

3.2 An algorithm is a step-by-step process that describes the solution to
a problem. Every program can be described in algorithmic terms. An
algorithm is often expressed in pseudocode, a loose combination of
English and code-like terms used to capture the basic processing
steps informally.

3.3 The flow of control through a program determines the program
statements that will be executed on a given run of the program.

3.4 Each conditional and loop is based on a boolean condition that eval-
uates to either true or false.

3.5 The equality operators are equal (==) and not equal (!=). The rela-
tional operators are less than (<), less than or equal to (<=), greater
than (>), and greater than or equal to (>=).

3.6 A nested if occurs when the statement inside an if or else clause
is an if statement. A nested if lets the programmer make a series of
decisions. Similarly, a nested loop is a loop within a loop.

3.7 A block statement groups several statements together. We use them
to define the body of an if statement or loop when we want to do
multiple things based on the boolean condition.

3.8 If a case does not end with a break statement, processing continues
into the statements of the next case. We usually want to use break
statements in order to jump to the end of the switch.

3.9 A truth table is a table that shows all possible results of a boolean
expression, given all possible combinations of variables and condi-
tions.

3.10 We compare strings for equality using the equals method of the
String class, which returns a boolean result. The compareTo
method of the String class can also be used to compare strings. It
returns a positive, 0, or negative integer result depending on the rela-
tionship between the two strings.

3.11 Because they are stored internally as binary numbers, comparing
floating point values for exact equality will be true only if they are

answers to self-review questions 207

the same bit-by-bit. It’s better to use a reasonable tolerance value
and consider the difference between the two values.

3.12 An assignment operator combines an operation with assignment. For
example, the += operator performs an addition, then stores the value
back into the variable on the right-hand side.

3.13 An infinite loop is a repetition statement that never terminates.
Specifically, the body of the loop never causes the condition to
become false.

3.14 A while loop evaluates the condition first. If it is true, it executes
the loop body. The do loop executes the body first and then evalu-
ates the condition. Therefore the body of a while loop is executed
zero or more times, and the body of a do loop is executed one or
more times.

3.15 A for loop is usually used when we know, or can calculate, how
many times we want to iterate through the loop body. A while loop
handles a more generic situation.

statements. With that experience

as a foundation, we are now

ready to design more complex

software by creating our own

classes to define objects that per-

form whatever services we

define. This chapter explores the

details of class definitions,

including the structure and

semantics of methods and the

scope and encapsulation of data.

◗ Define classes that serve as blue-
prints for new objects, composed
of variables and methods.

◗ Explain the advantages of encapsu-
lation and the use of Java modifiers
to accomplish it.

◗ Explore the details of method
declarations.

◗ Revisit the concepts of method
invocation and parameter passing.

◗ Explain and use method overload-
ing to create versatile classes.

◗ Demonstrate the usefulness of
method decomposition.

◗ Describe various relationships
between objects.

◗ Create graphics-based objects.

chapter
objectives

In Chapters 2 and 3 we used objects and classes
for the various services they provide. We also

explored several fundamental programming

4
writing classes

210 CHAPTER 4 writing classes

4.0 objects revisited
Throughout Chapters 2 and 3 we created objects from classes in the Java stan-
dard class library in order to use the particular services they provide. We didn’t
need to know the details of how the classes did their jobs; we simply trusted them
to do so. That, as we have discussed previously, is one of the advantages of
abstraction. Now, however, we are ready to turn our attention to writing our own
classes.

First, let’s revisit the concept of an object and explore it in more detail. Think
about objects in the world around you. How would you describe them? Let’s use
a ball as an example. A ball has particular characteristics such as its diameter,
color, and elasticity. Formally, we say the properties that describe an object, called
attributes, define the object’s state of being. We also describe a ball by what it
does, such as the fact that it can be thrown, bounced, or rolled. These activities
define the object’s behavior.

All objects have a state and a set of behaviors. We can represent these charac-
teristics in software objects as well. The values of an object’s variables describe

the object’s state, and the methods that can be invoked using the object
define the object’s behaviors.

Consider a computer game that uses a ball. The ball could be repre-
sented as an object. It could have variables to store its size and location,
and methods that draw it on the screen and calculate how it moves
when thrown, bounced, or rolled. The variables and methods defined
in the ball object establish the state and behavior that are relevant to
the ball’s use in the computerized ball game.

Each object has its own state. Each ball object has a particular location, for
instance, which typically is different from the location of all other balls..
Behaviors, though, tend to apply to all objects of a particular type. For instance,
in general, any ball can be thrown, bounced, or rolled. The act of rolling a ball is
generally the same for all balls.

The state of an object and that object’s behaviors work together. How high a
ball bounces depends on its elasticity. The action is the same, but the specific
result depends on that particular object’s state. An object’s behavior often modi-
fies its state. For example, when a ball is rolled, its location changes.

Any object can be described in terms of its state and behavior. Let’s consider
another example. In software that is used to manage a university, a student could
be represented as an object. The collection of all such objects represents the entire
student body at the university. Each student has a state. That is, each student
object would contain the variables that store information about a particular stu-

Each object has a state and a
set of behaviors. The values of
an object’s variables define its
state and the methods to
which an object responds
define its behaviors.

ke
y

co
nc

ep
t

4.0 objects revisited 211

dent, such as name, address, major, courses taken, grades, and grade point aver-
age. A student object also has behaviors. For example, the class of the student
object may contain a method to add a new course.

Although software objects often represent tangible items, they don’t have to.
For example, an error message can be an object, with its state being the text of
the message and behaviors, including the process of issuing (printing) the error. A
common mistake made by new programmers to the world of object-orientation
is to limit the possibilities to tangible entities.

classes
An object is defined by a class. A class is the model, pattern, or blueprint from
which an object is created. Consider the blueprint created by an architect when
designing a house. The blueprint defines the important characteristics of the
house—its walls, windows, doors, electrical outlets, and so on. Once the blue-
print is created, several houses can be built using it, as depicted in Fig. 4.1.

In one sense, the houses built from the blueprint are different. They are in dif-
ferent locations, they have different addresses, contain different furniture, and
different people live in them. Yet in many ways they are the “same” house. The
layout of the rooms and other crucial characteristics are the same in each. To cre-
ate a different house, we would need a different blueprint.

figure 4.1 A house blueprint and three houses created from it

A class is a blueprint of an object. However, a class is not an object
any more than a blueprint is a house. In general, no space to store data
values is reserved in a class. To allocate space to store data values, we
must instantiate one or more objects from the class. (We discuss the
exception to this rule in the next chapter.) Each object is an instance of
a class. Each object has space for its own data, which is why each object
can have its own state.

4.1 anatomy of a class
A class contains the declarations of the data that will be stored in each instat-
ntiated object and the declarations of the methods that can be invoked using an
object. Collectively these are called the members of the class, as shown in Fig. 4.2.

Consider the CountFlips program shown in Listing 4.1. It uses an object that
represents a coin that can be flipped to get a random result of “heads” or “tails.”
The CountFlips program simulates the flipping of a coin 500 times to see how
often it comes up heads or tails. The myCoin object is instantiated from a class
called Coin.

Listing 4.2 shows the Coin class used by the CountFlips program. A class,
and therefore any object created from it, is composed of data values (variables

212 CHAPTER 4 writing classes

A class is a blueprint of an
object; it reserves no memory
space for data. Each object has
its own data space, thus its
own state.

ke
y

co
nc

ep
t

figure 4.2 The members of a class: data and method declarations

int x, y, diameter;
character type;
double elasticity;

Data
declarations

Method
declarations

4.1 anatomy of a class 213

listing
4.1

//**

// CountFlips.java Author: Lewis/Loftus

//

// Demonstrates the use of a programmer-defined class.

//**

public class CountFlips

{

//---

// Flips a coin multiple times and counts the number of heads

// and tails that result.

//---

public static void main (String[] args)

{

final int NUM_FLIPS = 1000;

int heads = 0, tails = 0;

Coin myCoin = new Coin(); // instantiate the Coin object

for (int count=1; count <= NUM_FLIPS; count++)

{

myCoin.flip();

if (myCoin.isHeads())

heads++;

else

tails++;

}

System.out.println ("The number flips: " + NUM_FLIPS);

System.out.println ("The number of heads: " + heads);

System.out.println ("The number of tails: " + tails);

}

}

The number flips: 1000

The number of heads: 486

The number of tails: 514

output

code213.html

214 CHAPTER 4 writing classes

and constants) and methods. In the Coin class, we have two integer constants,
HEADS and TAILS, and one integer variable, face. The rest of the Coin class is
composed of the Coin constructor and three regular methods: flip, isHeads,
and toString.

You will recall from Chapter 2 that constructors are special methods that have
the same name as the class. The Coin constructor gets called when the new opera-

listing
4.2

//**

// Coin.java Author: Lewis/Loftus

//

// Represents a coin with two sides that can be flipped.

//**

import java.util.Random;

public class Coin

{

private final int HEADS = 0;

private final int TAILS = 1;

private int face;

//---

// Sets up the coin by flipping it initially.

//---

public Coin ()

{

flip();

}

//---

// Flips the coin by randomly choosing a face value.

//---

public void flip ()

{

face = (int) (Math.random() * 2);

}

//---

// Returns true if the current face of the coin is heads.

//---

code214.html

4.1 anatomy of a class 215

tor is used to create a new instance of the Coin class. The rest of the methods in
the Coin class define the various services provided by Coin objects.

Note that a header block of documentation is used to explain the purpose of
each method in the class. This practice is not only crucial for anyone trying to
understand the software, it also separates the code visually so that it’s easy
to jump visually from one method to the next while reading the code. The defi-
nitions of these methods have various parts, and we’ll dissect them in later sec-
tions of this chapter.

Figure 4.3 lists the services defined in the Coin class. From this point of view,
it looks no different from any other class that we’ve used in previous examples.
The only important difference is that the Coin class was not provided for us by
the Java standard class library. We wrote it ourselves.

For the examples in this book, we generally store each class in its own file. Java
allows multiple classes to be stored in one file. If a file contains multiple classes,
only one of those classes can be declared using the reserved word public.
Furthermore, the name of the public class must correspond to the name of the
file. For instance, class Coin is stored in a file called Coin.java.

listing
4.2 continued

public boolean isHeads ()

{

return (face == HEADS);

}

//---

// Returns the current face of the coin as a string.

//---

public String toString()

{

String faceName;

if (face == HEADS)

faceName = "Heads";

else

faceName = "Tails";

return faceName;

}

}

216 CHAPTER 4 writing classes

instance data
Note that in the Coin class, the constants HEADS and TAILS and the
variable face are declared inside the class, but not inside any method.
The location at which a variable is declared defines its scope, which is
the area within a program in which that variable can be referenced. By
being declared at the class level (not within a method), these variables
and constants can be referenced in any method of the class.

Attributes such as the variable face are also called instance data because mem-
ory space is created for each instance of the class that is created. Each Coin
object, for example, has its own face variable with its own data space. Therefore
at any point in time, two Coin objects can have their own states: one can be
showing heads and the other can be showing tails, for instance.

The program FlipRace shown in Listing 4.3 declares two Coin objects. They
are used in a race to see which coin will flip first to three heads in a row.

The output of the FlipRace program shows the results of each coin flip on
each turn. The object reference variables, coin1 and coin2, are used in the
println statement. When an object is used as an operand of the string concate-
nation operator (+), that object’s toString method is automatically called to get
a string representation of the object. The toString method is also called if an
object is sent to a print or println method by itself. If no toString method is
defined for a particular class, a default version is called that returns a string that
contains the name of the class, together with other information. It is usually a
good idea to define a specific toString method for a class.

We have now used the same class, Coin, to create objects in two separate pro-
grams (CountFlips and FlipRace). This is no different from using the String
class in whatever program we need it. When designing a class, it is always good

figure 4.3 Some methods of the Coin class

Coin ()

Constructor: sets up a new Coin object with a random initial face.

void flip ()

Flips the coin.

boolean isHeads ()

Returns true if the current face of the coin shows heads.

String toString ()

Returns a string describing the current face of the coin.

The scope of a variable, which
determines where it can be ref-
erenced, depends on where it
is declared.

ke
y

co
nc

ep
t

4.1 anatomy of a class 217

listing
4.3

//**

// FlipRace.java Author: Lewis/Loftus

//

// Demonstrates the existence of separate data space in multiple

// instantiations of a programmer-defined class.

//**

public class FlipRace

{

//---

// Flips two coins until one of them comes up heads three times

// in a row.

//---

public static void main (String[] args)

{

final int GOAL = 3;

int count1 = 0, count2 = 0;

// Create two separate coin objects

Coin coin1 = new Coin();

Coin coin2 = new Coin();

while (count1 < GOAL && count2 < GOAL)

{

coin1.flip();

coin2.flip();

// Print the flip results (uses Coin's toString method)

System.out.print ("Coin 1: " + coin1);

System.out.println (" Coin 2: " + coin2);

// Increment or reset the counters

count1 = (coin1.isHeads()) ? count1+1 : 0;

count2 = (coin2.isHeads()) ? count2+1 : 0;

}

// Determine the winner

if (count1 < GOAL)

System.out.println ("Coin 2 Wins!");

else

if (count2 < GOAL)

System.out.println ("Coin 1 Wins!");

code217.html

218 CHAPTER 4 writing classes

to look to the future to try to give the class behaviors that may be beneficial in
other programs, not just fit the specific purpose for which you are creating it at
the moment.

Java automatically initializes any variables declared at the class level. For
example, all variables of numeric types such as int and double are initialized to
zero. However, despite the fact that the language performs this automatic initial-
ization, it is good practice to initialize variables explicitly (usually in a construc-
tor) so that anyone reading the code will clearly understand the intent.

UML diagrams
Throughout this book, we use UML diagrams to visualize relationships among
classes and objects. UML stands for the Unified Modeling Language. Several
types of UML diagrams exist, each designed to show specific aspects of object-
oriented program design.

A UML class diagram consists of one or more classes, each with sections for
the class name, attributes, and methods. Figure 4.4 depicts an example showing
classes of the FlipRace program. Depending on the goal of the diagram, the
attribute and/or method sections can be left out of any class.

listing
4.3 continued

else

System.out.println ("It's a TIE!");

}

}

Coin 1: Heads Coin 2: Tails

Coin 1: Heads Coin 2: Tails

Coin 1: Tails Coin 2: Heads

Coin 1: Tails Coin 2: Heads

Coin 1: Heads Coin 2: Tails

Coin 1: Tails Coin 2: Heads

Coin 1: Heads Coin 2: Tails

Coin 1: Heads Coin 2: Heads

Coin 1: Heads Coin 2: Tails

Coin 1 Wins!

output

4.1 anatomy of a class 219

The line connecting the FlipRace and Coin classes in Fig. 4.4 indicates that a
relationship exists between the classes. This simple line represents a basic associ-
ation, meaning that the classes are generally aware of each other within the pro-
gram; that one may refer to and make use of the other. An association can show
multiplicity, as this one does by annotating the connection with numeric values.
In this case, it indicates that FlipRace is associated with exactly two Coin
objects.

UML diagrams always show the type of an attribute, parameter, and the return
value of a method after the attribute name, parameter name, or method header
(separated by a colon). This may seem somewhat backward given that types in
Java are generally shown before the entity of that type. We must keep in mind
that UML is not designed specifically for Java programmers. It is intended to be
language independent. UML has become the most popular notation in the world
for the design of object-oriented software.

A UML object diagram consists of one or more instantiated objects. An object
diagram is a snapshot of the objects at a given point in the executing program.
For example, Fig. 4.5 shows the two Coin objects of the FlipRace program.

The notation for an object is similar to that for a class. However, the contents
of the first section are underlined and often include the name of a specific object
in addition to the class name. Another important difference between the notation
of a class and an object is that the attributes shown in the second section of an
object are shown with their current value. Because objects of the same class
respond to the same methods, the third section is often left out.

figure 4.4 A UML class diagram showing the classes
involved in the FlipRace program

main (args : String[]) : void
face : int

flip() : void
isHeads() : boolean
toString() : String

CoinFlipRace

1 2

220 CHAPTER 4 writing classes

We should keep in mind that UML notation is not intended to describe a pro-
gram after it is written. It’s primarily a language-independent mechanism for
visualizing and capturing the design of a program before it is written.

As we develop larger programs consisting of multiple classes and
objects, UML diagrams will help us visualize them. UML diagrams
have additional notations that represent various other program entities
and relationships. We will explore new aspects of UML diagrams as the
situation dictates.

encapsulation and visibility modifiers
We can think about an object in one of two ways. The view we take depends on
what we are trying to accomplish at the moment. First, when we are designing
and implementing an object, we need to think about the details of how an object
works. That is, we have to design the class—we have to define the variables that
will be held in the object and write the methods that make the object useful.

However, when we are designing a solution to a larger problem, we have to
think in terms of how the objects in the program interact. At that level, we have
to think only about the services that an object provides, not the details of how
those services are provided. As we discussed in Chapter 2, an object provides a
level of abstraction that allows us to focus on the larger picture when we need to.

This abstraction works only if we are careful to respect its boundaries. An
object should be self-governing, which means that the variables contained in
an object should be modified only within the object. Only the methods within an

figure 4.5 A UML object diagram showing the
Coin objects of the FlipRace program

face = 0

coin1 : Coin

face = 1

coin2 : Coin

A UML diagram is a software
design tool that helps us visu-
alize the classes and objects of
a program and the relation-
ships among them.

ke
y

co
nc

ep
t

4.1 anatomy of a class 221

object should have access to the variables in that object. For example, the meth-
ods of the Coin class should be solely responsible for changing the value of the
face variable. We should make it difficult, if not impossible, for code outside of
a class to “reach in” and change the value of a variable that is declared inside the
class.

In Chapter 2 we mentioned that the object-oriented term for this
characteristic is encapsulation. An object should be encapsulated from
the rest of the system. It should interact with other parts of a program
only through the specific set of methods that define the services that
that object provides. These methods define the interface between that
object and the program that uses it.

Encapsulation is depicted graphically in Fig. 4.6. The code that uses an object,
sometimes called the client of an object, should not be allowed to access variables
directly. The client should interact with the object’s methods, and those methods
then interact with the data encapsulated within the object. For example, the main
method in the CountFlips program calls the flip and isHeads methods of the
myCoin object. The main method should not (and in fact cannot) access the face
variable directly.

In Java, we accomplish object encapsulation using modifiers. A modifier is a
Java reserved word that is used to specify particular characteristics of a program-
ming language construct. We’ve already seen one modifier, final, which we use
to declare a constant. Java has several modifiers that can be used in various ways.
Some modifiers can be used together, but some combinations are invalid. We dis-
cuss various Java modifiers at appropriate points throughout this book, and all
of them are summarized in Appendix F.

Objects should be encapsu-
lated. The rest of a program
should interact with an object
only through a well-defined
interface.

key
concept

figure 4.6 A client interacting with the methods of an object

object

Client

Data

Methods

222 CHAPTER 4 writing classes

Some Java modifiers are called visibility modifiers because they control access
to the members of a class. The reserved words public and private are visibility
modifiers that can be applied to the variables and methods of a class. If a mem-
ber of a class has public visibility, it can be directly referenced from outside of the
object. If a member of a class has private visibility, it can be used anywhere inside
the class definition but cannot be referenced externally. A third visibility modifier,
protected, is relevant only in the context of inheritance. We discuss it in
Chapter 7.

Public variables violate encapsulation. They allow code external to the class in
which the data is defined to reach in and access or modify the value of the data.
Therefore instance data should be defined with private visibility. Data that is
declared as private can be accessed only by the methods of the class, which
makes the objects created from that class self-governing. The visibility we apply
to a method depends on the purpose of that method. Methods that provide serv-
ices to the client of the class must be declared with public visibility so that they

can be invoked by the client. These methods are sometimes referred to
as service methods. A private method cannot be invoked from outside
the class. The only purpose of a private method is to help the other
methods of the class do their job. Therefore they are sometimes referred
to as support methods. We discuss an example that makes use of sev-
eral support methods later in this chapter.

The table in Fig. 4.7 summarizes the effects of public and private visibility on
both variables and methods.

Instance variables should be
declared with private visibility
to promote encapsulation.

figure 4.7 The effects of public and private visibility

Violate
encapsulation

Provide services
to clients

Support other
methods in the

class

Enforce
encapsulationVariables

Methods

public private

ke
y

co
nc

ep
t

Note that a client can still access or modify private data by invoking service
methods that change the data. For example, although the main method of the
FlipRace class cannot directly access the face variable, it can invoke the flip
service method, which sets the value of face. A class must provide service meth-
ods for valid client operations. The code of those methods must be carefully
designed to permit only appropriate access and valid changes.

Giving constants public visibility is generally considered acceptable because,
although their values can be accessed directly, they cannot be changed because they
were declared using the final modifier. Keep in mind that encapsulation means
that data values should not be able to be changed directly by another part of the
code. Because constants, by definition, cannot be changed, the encapsulation issue
is largely moot. If we had thought it important to provide external access to the val-
ues of the constants HEADS and TAILS in the Coin class, we could have declared
them with public visibility without violating the principle of encapsulation.

UML diagrams reflect the visibility of a class member with special notations.
A member with public visibility is preceded by a plus sign (+), and a member with
private visibility is preceded by a minus sign (-). We’ll see these notations used in
the next example.

4.2 anatomy of a method
We’ve seen that a class is composed of data declarations and method declarations.
Let’s examine method declarations in more detail.

As we stated in Chapter 1, a method is a group of programming language
statements that is given a name. Every method in a Java program is part of a par-
ticular class. A method declaration specifies the code that is executed when the
method is invoked.

When a method is called, the flow of control transfers to that method. One by
one, the statements of that method are executed. When that method is done, con-
trol returns to the location where the call was made and execution continues. A
method that is called might be part of the same object (defined in the same class)
as the method that invoked it, or it might be part of a different object. If the called
method is part of the same object, only the method name is needed to invoke it.
If it is part of a different object, it is invoked through that object’s name, as we’ve
seen many times. Figure 4.8 presents this process.

4.2 anatomy of a method 223

224 CHAPTER 4 writing classes

figure 4.8 The flow of control following method invocations

obj.doThis();

helpMe();

main

doThis helpMe

Method Declaration

Parameters

A method is defined by optional modifiers, followed by a return Type, followed
by an Identifier that determines the method name, followed by a list of Parameters,
followed by the Method Body. The return Type indicates the type of value that will
be returned by the method, which may be void. The Method Body is a block of
statements that executes when the method is invoked. The Throws Clause is
optional and indicates the exceptions that may be thrown by this method.

Example:

public void instructions (int count)

{

System.out.println (“Follow all instructions.”);

System.out.println (“Use no more than “ + count +

“ turns.”);

}

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

()

IdentifierType

,

4.2 anatomy of a method 225

We’ve defined the main method of a program many times in previous exam-
ples. Its definition follows the same syntax as all methods. The header of a
method includes the type of the return value, the method name, and a list of
parameters that the method accepts. The statements that make up the body of the
method are defined in a block delimited by braces.

Let’s look at another example as we explore the details of method declarations.
The Banking class shown in Listing 4.4 contains a main method that creates a
few Account objects and invokes their services. The Banking program doesn’t
really do anything useful except demonstrate how to interact with Account
objects. Such programs are often called driver programs because all they do is
drive the use of other, more interesting parts of our program. They are often used
for testing purposes.

The Account class represents a basic bank account and is shown in Listing 4.5.
It contains data values important to the management of a bank account: the
account number, the balance, and the name of the account’s owner. The interest
rate is stored as a constant.

Figure 4.9 shows an object diagram for the Banking program. Note the use
of the minus signs in front of the attributes to indicate that they have private
visibility.

The methods of the Account class perform various services on a bank account,
such as making deposits and withdrawals. Checks are made to ensure that the
data used for the services are valid, such as preventing the withdrawal of a nega-
tive amount (which would essentially be a deposit). We explore the methods of
the Account class in detail in the following sections.

the return statement
The return type specified in the method header can be a primitive type, class
name, or the reserved word void. When a method does not return any value,
void is used as the return type, as is always done with the main method.

A method that returns a value must have a return statement. When
a return statement is executed, control is immediately returned to the
statement in the calling method, and processing continues there. A
return statement consists of the reserved word return followed by an
expression that dictates the value to be returned. The expression must
be consistent with the return type in the method header.

A method must return a value
consistent with the return type
specified in the method header.

key
concept

226 CHAPTER 4 writing classes

listing
4.4

//**

// Banking.java Author: Lewis/Loftus

//

// Driver to exercise the use of multiple Account objects.

//**

public class Banking

{

//---

// Creates some bank accounts and requests various services.

//---

public static void main (String[] args)

{

Account acct1 = new Account ("Ted Murphy", 72354, 102.56);

Account acct2 = new Account ("Jane Smith", 69713, 40.00);

Account acct3 = new Account ("Edward Demsey", 93757, 759.32);

acct1.deposit (25.85);

double smithBalance = acct2.deposit (500.00);

System.out.println ("Smith balance after deposit: " +

smithBalance);

System.out.println ("Smith balance after withdrawal: " +

acct2.withdraw (430.75, 1.50));

acct3.withdraw (800.00, 0.0); // exceeds balance

acct1.addInterest();

acct2.addInterest();

acct3.addInterest();

System.out.println ();

System.out.println (acct1);

System.out.println (acct2);

System.out.println (acct3);

}

}

code226.html

4.2 anatomy of a method 227

//**

// Account.java Author: Lewis/Loftus

//

// Represents a bank account with basic services such as deposit

// and withdraw.

//**

import java.text.NumberFormat;

public class Account

{

private NumberFormat fmt = NumberFormat.getCurrencyInstance();

private final double RATE = 0.035; // interest rate of 3.5%

private long acctNumber;

private double balance;

private String name;

//---

// Sets up the account by defining its owner, account number,

// and initial balance.

//---

public Account (String owner, long account, double initial)

listing
4.4 continued

Smith balance after deposit: 540.0

Smith balance after withdrawal: 107.75

Error: Insufficient funds.

Account: 93757

Requested: $800.00

Available: $759.32

72354 Ted Murphy $132.90

69713 Jane Smith $111.52

93757 Edward Demsey $785.90

output

listing
4.5

code227.html

228 CHAPTER 4 writing classes

listing
4.5 continued

{

name = owner;

acctNumber = account;

balance = initial;

}

//---

// Validates the transaction, then deposits the specified amount

// into the account. Returns the new balance.

//---

public double deposit (double amount)

{

if (amount < 0) // deposit value is negative

{

System.out.println ();

System.out.println ("Error: Deposit amount is invalid.");

System.out.println (acctNumber + " " + fmt.format(amount));

}

else

balance = balance + amount;

return balance;

}

//---

// Validates the transaction, then withdraws the specified amount

// from the account. Returns the new balance.

//---

public double withdraw (double amount, double fee)

{

amount += fee;

if (amount < 0) // withdraw value is negative

{

System.out.println ();

System.out.println ("Error: Withdraw amount is invalid.");

System.out.println ("Account: " + acctNumber);

System.out.println ("Requested: " + fmt.format(amount));

}

else

if (amount > balance) // withdraw value exceeds balance

{

System.out.println ();

System.out.println ("Error: Insufficient funds.");

4.2 anatomy of a method 229

listing
4.5 continued

System.out.println ("Account: " + acctNumber);

System.out.println ("Requested: " + fmt.format(amount));

System.out.println ("Available: " + fmt.format(balance));

}

else

balance = balance - amount;

return balance;

}

//---

// Adds interest to the account and returns the new balance.

//---

public double addInterest ()

{

balance += (balance * RATE);

return balance;

}

//---

// Returns the current balance of the account.

//---

public double getBalance ()

{

return balance;

}

//---

// Returns the account number.

//---

public long getAccountNumber ()

{

return acctNumber;

}

//---

// Returns a one-line description of the account as a string.

//---

public String toString ()

{

return (acctNumber + "\t" + name + "\t" + fmt.format(balance));

}

}

230 CHAPTER 4 writing classes

A method that does not return a value does not usually contain a return state-
ment. The method automatically returns to the calling method when the end of
the method is reached. A method with a void return type may, however, contain
a return statement without an expression.

It is usually not good practice to use more than one return statement in a
method, even though it is possible to do so. In general, a method should have one
return statement as the last line of the method body, unless that makes the
method overly complex.

Return Statement

A return statement consists of the return reserved word followed
by an optional Expression. When executed, control is immediately
returned to the calling method, returning the value defined by
Expression.

Examples:

return;

return (distance * 4);

return

Expression

;

figure 4.9 A UML object diagram showing the objects
of the Banking program

– name = "Ted Murphy"
– acctNumber = 72354
– balance = 102.56

acct1 : Account

– name = "Jane Smith"
– acctNumber = 69713
– balance = 40.00

acct2 : Account

– name = "Edward Demsey"
– acctNumber = 93757
– balance = 759.32

acct3 : Account

4.2 anatomy of a method 231

Many of the methods of the Account class return a double that represents the
balance of the account. Constructors do not have a return type at all (not even
void), and therefore cannot have a return statement. We discuss constructors in
more detail in a later section.

Note that a return value can be ignored when the invocation is made. In the
main method of the Banking class, sometimes the value that is returned by a
method is used in some way, and in other cases the value returned is simply ignored.

parameters
As we defined in Chapter 2, a parameter is a value that is passed into a method
when it is invoked. The parameter list in the header of a method specifies the
types of the values that are passed and the names by which the called method will
refer to those values.

The names of the parameters in the header of the method declaration are called
formal parameters. In an invocation, the values passed into a method are called
actual parameters. A method invocation and definition always give the parame-
ter list in parentheses after the method name. If there are no parameters, an empty
set of parentheses is used.

The formal parameters are identifiers that serve as variables inside
the method and whose initial values come from the actual parameters
in the invocation. Sometimes they are called automatic variables.
When a method is called, the value in each actual parameter is copied
and stored in the corresponding formal parameter. Actual parameters
can be literals, variables, or full expressions. If an expression is used as
an actual parameter, it is fully evaluated before the method call and the result
passed as the parameter.

The parameter lists in the invocation and the method declaration must match
up. That is, the value of the first actual parameter is copied into the first formal
parameter, the second actual parameter into the second formal parameter, and so
on as shown in Fig. 4.10. The types of the actual parameters must be consistent
with the specified types of the formal parameters.

The deposit method of the Account class, for instance, takes one formal
parameter called amount of type double representing the amount to be deposited
into the account. Each time the method is invoked in the main method of the
Banking class, one literal value of type double is passed as an actual parameter.
In the case of the withdraw method, two parameters of type double are
expected. The types and number of parameters must be consistent or the compiler
will issue an error message.

When a method is called, the
actual parameters are copied
into the formal parameters.
The types of the corresponding
parameters must match.

key
concept

232 CHAPTER 4 writing classes

Constructors can also take parameters, as we discuss in the next section. We
discuss parameter passing in more detail in Chapter 5.

constructors
As we stated in Chapter 2, a constructor is similar to a method that is invoked
when an object is instantiated. When we define a class, we usually define a con-
structor to help us set up the class. In particular, we often use a constructor to ini-
tialize the variables associated with each object.

A constructor differs from a regular method in two ways. First, the name of a
constructor is the same name as the class. Therefore the name of the constructor
in the Coin class is Coin, and the name of the constructor of the Account class
is Account. Second, a constructor cannot return a value and does not have a
return type specified in the method header.

A common mistake made by programmers is to put a void return
type on a constructor. As far as the compiler is concerned, putting any
return type on a constructor, even void, turns it into a regular method
that happens to have the same name as the class. As such, it cannot be
invoked as a constructor. This leads to error messages that are some-
times difficult to decipher.

A constructor is generally used to initialize the newly instantiated object. For
instance, the constructor of the Coin class calls the flip method initially to deter-
mine the face value of the coin. The constructor of the Account class explicitly
sets the values of the instance variables to the values passed in as parameters to
the constructor.

A constructor cannot have any
return type, even void.ke

y
co

nc
ep

t

figure 4.10 Passing parameters from the method
invocation to the declaration

M
et

ho
d

In
vo

ca
tio

n
M

et
ho

d
D

ec
la

ra
tio

n

ch = obj.calc (25, count, "Hello");

char calc (int numl, int num2, String message)
{
 int sum = numl + num2;
 char result = message.charAt (sum);
 return result;
}

We don’t have to define a constructor for every class. Each class has a default
constructor that takes no parameters and is used if we don’t provide our own.
This default constructor generally has no effect on the newly created object.

local data
As we described earlier in this chapter, the scope of a variable (or constant) is the
part of a program in which a valid reference to that variable can be made. A vari-
able can be declared inside a method, making it local data as opposed to instance
data. Recall that instance data is declared in a class but not inside any particular
method. Local data has scope limited to only the method in which it is declared.
The faceName variable declared in the toString method of the Coin
class is local data. Any reference to faceName in any other method of
the Coin class would cause the compiler to issue an error message. A
local variable simply does not exist outside of the method in which it is
declared. Instance data, declared at the class level, has a scope of the
entire class; any method of the class can refer to it.

Because local data and instance data operate at different levels of scope, it’s
possible to declare a local variable inside a method using the same name as an
instance variable declared at the class level. Referring to that name in the method
will reference the local version of the variable. This naming practice obviously has
the potential to confuse anyone reading the code, so it should be avoided.

The formal parameter names in a method header serve as local data for that
method. They don’t exist until the method is called, and they cease to exist when
the method is exited. For example, although amount is the name of the formal
parameter in both the deposit and withdraw method of the Account class, each
is a separate piece of local data that doesn’t exist until the method is invoked.

4.3 method overloading
As we’ve discussed, when a method is invoked, the flow of control transfers to
the code that defines the method. After the method has been executed, control
returns to the location of the call, and processing continues.

Often the method name is sufficient to indicate which method is being called
by a specific invocation. But in Java, as in other object-oriented languages, you
can use the same method name with different parameter lists for multiple meth-
ods. This technique is called method overloading. It is useful when you need to
perform similar methods on different types of data.

A variable declared in a
method is local to that method
and cannot be used outside
of it.

4.3 method overloading 233
key

concept

234 CHAPTER 4 writing classes

The compiler must still be able to associate each invocation to a spe-
cific method declaration. If the method name for two or more methods
is the same, then additional information is used to uniquely identify the
version that is being invoked. In Java, a method name can be used for
multiple methods as long as the number of parameters, the types of
those parameters, and/or the order of the types of parameters is dis-

tinct. A method’s name along with the number, type, and order of its parameters
is called the method’s signature. The compiler uses the complete method signa-
ture to bind a method invocation to the appropriate definition.

The compiler must be able to examine a method invocation, including the
parameter list, to determine which specific method is being invoked. If you
attempt to specify two method names with the same signature, the compiler will
issue an appropriate error message and will not create an executable program.
There can be no ambiguity.

Note that the return type of a method is not part of the method signature. That
is, two overloaded methods cannot differ only by their return type. This is
because the value returned by a method can be ignored by the invocation. The
compiler would not be able to distinguish which version of an overloaded method
is being referenced in such situations.

The println method is an example of a method that is overloaded several
times, each accepting a single type. The following is a partial list of its various sig-
natures:

◗ println (String s)

◗ println (int i)

◗ println (double d)

◗ println (char c)

◗ println (boolean b)

The following two lines of code actually invoke different methods that have
the same name:

System.out.println (“The total number of students is: “);

System.out.println (count);

The first line invokes the println that accepts a string. The second line, assum-
ing count is an integer variable, invokes the version of println that accepts an
integer.

The versions of an overloaded
method are distinguished by
their signature, which is the
number, type, and order of the
parameters.

ke
y

co
nc

ep
t

4.4 method decomposition 235

We often use a println statement that prints several distinct types, such as:

System.out.println (“The total number of students is: “ +

count);

In this case, the plus sign is the string concatenation operator. First, the value in
the variable count is converted to a string representation, then the two strings are
concatenated into one longer string, and finally the definition of println that
accepts a single string is invoked.

Constructors are a primary candidate for overloading. By providing multiple
versions of a constructor, we provide several ways to set up an object. For exam-
ple, the SnakeEyes program shown in Listing 4.6 instantiates two Die objects
and initializes them using different constructors.

The purpose of the program is to roll the dice and count the number of times
both dice show a 1 on the same throw (snake eyes). In this case, however, one die
has 6 sides and the other has 20 sides. Each Die object is initialized using differ-
ent constructors of the Die class. Listing 4.7 shows the Die class.

Both Die constructors have the same name, but one takes no parameters and
the other takes an integer as a parameter. The compiler can examine the invoca-
tion and determine which version of the method is intended.

4.4 method decomposition
Occasionally, a service that an object provides is so complicated it cannot rea-
sonably be implemented using one method. Therefore we sometimes need to
decompose a method into multiple methods to create a more understandable
design. As an example, let’s examine a program that translates English sentences
into Pig Latin.

Pig Latin is a made-up language in which each word of a sentence is modified,
in general, by moving the initial sound of the word to the end and adding an “ay”
sound. For example, the word happy would be written and pronounced appyhay
and the word birthday would become ithrdaybay. Words that begin with vowels
simply have a “yay” sound added on the end, turning the word enough into
enoughyay. Consonant blends such as “ch” and “st” at the beginning of a word
are moved to the end together before adding the “ay” sound. Therefore the word
grapefruit becomes apefruitgray.

The PigLatin program shown in Listing 4.8 reads one or more sentences,
translating each into Pig Latin.

236 CHAPTER 4 writing classes

listing
4.6

//**

// SnakeEyes.java Author: Lewis/Loftus

//

// Demonstrates the use of a class with overloaded constructors.

//**

public class SnakeEyes

{

//---

// Creates two die objects, then rolls both dice a set number of

// times, counting the number of snake eyes that occur.

//---

public static void main (String[] args)

{

final int ROLLS = 500;

int snakeEyes = 0, num1, num2;

Die die1 = new Die(); // creates a six-sided die

Die die2 = new Die(20); // creates a twenty-sided die

for (int roll = 1; roll <= ROLLS; roll++)

{

num1 = die1.roll();

num2 = die2.roll();

if (num1 == 1 && num2 == 1) // check for snake eyes

snakeEyes++;

}

System.out.println ("Number of rolls: " + ROLLS);

System.out.println ("Number of snake eyes: " + snakeEyes);

System.out.println ("Ratio: " + (float)snakeEyes/ROLLS);

}

}

Number of rolls: 500

Number of snake eyes: 6

Ratio: 0.012

output

code236.html

4.4 method decomposition 237

listing
4.7

//**

// Die.java Author: Lewis/Loftus

//

// Represents one die (singular of dice) with faces showing values

// between 1 and the number of faces on the die.

//**

public class Die

{

private final int MIN_FACES = 4;

private int numFaces; // number of sides on the die

private int faceValue; // current value showing on the die

//---

// Defaults to a six-sided die. Initial face value is 1.

//---

public Die ()

{

numFaces = 6;

faceValue = 1;

}

//---

// Explicitly sets the size of the die. Defaults to a size of

// six if the parameter is invalid. Initial face value is 1.

//---

public Die (int faces)

{

if (faces < MIN_FACES)

numFaces = 6;

else

numFaces = faces;

faceValue = 1;

}

//---

// Rolls the die and returns the result.

//---

public int roll ()

{

faceValue = (int) (Math.random() * numFaces) + 1;

return faceValue;

}

code237.html

238 CHAPTER 4 writing classes

listing
4.8

//**

// PigLatin.java Author: Lewis/Loftus

//

// Driver to exercise the PigLatinTranslator class.

//**

import cs1.Keyboard;

public class PigLatin

{

//---

// Reads sentences and translates them into Pig Latin.

//---

public static void main (String[] args)

{

String sentence, result, another;

PigLatinTranslator translator = new PigLatinTranslator();

do

{

System.out.println ();

System.out.println ("Enter a sentence (no punctuation):");

sentence = Keyboard.readString();

System.out.println ();

result = translator.translate (sentence);

System.out.println ("That sentence in Pig Latin is:");

System.out.println (result);

listing
4.7 continued

//---

// Returns the current die value.

//---

public int getFaceValue ()

{

return faceValue;

}

}

code238.html

4.4 method decomposition 239

The workhorse behind the PigLatin program is the PigLatinTranslator
class, shown in Listing 4.9. An object of type PigLatinTranslator provides one
fundamental service, a method called translate, which accepts a string and
translates it into Pig Latin. Note that the PigLatinTranslator class does not
contain a constructor because none is needed.

The act of translating an entire sentence into Pig Latin is not trivial. If written
in one big method, it would be very long and difficult to follow. A better solu-
tion, as implemented in the PigLatinTranslator class, is to decompose the
translate method and use several other support methods to help with the task.

The translate method uses a StringTokenizer object to separate the string
into words. Recall that the primary role of the StringTokenizer class (discussed
in Chapter 3) is to separate a string into smaller elements called tokens. In this
case, the tokens are separated by space characters so we can use the default white

System.out.println ();

System.out.print ("Translate another sentence (y/n)? ");

another = Keyboard.readString();

}

while (another.equalsIgnoreCase("y"));

}

}

Enter a sentence (no punctuation):

Do you speak Pig Latin

That sentence in Pig Latin is:

oday ouyay eakspay igpay atinlay

Translate another sentence (y/n)? y

Enter a sentence (no punctuation):

Play it again Sam

That sentence in Pig Latin is:

ayplay ityay againyay amsay

Translate another sentence (y/n)? n

listing
4.8 continued

output

240 CHAPTER 4 writing classes

listing
4.9

//**

// PigLatinTranslator.java Author: Lewis/Loftus

//

// Represents a translation system from English to Pig Latin.

// Demonstrates method decomposition and the use of StringTokenizer.

//**

import java.util.StringTokenizer;

public class PigLatinTranslator

{

//---

// Translates a sentence of words into Pig Latin.

//---

public String translate (String sentence)

{

String result = "";

sentence = sentence.toLowerCase();

StringTokenizer tokenizer = new StringTokenizer (sentence);

while (tokenizer.hasMoreTokens())

{

result += translateWord (tokenizer.nextToken());

result += " ";

}

return result;

}

//---

// Translates one word into Pig Latin. If the word begins with a

// vowel, the suffix "yay" is appended to the word. Otherwise,

// the first letter or two are moved to the end of the word,

// and "ay" is appended.

//---

private String translateWord (String word)

{

String result = "";

if (beginsWithVowel(word))

result = word + "yay";

else

code240.html

4.4 method decomposition 241

listing
4.9 continued

if (beginsWithBlend(word))

result = word.substring(2) + word.substring(0,2) + "ay";

else

result = word.substring(1) + word.charAt(0) + "ay";

return result;

}

//---

// Determines if the specified word begins with a vowel.

//---

private boolean beginsWithVowel (String word)

{

String vowels = "aeiou";

char letter = word.charAt(0);

return (vowels.indexOf(letter) != -1);

}

//---

// Determines if the specified word begins with a particular

// two-character consonant blend.

//---

private boolean beginsWithBlend (String word)

{

return (word.startsWith ("bl") || word.startsWith ("sc") ||

word.startsWith ("br") || word.startsWith ("sh") ||

word.startsWith ("ch") || word.startsWith ("sk") ||

word.startsWith ("cl") || word.startsWith ("sl") ||

word.startsWith ("cr") || word.startsWith ("sn") ||

word.startsWith ("dr") || word.startsWith ("sm") ||

word.startsWith ("dw") || word.startsWith ("sp") ||

word.startsWith ("fl") || word.startsWith ("sq") ||

word.startsWith ("fr") || word.startsWith ("st") ||

word.startsWith ("gl") || word.startsWith ("sw") ||

word.startsWith ("gr") || word.startsWith ("th") ||

word.startsWith ("kl") || word.startsWith ("tr") ||

word.startsWith ("ph") || word.startsWith ("tw") ||

word.startsWith ("pl") || word.startsWith ("wh") ||

word.startsWith ("pr") || word.startsWith ("wr"));

}

}

242 CHAPTER 4 writing classes

space delimiters. The PigLatin program assumes that no punctuation is included
in the input.

The translate method passes each word to the private support method
translateWord. Even the job of translating one word is somewhat involved, so
the translateWord method makes use of two other private methods,
beginsWithVowel and beginsWithBlend.

The beginsWithVowel method returns a boolean value that indicates
whether the word passed as a parameter begins with a vowel. Note that instead
of checking each vowel separately, the code for this method declares a string that
contains all of the vowels, and then invokes the String method indexOf to
determine whether the first character of the word is in the vowel string. If the
specified character cannot be found, the indexOf method returns a value of –1.

The beginsWithBlend method also returns a boolean value. The body of the
method contains only a return statement with one large expression that makes
several calls to the startsWith method of the String class. If any of these calls
returns true, then the beginsWithBlend method returns true as well.

Note that the translateWord, beginsWithVowel, and beginsWithBlend
methods are all declared with private visibility. They are not intended to provide

services directly to clients outside the class. Instead, they exist to help
the translate method, which is the only true service method in this
class, to do its job. By declaring them with private visibility, they can-
not be invoked from outside this class. If the main method of the
PigLatin class attempted to invoke the translateWord method, for
instance, the compiler would issue an error message.

Figure 4.11 shows a UML class diagram for the PigLatin program. Note the
notation showing the visibility of various methods.

Whenever a method becomes large or complex, we should consider decom-
posing it into multiple methods to create a more understandable class design.

A complex service provided by
an object can be decomposed
and can make use of private
support methods.

ke
y

co
nc

ep
t

figure 4.11 A UML class diagram for the PigLatin program

+ main (args : String[]) : void

PigLatin

+ translate (sentence : String) : String
 translateWord (word : String) : String
 beginsWithVowel (word : String) : boolean
 beginsWithBlend (word : String) : boolean

PigLatinTranslator

1 1

First, however, we must consider how other classes and objects can be defined to
create better overall system design. In an object-oriented design, method decom-
position must be subordinate to object decomposition.

4.5 object relationships
Classes, and their associated objects, can have particular types of relationships to
each other. This section revisits the idea of the general association and then
extends that concept to include associations between objects of the same class.
We then explore aggregation, in which one object is composed of other objects,
creating a “has-a” relationship.

Inheritance, which we introduced in Chapter 2, is another important relation-
ship between classes. It creates a generalization, or an “is-a” relationship,
between classes. We examine inheritance in Chapter 7.

association
In previous examples of UML diagrams, we’ve seen the idea of two classes hav-
ing a general association. This means that those classes are “aware” of each other.
Objects of those classes may use each other for the specific services that each pro-
vides. This sometimes is referred to as a use relationship.

An association could be described in general terms, such as the fact that an
Author object writes a Book object. The association connections between two
classes in a UML diagram can be annotated with such comments, if desired.
These kinds of annotations are called adornments.

As we’ve seen, associations can have a multiplicity associated with them. They
don’t always have to show specific values, however. The asterisk could be used to
indicate a general zero-or-more value. Ranges of values could be given if appro-
priate, such as 1...5.

An association relationship is intended to be very general and therefore very
versatile. We introduce additional uses of general associations throughout the
book as appropriate.

4.5 object relationships 243

You can find additional discussion and examples of UML notation on the
book’s Web site.

web
bonus

244 CHAPTER 4 writing classes

association between objects of the same class
Some associations occur between two objects of the same class. That is,
a method of one object takes as a parameter another object of the same
class. The operation performed often involves the internal data of both
objects.

The concat method of the String class is an example of this situa-
tion. The method is executed through one String object and is passed another
String object as a parameter. For example:

str3 = str1.concat(str2);

The String object executing the method (str1) appends its characters to those
of the String passed as a parameter (str2). A new String object is returned as
a result (and stored as str3).

The RationalNumbers program shown in Listing 4.10 demonstrates a similar
situation. Recall that a rational number is a value that can be represented as a
ratio of two integers (a fraction). The RationalNumbers program creates two
objects representing rational numbers and then performs various operations on
them to produce new rational numbers.

A method invoked through one
object may take as a parameter
another object of the same
class.

ke
y

co
nc

ep
t

listing
4.10

//**

// RationalNumbers.java Author: Lewis/Loftus

//

// Driver to exercise the use of multiple Rational objects.

//**

public class RationalNumbers

{

//---

// Creates some rational number objects and performs various

// operations on them.

//---

public static void main (String[] args)

{

Rational r1 = new Rational (6, 8);

Rational r2 = new Rational (1, 3);

Rational r3, r4, r5, r6, r7;

System.out.println ("First rational number: " + r1);

System.out.println ("Second rational number: " + r2);

code244.html

4.5 object relationships 245

The Rational class is shown in Listing 4.11. Each object of type Rational
represents one rational number. The Rational class contains various operations
on rational numbers, such as addition and subtraction.

The methods of the Rational class, such as add, subtract, multiply, and
divide, use the Rational object that is executing the method as the first (left)
operand and the Rational object passed as a parameter as the second (right)
operand.

Note that some of the methods in the Rational class, including reduce and
gcd, are declared with private visibility. These methods are private because we
don’t want them executed directly from outside a Rational object. They exist
only to support the other services of the object.

listing
4.10 continued

if (r1.equals(r2))

System.out.println ("r1 and r2 are equal.");

else

System.out.println ("r1 and r2 are NOT equal.");

r3 = r1.reciprocal();

System.out.println ("The reciprocal of r1 is: " + r3);

r4 = r1.add(r2);

r5 = r1.subtract(r2);

r6 = r1.multiply(r2);

r7 = r1.divide(r2);

System.out.println ("r1 + r2: " + r4);

System.out.println ("r1 - r2: " + r5);

System.out.println ("r1 * r2: " + r6);

System.out.println ("r1 / r2: " + r7);

}

}

First rational number: 3/4

Second rational number: 1/3

r1 and r2 are NOT equal.

r1 + r2: 13/12

r1 - r2: 5/12

r1 * r2: 1/4

r1 / r2: 9/4

output

246 CHAPTER 4 writing classes

listing
4.11

//**

// Rational.java Author: Lewis/Loftus

//

// Represents one rational number with a numerator and denominator.

//**

public class Rational

{

private int numerator, denominator;

//---

// Sets up the rational number by ensuring a nonzero denominator

// and making only the numerator signed.

//---

public Rational (int numer, int denom)

{

if (denom == 0)

denom = 1;

// Make the numerator "store" the sign

if (denom < 0)

{

numer = numer * -1;

denom = denom * -1;

}

numerator = numer;

denominator = denom;

reduce();

}

//---

// Returns the numerator of this rational number.

//---

public int getNumerator ()

{

return numerator;

}

//---

// Returns the denominator of this rational number.

//---

code246.html

4.5 object relationships 247

listing
4.11 continued

public int getDenominator ()

{

return denominator;

}

//---

// Returns the reciprocal of this rational number.

//---

public Rational reciprocal ()

{

return new Rational (denominator, numerator);

}

//---

// Adds this rational number to the one passed as a parameter.

// A common denominator is found by multiplying the individual

// denominators.

//---

public Rational add (Rational op2)

{

int commonDenominator = denominator * op2.getDenominator();

int numerator1 = numerator * op2.getDenominator();

int numerator2 = op2.getNumerator() * denominator;

int sum = numerator1 + numerator2;

return new Rational (sum, commonDenominator);

}

//---

// Subtracts the rational number passed as a parameter from this

// rational number.

//---

public Rational subtract (Rational op2)

{

int commonDenominator = denominator * op2.getDenominator();

int numerator1 = numerator * op2.getDenominator();

int numerator2 = op2.getNumerator() * denominator;

int difference = numerator1 - numerator2;

return new Rational (difference, commonDenominator);

}

248 CHAPTER 4 writing classes

listing
4.11 continued

//---

// Multiplies this rational number by the one passed as a

// parameter.

//---

public Rational multiply (Rational op2)

{

int numer = numerator * op2.getNumerator();

int denom = denominator * op2.getDenominator();

return new Rational (numer, denom);

}

//---

// Divides this rational number by the one passed as a parameter

// by multiplying by the reciprocal of the second rational.

//---

public Rational divide (Rational op2)

{

return multiply (op2.reciprocal());

}

//---

// Determines if this rational number is equal to the one passed

// as a parameter. Assumes they are both reduced.

//---

public boolean equals (Rational op2)

{

return (numerator == op2.getNumerator() &&

denominator == op2.getDenominator());

}

//---

// Returns this rational number as a string.

//---

public String toString ()

{

String result;

if (numerator == 0)

result = "0";

else

if (denominator == 1)

4.5 object relationships 249

listing
4.11 continued

result = numerator + "";

else

result = numerator + "/" + denominator;

return result;

}

//---

// Reduces this rational number by dividing both the numerator

// and the denominator by their greatest common divisor.

//---

private void reduce ()

{

if (numerator != 0)

{

int common = gcd (Math.abs(numerator), denominator);

numerator = numerator / common;

denominator = denominator / common;

}

}

//---

// Computes and returns the greatest common divisor of the two

// positive parameters. Uses Euclid's algorithm.

//---

private int gcd (int num1, int num2)

{

while (num1 != num2)

if (num1 > num2)

num1 = num1 - num2;

else

num2 = num2 - num1;

return num1;

}

}

250 CHAPTER 4 writing classes

aggregation
Some objects are made up of other objects. A car, for instance, is made
up of its engine, its chassis, its wheels, and several other parts. Each of
these other parts could be considered separate objects. Therefore we
can say that a car is an aggregation—it is composed, at least in part, of
other objects. Aggregation is sometimes described as a has-a relation-
ship. For instance, a car has a chassis.

In the software world, we define an aggregate object as any object that con-
tains references to other objects as instance data. For example, an Account object
contains, among other things, a String object that represents the name of the
account owner. We sometimes forget that strings are objects, but technically that
makes each Account object an aggregate object.

Let’s consider another example. The program StudentBody shown in Listing
4.12 creates two Student objects. Each Student object is composed, in part, of
two Address objects, one for the student’s address at school and another for the
student’s home address. The main method does nothing more than create these
objects and print them out. Note that we once again pass objects to the println
method, relying on the automatic call to the toString method to create a valid
representation of the object suitable for printing.

An aggregate object is com-
posed, in part, of other
objects, forming a has-a rela-
tionship.

ke
y

co
nc

ep
t

listing
4.12

//**

// StudentBody.java Author: Lewis/Loftus

//

// Demonstrates the use of an aggregate class.

//**

public class StudentBody

{

//---

// Creates some Address and Student objects and prints them.

//---

public static void main (String[] args)

{

Address school = new Address ("800 Lancaster Ave.", "Villanova",

"PA", 19085);

Address jHome = new Address ("21 Jump Street", "Lynchburg",

"VA", 24551);

Student john = new Student ("John", "Smith", jHome, school);

code250.html

4.5 object relationships 251

The Student class shown in Listing 4.13 represents a single student. This class
would have to be greatly expanded if it were to represent all aspects of a student.
We deliberately keep it simple for now so that the object aggregation is clearly
shown. The instance data of the Student class includes two references to
Address objects. We refer to those objects in the toString method as we create
a string representation of the student. By concatenating an Address object to
another string, the toString method in Address is automatically invoked.

The Address class is shown in Listing 4.14. It contains only the parts of a
street address. Note that nothing about the Address class indicates that it is part
of a Student object. The Address class is kept generic by design and therefore
could be used in any situation in which a street address is needed.

listing
4.12 continued

Address mHome = new Address ("123 Main Street", "Euclid", "OH",

44132);

Student marsha = new Student ("Marsha", "Jones", mHome, school);

System.out.println (john);

System.out.println ();

System.out.println (marsha);

}

}

John Smith

Home Address:

21 Jump Street

Lynchburg, VA 24551

School Address:

800 Lancaster Ave.

Villanova, PA 19085

Marsha Jones

Home Address:

123 Main Street

Euclid, OH 44132

School Address:

800 Lancaster Ave.

Villanova, PA 19085

output

252 CHAPTER 4 writing classes

listing
4.13

//**

// Student.java Author: Lewis/Loftus

//

// Represents a college student.

//**

public class Student

{

private String firstName, lastName;

private Address homeAddress, schoolAddress;

//---

// Sets up this Student object with the specified initial values.

//---

public Student (String first, String last, Address home,

Address school)

{

firstName = first;

lastName = last;

homeAddress = home;

schoolAddress = school;

}

//---

// Returns this Student object as a string.

//---

public String toString()

{

String result;

result = firstName + " " + lastName + "\n";

result += "Home Address:\n" + homeAddress + "\n";

result += "School Address:\n" + schoolAddress;

return result;

}

}

code252.html

4.5 object relationships 253

listing
4.14

//**

// Address.java Author: Lewis/Loftus

//

// Represents a street address.

//**

public class Address

{

private String streetAddress, city, state;

private long zipCode;

//---

// Sets up this Address object with the specified data.

//---

public Address (String street, String town, String st, long zip)

{

streetAddress = street;

city = town;

state = st;

zipCode = zip;

}

//---

// Returns this Address object as a string.

//---

public String toString()

{

String result;

result = streetAddress + "\n";

result += city + ", " + state + " " + zipCode;

return result;

}

}

code253.html

254 CHAPTER 4 writing classes

The more complex an object, the more likely it will need to be represented as
an aggregate object. In UML, aggregation is represented by a connection between
two classes, with an open diamond at the end near the class that is the aggregate.
Figure 4.12 shows a UML class diagram for the StudentBody program.

Note that in previous UML diagram examples, strings were not represented as
separate classes with aggregation relationships, though technically they could be.
Strings are so fundamental to programming that they are usually represented the
same way a primitive attribute is represented.

figure 4.12 A UML class diagram showing aggregation

+ main (args : String[]) : void

StudentBody

 firstName : String
 lastName : String
 homeAddress : Address
 schoolAddress : Address

+ toString() : String

Student

 streetAddress : String
 city : String
 state : String
 zipCode : long

+ toString() : String

Address

1

2

4.6 applet methods 255

4.6 applet methods
In applets presented in previous chapters, we’ve seen the
use of the paint method to draw the contents of the applet
on the screen. An applet has several other methods that
perform specific duties. Because an applet is designed to
work with Web pages, some applet methods are specifically
designed with that concept in mind. Figure 4.13 lists several
applet methods.

The init method is executed once when the applet is first loaded, such as
when the browser or appletviewer initially view the applet. Therefore the init
method is the place to initialize the applet’s environment and permanent data.

The start and stop methods of an applet are called when the applet becomes
active or inactive, respectively. For example, after we use a browser to initially

figure 4.13 Some methods of the Applet class

public void init ()

Initializes the applet. Called just after the applet is loaded.

public void start ()

Starts the applet. Called just after the applet is made active.

public void stop ()

Stops the applet. Called just after the applet is made inactive.

public void destroy ()

Destroys the applet. Called when the browser is exited.

public URL getCodeBase ()

Returns the URL at which this applet's bytecode is located.

public URL getDocumentBase ()

Returns the URL at which the HTML document containing this applet is
located.

public AudioClip getAudioClip (URL url, String name)

Retrieves an audio clip from the specified URL.

public Image getImage (URL url, String name)

Retrieves an image from the specified URL.

Several methods of the
Applet class are designed to
facilitate their execution in a
Web browser.

key
concept

load an applet, the applet’s start method is called. We may then leave that page
to visit another one, at which point the applet becomes inactive and the stop
method is called. If we return to the applet’s page, the applet becomes active again
and the start method is called again. Note that the init method is called once
when the applet is loaded, but start may be called several times as the page is
revisited. It is good practice to implement start and stop for an applet if it
actively uses CPU time, such as when it is showing an animation, so that CPU
time is not wasted on an applet that is not visible.

Note that reloading the Web page in the browser does not necessarily reload
the applet. To force the applet to reload, most browsers provide some key com-
bination for that purpose. For example, in Netscape Navigator, holding down the
shift key while pressing the reload button with the mouse will not only reload the
Web page, it will also reload (and reinitialize) all applets linked to that page.

The getCodeBase and getDocumentBase methods are useful to determine
where the applet’s bytecode or HTML document resides. An applet could use the
appropriate URL to retrieve additional resources, such as an image or audio clip
using the applet methods getImage or getAudioClip.

We use the various applet methods as appropriate throughout this book.

4.7 graphical objects
Often an object has a graphical representation. Consider the LineUp applet
shown in Listing 4.15. It creates several StickFigure objects, of varying color
and random height. The StickFigure objects are instantiated in the init
method of the applet, so they are created only once when the applet is initially
loaded.

The paint method of LineUp simply requests that the stick figures redraw
themselves whenever the method is called. The paint method is called whenever
an event occurs that might influence the graphic representation of the applet
itself. For instance, when the window that the applet is displayed in is moved,
paint is called to redraw the applet contents.

The StickFigure class is shown in Listing 4.16. Like any other object, a
StickFigure object contains data that defines its state, such as the position,
color, and height of the figure. The draw method contains the individual com-
mands that draw the figure itself, relative to the position and height.

256 CHAPTER 4 writing classes

4.7 graphical objects 257

listing
4.15

//**

// LineUp.java Author: Lewis/Loftus

//

// Demonstrates the use of a graphical object.

//**

import java.util.Random;

import java.applet.Applet;

import java.awt.*;

public class LineUp extends Applet

{

private final int APPLET_WIDTH = 400;

private final int APPLET_HEIGHT = 150;

private final int HEIGHT_MIN = 100;

private final int VARIANCE = 40;

private StickFigure figure1, figure2, figure3, figure4;

//---

// Creates several stick figures with varying characteristics.

//---

public void init ()

{

int h1, h2, h3, h4; // heights of stick figures

Random generator = new Random();

h1 = HEIGHT_MIN + generator.nextInt(VARIANCE);

h2 = HEIGHT_MIN + generator.nextInt(VARIANCE);

h3 = HEIGHT_MIN + generator.nextInt(VARIANCE);

h4 = HEIGHT_MIN + generator.nextInt(VARIANCE);

figure1 = new StickFigure (100, 150, Color.red, h1);

figure2 = new StickFigure (150, 150, Color.cyan, h2);

figure3 = new StickFigure (200, 150, Color.green, h3);

figure4 = new StickFigure (250, 150, Color.yellow, h4);

setBackground (Color.black);

setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

258 CHAPTER 4 writing classes

listing
4.15 continued

//---

// Paints the stick figures on the applet.

//---

public void paint (Graphics page)

{

figure1.draw (page);

figure2.draw (page);

figure3.draw (page);

figure4.draw (page);

}

}

display

4.7 graphical objects 259

listing
4.16

//**

// StickFigure.java Author: Lewis/Loftus

//

// Represents a graphical stick figure.

//**

import java.awt.*;

public class StickFigure

{

private int baseX; // center of figure

private int baseY; // floor (bottom of feet)

private Color color; // color of stick figure

private int height; // height of stick figure

//---

// Sets up the stick figure's primary attributes.

//---

public StickFigure (int center, int bottom, Color shade, int size)

{

baseX = center;

baseY = bottom;

color = shade;

height = size;

}

//---

// Draws this figure relative to baseX, baseY, and height.

//---

public void draw (Graphics page)

{

int top = baseY - height; // top of head

page.setColor (color);

page.drawOval (baseX-10, top, 20, 20); // head

page.drawLine (baseX, top+20, baseX, baseY-30); // trunk

260 CHAPTER 4 writing classes

listing
4.16 continued

page.drawLine (baseX, baseY-30, baseX-15, baseY); // legs

page.drawLine (baseX, baseY-30, baseX+15, baseY);

page.drawLine (baseX, baseY-70, baseX-25, baseY-70); // arms

page.drawLine (baseX, baseY-70, baseX+20, baseY-85);

}

}

summary of key concepts 261

◗ Each object has a state and a set of behaviors. The values of an object’s
variables define its state. The methods to which an object responds define
its behaviors.

◗ A class is a blueprint for an object; it reserves no memory space for data.
Each object has its own data space, thus its own state.

◗ The scope of a variable, which determines where it can be referenced,
depends on where it is declared.

◗ A UML diagram is a software design tool that helps us visualize the
classes and objects of a program and the relationships among them.

◗ Objects should be encapsulated. The rest of a program should interact
with an object only through a well-defined interface.

◗ Instance variables should be declared with private visibility to promote
encapsulation.

◗ A method must return a value consistent with the return type specified in
the method header.

◗ When a method is called, the actual parameters are copied into the formal
parameters. The types of the corresponding parameters must match.

◗ A constructor cannot have any return type, even void.

◗ A variable declared in a method is local to that method and cannot be
used outside of it.

◗ The versions of an overloaded method are distinguished by their signa-
tures. The number, type, and order of their parameters must be distinct.

◗ A complex service provided by an object can be decomposed to can make
use of private support methods.

◗ A method invoked through one object may take as a parameter another
object of the same class.

◗ An aggregate object is composed, in part, of other objects, forming a has-a
relationship.

◗ Several methods of the Applet class are designed to facilitate their execu-
tion in a Web browser.

self-review questions
4.1 What is the difference between an object and a class?

4.2 What is the scope of a variable?

summary of
key concepts

262 CHAPTER 4 writing classes

4.3 What are UML diagrams designed to do?

4.4 Objects should be self-governing. Explain.

4.5 What is a modifier?

4.6 Describe each of the following:

◗ public method

◗ private method

◗ public variable

◗ private variable

4.7 What does the return statement do?

4.8 Explain the difference between an actual parameter and a formal
parameter.

4.9 What are constructors used for? How are they defined?

4.10 How are overloaded methods distinguished from each other?

4.11 What is method decomposition?

4.12 Explain how a class can have an association with itself.

4.13 What is an aggregate object?

4.14 What do the start and stop methods of an applet do?

exercises
4.1 Write a method called powersOfTwo that prints the first 10 powers

of 2 (starting with 2). The method takes no parameters and doesn’t
return anything.

4.2 Write a method called alarm that prints the string “Alarm!” multi-
ple times on separate lines. The method should accept an integer
parameter that specifies how many times the string is printed. Print
an error message if the parameter is less than 1.

4.3 Write a method called sum100 that returns the sum of the integers
from 1 to 100, inclusive.

4.4 Write a method called maxOfTwo that accepts two integer parameters
and returns the larger of the two.

4.5 Write a method called sumRange that accepts two integer parameters
that represent a range. Issue an error message and return zero if the
second parameter is less than the first. Otherwise, the method should
return the sum of the integers in that range (inclusive).

exercises 263

4.6 Write a method called larger that accepts two floating point
parameters (of type double) and returns true if the first parameter is
greater than the second, and false otherwise.

4.7 Write a method called countA that accepts a String parameter and
returns the number of times the character ‘A’ is found in the string.

4.8 Write a method called evenlyDivisible that accepts two integer
parameters and returns true if the first parameter is evenly divisible
by the second, or vice versa, and false otherwise. Return false if
either parameter is zero.

4.9 Write a method called average that accepts two integer parameters
and returns their average as a floating point value.

4.10 Overload the average method of Exercise 4.9 such that if three inte-
gers are provided as parameters, the method returns the average of
all three.

4.11 Overload the average method of Exercise 4.9 to accept four integer
parameters and return their average.

4.12 Write a method called multiConcat that takes a String and an
integer as parameters. Return a String that consists of the string
parameter concatenated with itself count times, where count is the
integer parameter. For example, if the parameter values are “hi” and
4, the return value is “hihihihi”. Return the original string if the
integer parameter is less than 2.

4.13 Overload the multiConcat method from Exercise 4.12 such that if
the integer parameter is not provided, the method returns the string
concatenated with itself. For example, if the parameter is “test”,
the return value is “testtest”.

4.14 Write a method called isAlpha that accepts a character parameter
and returns true if that character is either an uppercase or lowercase
alphabetic letter.

4.15 Write a method called floatEquals that accepts three floating point
values as parameters. The method should return true if the first two
parameters are equal within the tolerance of the third parameter.
Hint: See the discussion in Chapter 3 on comparing floating point
values for equality.

4.16 Write a method called reverse that accepts a String parameter and
returns a string that contains the characters of the parameter in
reverse order. Note that there is a method in the String class that
performs this operation, but for the sake of this exercise, you are
expected to write your own.

264 CHAPTER 4 writing classes

4.17 Write a method called isIsoceles that accepts three integer param-
eters that represent the lengths of the sides of a triangle. The method
returns true if the triangle is isosceles but not equilateral (meaning
that exactly two of the sides have an equal length), and false other-
wise.

4.18 Write a method called randomInRange that accepts two integer
parameters representing a range. The method should return a ran-
dom integer in the specified range (inclusive). Return zero if the first
parameter is greater than the second.

4.19 Write a method called randomColor that creates and returns a
Color object that represents a random color. Recall that a Color
object can be defined by three integer values between 0 and 255,
representing the contributions of red, green, and blue (its RGB
value).

4.20 Write a method called drawCircle that draws a circle based on the
method’s parameters: a Graphics object through which to draw the
circle, two integer values representing the (x, y) coordinates of the
center of the circle, another integer that represents the circle’s radius,
and a Color object that defines the circle’s color. The method does
not return anything.

4.21 Overload the drawCircle method of Exercise 4.20 such that if the
Color parameter is not provided, the circle’s color will default to
black.

4.22 Overload the drawCircle method of Exercise 4.20 such that if the
radius is not provided, a random radius in the range 10 to 100
(inclusive) will be used.

4.23 Overload the drawCircle method of Exercise 4.20 such that if both
the color and the radius of the circle are not provided, the color will
default to red and the radius will default to 40.

4.24 Draw a UML class diagram for the SnakeEyes program.

4.25 Draw a UML object diagram showing the Die objects of the
SnakeEyes program at a specific point in the program.

4.26 Draw a UML object diagram for the objects of the StudentBody
program.

4.27 Draw UML class and object diagrams for the BoxCars program
described in Programming Project 4.3.

4.28 Draw UML class and object diagrams for the Pig program described
in Programming Project 4.4.

programming projects 265

programming projects
4.1 Modify the Account class to provide a service that allows funds to

be transferred from one account to another. Note that a transfer can
be thought of as withdrawing money from one account and deposit-
ing it into another. Modify the main method of the Banking class to
demonstrate this new service.

4.2 Modify the Account class so that it also permits an account to be
opened with just a name and an account number, assuming an initial
balance of zero. Modify the main method of the Banking class to
demonstrate this new capability.

4.3 Design and implement a class called PairOfDice, composed of two
six-sided Die objects. Create a driver class called BoxCars with a
main method that rolls a PairOfDice object 1000 times, counting
the number of box cars (two sixes) that occur.

4.4 Using the PairOfDice class from Programming Project 4.3, design
and implement a class to play a game called Pig. In this game, the
user competes against the computer. On each turn, the current player
rolls a pair of dice and accumulates points. The goal is to reach 100
points before your opponent does. If, on any turn, the player rolls a
1, all points accumulated for that round are forfeited and control of
the dice moves to the other player. If the player rolls two 1s in one
turn, the player loses all points accumulated thus far in the game
and loses control of the dice. The player may voluntarily turn over
the dice after each roll. Therefore the player must decide to either
roll again (be a pig) and risk losing points, or relinquish control of
the dice, possibly allowing the other player to win. Implement the
computer player such that it always relinquishes the dice after accu-
mulating 20 or more points in any given round.

4.5 Design and implement a class called Card that represents a standard
playing card. Each card has a suit and a face value. Create a pro-
gram that deals 20 random cards.

4.6 Modify the Student class presented in this chapter as follows. Each
student object should also contain the scores for three tests. Provide
a constructor that sets all instance values based on parameter values.
Overload the constructor such that each test score is assumed to be
initially zero. Provide a method called setTestScore that accepts
two parameters: the test number (1 through 3) and the score. Also
provide a method called getTestScore that accepts the test number
and returns the appropriate score. Provide a method called average

a

b

project265a.html
project265b.html
project265c.html

266 CHAPTER 4 writing classes

that computes and returns the average test score for this student.
Modify the toString method such that the test scores and average
are included in the description of the student. Modify the driver class
main method to exercise the new Student methods.

4.7 Design and implement a class called Course that represents a course
taken at a school. A course object should keep track of up to five
students, as represented by the modified Student class from the pre-
vious programming project. The constructor of the Course class
should accept only the name of the course. Provide a method called
addStudent that accepts one Student parameter (the Course object
should keep track of how many valid students have been added to
the course). Provide a method called average that computes and
returns the average of all students’ test score averages. Provide a
method called roll that prints all students in the course. Create a
driver class with a main method that creates a course, adds several
students, prints a roll, and prints the overall course test average.

4.8 Design and implement a class called Building that represents a
graphical depiction of a building. Allow the parameters to the con-
structor to specify the building’s width and height. Each building
should be colored black, and contain a few random windows of yel-
low. Create an applet that draws a random skyline of buildings.

4.9 A programming project in Chapter 3 describes an applet that draws
a quilt with a repeating pattern. Design and implement an applet
that draws a quilt using a separate class called Pattern that repre-
sents a particular pattern. Allow the constructor of the Pattern class
to vary some characteristics of the pattern, such as its color scheme.
Instantiate two separate Pattern objects and incorporate them in a
checkerboard layout in the quilt.

4.10 Write an applet that displays a graphical seating chart for a dinner
party. Create a class called Diner (as in one who dines) that stores
the person’s name, gender, and location at the dinner table. A diner
is graphically represented as a circle, color-coded by gender, with the
person’s name printed in the circle.

4.11 Create a class called Crayon that represents one crayon of a particu-
lar color and length (height). Design and implement an applet that
draws a box of crayons.

4.12 Create a class called Star that represents a graphical depiction of a
star. Let the constructor of the star accept the number of points in

project266.html

answers to self-review questions 267

the star (4, 5, or 6), the radius of the star, and the center point loca-
tion. Write an applet that draws a sky full of various types of stars.

4.13 Enhance the concept of the LineUp program to create a
PoliceLineUp class. Instead of a stick figure, create a class called
Thug that has a more realistic graphical representation. In addition
to varying the person’s height, vary the clothes and shoes by color,
and add a hat or necktie for some thugs.

For additional programming projects, click the CodeMate icon below:

4.14

answers to self-review questions
4.1 A class is the blueprint of an object. It defines the variables and

methods that will be a part of every object that is instantiated from
it. But a class reserves no memory space for variables. Each object
has its own data space and therefore its own state.

4.2 The scope of a variable is the area within a program in which the
variable can be referenced. An instance variable, declared at the class
level, can be referenced in any method of the class. Local variables,
including the formal parameters, declared within a particular
method, can be referenced only in that method.

4.3 A UML diagram helps us visualize the entities (classes and objects)
in a program as well as the relationships among them. UML dia-
grams are tools that help us capture the design of a program prior to
writing it.

4.4 A self-governing object is one that controls the values of its own
data. Encapsulated objects, which don’t allow an external client to
reach in and change its data, are self-governing.

4.5 A modifier is a Java reserved word that can be used in the definition
of a variable or method and that specifically defines certain charac-
teristics of its use. For example, by declaring a variable with private
visibility, the variable cannot be directly accessed outside of the
object in which it is defined.

4.6 The modifiers affect the methods and variables in the following
ways:

project267.html

268 CHAPTER 4 writing classes

◗ A public method is called a service method for an object because it
defines a service that the object provides.

◗ A private method is called a support method because it cannot be
invoked from outside the object and is used to support the activi-
ties of other methods in the class.

◗ A public variable is a variable that can be directly accessed and
modified by a client. This explicitly violates the principle of encap-
sulation and therefore should be avoided.

◗ A private variable is a variable that can be accessed and modified
only from within the class. Variables almost always are declared
with private visibility.

4.7 An explicit return statement is used to specify the value that is
returned from a method. The type of the return value must match
the return type specified in the method definition.

4.8 An actual parameter is a value sent to a method when it is invoked.
A formal parameter is the corresponding variable in the header of
the method declaration; it takes on the value of the actual parameter
so that it can be used inside the method.

4.9 Constructors are special methods in an object that are used to initial-
ize the object when it is instantiated. A constructor has the same
name as its class, and it does not return a value.

4.10 Overloaded methods are distinguished by having a unique signature,
which includes the number, order, and type of the parameters. The
return type is not part of the signature.

4.11 Method decomposition is the process of dividing a complex method
into several support methods to get the job done. This simplifies and
facilitates the design of the program.

4.12 A method executed through an object might take as a parameter
another object created from the same class. For example, the concat
method of the String class is executed through one String object and
takes another String object as a parameter.

4.13 An aggregate object is an object that has other objects as instance
data. That is, an aggregate object is one that is made up of other
objects.

4.14 The Applet start method is invoked automatically every time the
applet becomes active, such as when a browser returns to the page it
is on. The stop method is invoked automatically when the applet
becomes inactive.

reference to explore what it is

and how it affects our process-

ing. Then we examine the

static modifier to see how it

can be applied to variables and

to methods. We define the con-

cept and usefulness of a wrapper

class and see how the Keyboard

class uses them to help process

input. We also explore the abil-

ity to nest one class definition

within another. We then examine

the use of an interface construct

to formalize the interaction

between classes. Finally, in the

graphics track of this chapter we

examine the use of dialog boxes

and then explore the basic ele-

ments that are used in every Java

graphical user interface (GUI).

◗ Define reference aliases and
explore Java garbage collection.

◗ Explore the effects of passing
object references as parameters.

◗ Define the use and effects of the
static modifier.

◗ Examine the wrapper classes
defined in the Java standard class
library.

◗ Discover the fundamental aspects
of keyboard input.

◗ Define nested classes and inner
classes and explore their appropri-
ate use.

◗ Define formal interfaces and their
class implementations.

◗ Determine how to present basic
graphical user interfaces.

chapter
objectives

This chapter explores a variety of issues related
to the design and implementation of classes. First

we revisit the concept of an object

5
enhancing classes

270 CHAPTER 5 enhancing classes

5.0 references revisited
In previous examples we’ve declared many object reference variables through
which we access particular objects. In this chapter we need to examine this rela-
tionship in more detail. Object references play an important role in a program.
We need to have a careful understanding of how they work in order to write
sophisticated object-oriented software.

An object reference variable and an object are two separate things. Remember
that the declaration of the reference variable and the creation of the object that it
refers to are separate steps. Although we often declare the reference variable and
create an object for it to refer to on the same line, keep in mind that we don’t have
to do so. In fact, in many cases, we won’t want to.

An object reference variable stores the address of an object even
though the address never is disclosed to us. When we use the dot oper-
ator to invoke an object’s method, we are actually using the address in
the reference variable to locate the representation of the object in mem-
ory, to look up the appropriate method, and to invoke it.

the null reference
A reference variable that does not currently point to an object is called a null
reference. When a reference variable is initially declared as an instance vari-
able, it is a null reference. If we try to follow a null reference, a
NullPointerException is thrown, indicating that there is no object to refer-
ence. For example, consider the following situation:

class NameIsNull

{

String name; // not initialized, therefore null

void printName()

{

System.out.println (name.length()); // causes an exception

}

}

The declaration of the instance variable name asserts it to be a reference to a
String object but doesn’t create any String object for it to refer to. The vari-
able name, therefore, contains a null reference. When the method attempts to

An object reference variable
stores the address of an
object.

ke
y

co
nc

ep
t

5.0 references revisited 271

invoke the length method of the object to which name refers, an exception is
thrown because no object exists to execute the method.

Note that this situation can arise only in the case of instance variables.
Suppose, for instance, the following two lines of code were in a method:

String name;

System.out.println (name.length());

In this case, the variable name is local to whatever method we are in. The com-
piler would complain that we were using the name variable before it had been
initialized. In the case of instance variables, however, the compiler can’t deter-
mine whether a variable had been initialized; therefore, the danger of attempt-
ing to follow a null reference is a problem.

The identifier null is a reserved word in Java and represents a null reference.
We can explicitly set a reference to null to ensure that it doesn’t point to any
object. We can also use it to check to see whether a particular reference currently
points to an object. For example, we could have used the following code in the
printName method to keep us from following a null reference:

if (name == null)

System.out.println (“Invalid Name”);

else

System.out.println (name.length());

the this reference
Another special reference for Java objects is called the this reference. The word
this is a reserved word in Java. It allows an object to refer to itself. As
we have discussed, a method is always invoked through (or by) a par-
ticular object or class. Inside that method, the this reference can be
used to refer to the currently executing object.

For example, in a class called ChessPiece there could be a method
called move, which could contain the following line:

if (this.position == piece2.position)

result = false;

In this situation, the this reference is being used to clarify which position is being
referenced. The this reference refers to the object through which the method was

The reserved word null repre-
sents a reference that does not
point to a valid object.

key
concept

The this reference always
refers to the currently execut-
ing object.

key
concept

272 CHAPTER 5 enhancing classes

invoked. So when the following line is used to invoke the method, the this ref-
erence refers to bishop1:

bishop1.move();

However, when another object is used to invoke the method, the this reference
refers to it. Therefore, when the following invocation is used, the this reference
in the move method refers to bishop2:

bishop2.move();

The this reference can also be used to distinguish the parameters of a con-
structor from their corresponding instance variable with the same names. For
example, the constructor of the Account class was presented in Chapter 4 as fol-
lows:

public Account (String owner, long account, double initial)

{

name = owner;

acctNumber = account;

balance = initial;

}

When writing this constructor, we deliberately came up with different names for
the parameters to distinguish them from the instance variables name,
acctNumber, and balance. This distinction is arbitrary. The constructor could
have been written as follows using the this reference:

public Account (String name, long acctNumber, double balance)

{

this.name = name;

this.acctNumber = acctNumber;

this.balance = balance;

}

In this version of the constructor, the this reference specifically refers to the
instance variables of the object. The variables on the right-hand side of the assign-
ment statements refer to the formal parameters. This approach eliminates the
need to come up with different yet equivalent names. This situation sometimes
occurs in other methods but comes up often in constructors.

aliases
Because an object reference variable stores an address, a programmer must be
careful when managing objects. In particular, you must understand the semantics

5.0 references revisited 273

of an assignment statement for objects. First, let’s revisit the concept of assign-
ment for primitive types. Consider the following declarations of primitive data:

int num1 = 5;

int num2 = 12;

In the following assignment statement, a copy of the value that is stored in num1
is stored in num2:

num2 = num1;

The original value of 12 in num2 is overwritten by the value 5. The variables num1
and num2 still refer to different locations in memory, and both of those locations
now contain the value 5. Figure 5.1 depicts this situation.

Now consider the following object declarations:

ChessPiece bishop1 = new ChessPiece();

ChessPiece bishop2 = new ChessPiece();

Initially, the references bishop1 and bishop2 refer to two different ChessPiece
objects. The following assignment statement copies the value in bishop1 into
bishop2.

bishop2 = bishop1;

The key issue is that when an assignment like this is made, the address stored in
bishop1 is copied into bishop2. Originally, the two references referred to dif-
ferent objects. After the assignment, both bishop1 and bishop2 contain the same
address and therefore refer to the same object. Figure 5.2 depicts this process.

The bishop1 and bishop2 references are now aliases of each other because
they are two names that refer to the same object. All references to the object that

figure 5.1 Primitive data assignment

num1 num2

5 12

num1 num2

5 5

num2 = num1;

Before assignment After assignment

274 CHAPTER 5 enhancing classes

was originally referenced by bishop2 are now gone; that object cannot
be used again in the program.

One important implication of aliases is that when we use one refer-
ence to change the state of the object, it is also changed for the other

because there is really only one object. If you change the state of bishop1, for
instance, you change the state of bishop2 because they both refer to the same
object. Aliases can produce undesirable effects unless they are managed carefully.

Another important aspect of references is the way they affect how
we determine whether two objects are equal. The == operator that we
use for primitive data can be used with object references, but it returns
true only if the two references being compared are aliases of each other.
It does not “look inside” the objects to see whether they contain the
same data.

Thus the following expression is true only if bishop1 and bishop2 currently
refer to the same object:

bishop1 == bishop2

A method called equals is defined for all objects, but unless we replace it with
a specific definition when we write a class, it has the same semantics as the ==
operator. That is, the equals method returns a boolean value that, by default,
will be true if the two objects being compared are aliases of each other. The
equals method is invoked through one object, and takes the other one as a

figure 5.2 Reference assignment

Before assignment After assignment

bishop1 bishop2 bishop1 bishop2

bishop2 = bishop1;

Several references can refer to
the same object. These refer-
ences are aliases of each other.ke

y
co

nc
ep

t

The == operator compares
object references for equality,
returning true if the references
are aliases of each other.

ke
y

co
nc

ep
t

5.0 references revisited 275

parameter. Therefore, the following expression returns true if both references
refer to the same object:

bishop1.equals(bishop2)

However, we could define the equals method in the ChessPiece
class to define equality for ChessPiece objects any way we would like.
That is, we could define the equals method to return true under what-
ever conditions we think are appropriate to mean that one ChessPiece
is equal to another.

As we discussed in Chapter 3, the equals method has been given an appro-
priate definition in the String class. When comparing two String objects, the
equals method returns true only if both strings contain the same characters. A
common mistake is to use the == operator to compare strings, which compares
the references for equality, when most of the time we want to compare the char-
acters inside the string objects for equality. We discuss the equals method in
more detail in Chapter 7.

garbage collection
All interaction with an object occurs through a reference variable, so we can use
an object only if we have a reference to it. When all references to an object are
lost (perhaps by reassignment), that object can no longer participate in the pro-
gram. The program can no longer invoke its methods or use its variables. At this
point the object is called garbage because it serves no useful purpose.

Java performs automatic garbage collection. When the last reference
to an object is lost, the object becomes a candidate for garbage collec-
tion. Occasionally, the Java runtime executes a method that “collects”
all of the objects marked for garbage collection and returns their allo-
cated memory to the system for future use. The programmer does not
have to worry about explicitly returning memory that has become
garbage.

If there is an activity that a programmer wants to accomplish in con-
junction with the object being destroyed, the programmer can define a method
called finalize in the object’s class. The finalize method takes no parameters
and has a void return type. It will be executed by the Java runtime after the
object is marked for garbage collection and before it is actually destroyed. The
finalize method is not often used because the garbage collector performs most
normal cleanup operations. However, it is useful for performing activities that the
garbage collector does not address, such as closing files (discussed in Chapter 8).

The equals method can be
defined to determine equality
between objects in any way we
consider appropriate.

key
concept

If an object has no references
to it, a program cannot use it.
Java performs automatic
garbage collection by periodi-
cally reclaiming the memory
space occupied by these
objects.

key
concept

276 CHAPTER 5 enhancing classes

passing objects as parameters
Another important issue related to object references comes up when we want to
pass an object to a method. Java passes all parameters to a method by value. That
is, the current value of the actual parameter (in the invocation) is copied into the
formal parameter in the method header. Essentially, parameter passing is like an
assignment statement, assigning to the formal parameter a copy of the value
stored in the actual parameter.

This issue must be considered when making changes to a formal parameter
inside a method. The formal parameter is a separate copy of the value that is
passed in, so any changes made to it have no effect on the actual parameter. After
control returns to the calling method, the actual parameter will have the same
value as it did before the method was called.

However, when an object is passed to a method, we are actually passing a ref-
erence to that object. The value that gets copied is the address of the object.
Therefore, the formal parameter and the actual parameter become aliases of each

other. If we change the state of the object through the formal parame-
ter reference inside the method, we are changing the object referenced
by the actual parameter because they refer to the same object. On the
other hand, if we change the formal parameter reference itself (to make
it point to a new object, for instance), we have not changed the fact that
the actual parameter still refers to the original object.

The program in Listing 5.1 illustrates the nuances of parameter passing.
Carefully trace the processing of this program and note the values that are out-
put. The ParameterPassing class contains a main method that calls the
changeValues method in a ParameterTester object. Two of the parameters to
changeValues are Num objects, each of which simply stores an integer value. The
other parameter is a primitive integer value.

The Web site of the text contains a detailed discussion of the finalize
method.

When an object is passed to a
method, the actual and formal
parameters become aliases of
each other.

ke
y

co
nc

ep
t

web
bonus

5.0 references revisited 277

listing
5.1

//**

// ParameterPassing.java Author: Lewis/Loftus

//

// Demonstrates the effects of passing various types of parameters.

//**

public class ParameterPassing

{

//---

// Sets up three variables (one primitive and two objects) to

// serve as actual parameters to the changeValues method. Prints

// their values before and after calling the method.

//---

public static void main (String[] args)

{

ParameterTester tester = new ParameterTester();

int a1 = 111;

Num a2 = new Num (222);

Num a3 = new Num (333);

System.out.println ("Before calling changeValues:");

System.out.println ("a1\ta2\ta3");

System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");

tester.changeValues (a1, a2, a3);

System.out.println ("After calling changeValues:");

System.out.println ("a1\ta2\ta3");

System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");

}

}

code277.html

278 CHAPTER 5 enhancing classes

Listing 5.2 shows the ParameterTester class, and Listing 5.3 shows the Num
class. Inside the changeValues method, a modification is made to each of the
three formal parameters: the integer parameter is set to a different value, the value
stored in the first Num parameter is changed using its setValue method, and a
new Num object is created and assigned to the second Num parameter. These
changes are reflected in the output printed at the end of the changeValues
method.

However, note the final values that are printed after returning from the
method. The primitive integer was not changed from its original value because
the change was made to a copy inside the method. Likewise, the last parameter
still refers to its original object with its original value. This is because the new Num
object created in the method was referred to only by the formal parameter. When
the method returned, that formal parameter was destroyed and the Num object it
referred to was marked for garbage collection. The only change that is “perma-
nent” is the change made to the state of the second parameter. Figure 5.3 shows
the step-by-step processing of this program.

listing
5.1 continued

Before calling changeValues:

a1 a2 a3

111 222 333

Before changing the values:

f1 f2 f3

111 222 333

After changing the values:

f1 f2 f3

999 888 777

After calling changeValues:

a1 a2 a3

111 888 333

output

5.0 references revisited 279

listing
5.2

//**

// ParameterTester.java Author: Lewis/Loftus

//

// Demonstrates the effects of passing various types of parameters.

//**

public class ParameterTester

{

//---

// Modifies the parameters, printing their values before and

// after making the changes.

//---

public void changeValues (int f1, Num f2, Num f3)

{

System.out.println ("Before changing the values:");

System.out.println ("f1\tf2\tf3");

System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");

f1 = 999;

f2.setValue (888);

f3 = new Num (777);

System.out.println ("After changing the values:");

System.out.println ("f1\tf2\tf3");

System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");

}

}

code279.html

280 CHAPTER 5 enhancing classes

listing
5.3

//**

// Num.java Author: Lewis/Loftus

//

// Represents a single integer as an object.

//**

public class Num

{

private int value;

//---

// Sets up the new Num object, storing an initial value.

//---

public Num (int update)

{

value = update;

}

//---

// Sets the stored value to the newly specified value.

//---

public void setValue (int update)

{

value = update;

}

//---

// Returns the stored integer value as a string.

//---

public String toString ()

{

return value + "";

}

}

code280.html

5.0 references revisited 281

figure 5.3 Tracing the parameters in the ParameterPassing program

STEP 1 STEP 2

STEP 3 STEP 4

Before invoking changeValues

f1 = 999; f2.setValue (888);

tester.changeValues (a1, a2, a3);

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 222 333

111

222 333

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333

999

222 333

999

STEP 5 STEP 6

f3 = new Num (777); After returning from changeValues

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333888 333

999 777

= Undefined

282 CHAPTER 5 enhancing classes

5.1 the static modifier
We’ve seen how visibility modifiers allow us to specify the encapsulation
characteristics of variables and methods in a class. Java has several other modi-
fiers that determine other characteristics. For example, the static modifier asso-
ciates a variable or method with its class rather than with an object of the class.

static variables
So far, we’ve seen two categories of variables: local variables that are declared
inside a method and instance variables that are declared in a class but not inside
a method. The term instance variable is used because an instance variable is
accessed through a particular instance (an object) of a class. In general, each
object has distinct memory space for each variable so that each object can have a
distinct value for that variable.

Another kind of variable, called a static variable or class variable, is
shared among all instances of a class. There is only one copy of a static
variable for all objects of a class. Therefore, changing the value of a
static variable in one object changes it for all of the others. The reserved
word static is used as a modifier to declare a static variable as fol-
lows:

private static int count = 0;

Memory space for a static variable is established when the class that contains
it is referenced for the first time in a program. A local variable declared within a
method cannot be static.

Constants, which are declared using the final modifier, are also often
declared using the static modifier as well. Because the value of constants can-
not be changed, there might as well be only one copy of the value across all
objects of the class.

static methods
In Chapter 2 we introduced the concept of a static method (also called a class
method). We noted, for instance, that all of the methods of the Math class are
static methods, meaning that they can be invoked through the class name. We
don’t have to instantiate an object of the class to invoke a static method. For
example, in the following line of code the sqrt method is invoked through the
Math class name:

A static variable is shared
among all instances of a class.

ke
y

co
nc

ep
t

5.2 wrapper classes 283

System.out.println (“Square root of 27: “ + Math.sqrt(27));

A method is made static by using the static modifier in the method
declaration. As we’ve seen many times, the main method of a Java pro-
gram must be declared with the static modifier; this is so main can
be executed by the interpreter without instantiating an object from the
class that contains main.

Because static methods do not operate in the context of a particular object,
they cannot reference instance variables, which exist only in an instance of a class.
The compiler will issue an error if a static method attempts to use a nonstatic
variable. A static method can, however, reference static variables because static
variables exist independent of specific objects. Therefore, the main method can
access only static or local variables.

The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations;
therefore there is no good reason to force us to create an object in order to request
these services.

The program in Listing 5.4 uses a loop to instantiate several objects of the
Slogan class, printing each one out in turn. At the end of the program it invokes
a method called getCount through the class name, which returns the number of
Slogan objects that were instantiated in the program.

Listing 5.5 shows the Slogan class. The constructor of Slogan increments a
static variable called count, which is initialized to zero when it is declared.
Therefore, count serves to keep track of the number of instances of Slogan that
are created.

The getCount method of Slogan is also declared as static, which allows it
to be invoked through the class name in the main method. Note that the only data
referenced in the getCount method is the integer variable count, which is static.
The getCount method could have been declared without the static modifier,
but then its invocation in the main method would have to have been done
through an instance of the Slogan class instead of the class itself.

5.2 wrapper classes
In some object-oriented programming languages, everything is represented using
classes and the objects that are instantiated from them. In Java, as we’ve discussed
previously, there are primitive types (such as int, double, char, and boolean)
in addition to classes and objects.

A method is made static by
using the static modifier in
the method declaration.

key
concept

284 CHAPTER 5 enhancing classes

listing
5.4

//**

// CountInstances.java Author: Lewis/Loftus

//

// Demonstrates the use of the static modifier.

//**

public class CountInstances

{

//---

// Creates several Slogan objects and prints the number of

// objects that were created.

//---

public static void main (String[] args)

{

Slogan obj;

obj = new Slogan ("Remember the Alamo.");

System.out.println (obj);

obj = new Slogan ("Don't Worry. Be Happy.");

System.out.println (obj);

obj = new Slogan ("Live Free or Die.");

System.out.println (obj);

obj = new Slogan ("Talk is Cheap.");

System.out.println (obj);

obj = new Slogan ("Write Once, Run Anywhere.");

System.out.println (obj);

System.out.println();

System.out.println ("Slogans created: " + Slogan.getCount());

}

}

Remember the Alamo.

Don't Worry. Be Happy.

Live Free or Die.

Talk is Cheap.

Write Once, Run Anywhere.

Slogans created: 5

output

code284.html

5.2 wrapper classes 285

Having two
categories of
data to manage

listing
5.5

//**

// Slogan.java Author: Lewis/Loftus

//

// Represents a single slogan string.

//**

public class Slogan

{

private String phrase;

private static int count = 0;

//---

// Sets up the slogan and counts the number of instances created.

//---

public Slogan (String str)

{

phrase = str;

count++;

}

//---

// Returns this slogan as a string.

//---

public String toString()

{

return phrase;

}

//---

// Returns the number of instances of this class that have been

// created.

//---

public static int getCount ()

{

return count;

}

}

code285.html

286 CHAPTER 5 enhancing classes

(primitive values and object references) can present a challenge in some circum-
stances. For example, we might create an object that serves as a container to hold
various types of other objects. However, in a specific situation, you may want it
to hold a simple integer value. In these cases we need to “wrap” a primitive type
into a class so that it can be treated as an object.

A wrapper class represents a particular primitive type. For instance, the
Integer class represents a simple integer value. An object created from the
Integer class stores a single int value. The constructors of the wrapper classes
accept the primitive value to store. For example:

Integer ageObj = new Integer(45);

Once this declaration and instantiation are performed, the ageObj
object effectively represents the integer 45 as an object. It can be used
wherever an object is called for in a program instead of a primitive
type.

For each primitive type in Java there exists a corresponding wrapper class in
the Java class library. All wrapper classes are defined in the java.lang package.
Figure 5.4 shows the wrapper class that corresponds to each primitive type.

Note that there is even a wrapper class that represents the type void. However,
unlike the other wrapper classes, the Void class cannot be instantiated. It simply
represents the concept of a void reference.

The wrapper classes also provide various methods related to the management
of the associated primitive type. For example, the Integer class contains meth-
ods that return the int value stored in the object and that convert the stored
value to other primitive types. Figure 5.5 lists some of the methods found in the

A wrapper class represents a
primitive value so that it can
be treated as an object.

ke
y

co
nc

ep
t

figure 5.4 Wrapper classes in the Java class library

byte

short

int

long

float

double

char

boolean

void

Byte

Short

Integer

Long

Float

Double

Character

Boolean

Void

Primitive Type Wrapper Class

Integer class. The other wrapper classes have similar methods. Appendix M
includes details of all wrapper classes.

Note that the wrapper classes also contain static methods that can be invoked
independent of any instantiated object. For example, the Integer class contains
a static method called parseInt to convert an integer that is stored in a String
to its corresponding int value. If the String object str holds the string “987”,
the following line of code converts the string into the integer value 987 and stores
that value the int variable num:

num = Integer.parseInt(str);

The Java wrapper classes often contain static constants that are helpful as well.
For example, the Integer class contains two constants, MIN_VALUE and
MAX_VALUE, which hold the smallest and largest int values, respectively. The
other wrapper classes contain similar constants for their types.

5.3 keyboard input revisited
The Keyboard class was presented in Chapter 2 to facilitate reading input entered
at the keyboard. Recall that the authors of this text wrote the Keyboard class. It

5.3 keyboard input revisited 287

figure 5.5 Some methods of the Integer class

Integer (int value)

 Constructor: creates a new Integer object storing the specified value.

byte byteValue ()

double doubleValue ()

float floatValue ()

int intValue ()

long longValue ()

 Return the value of this Integer as the corresponding primitive type.

static int ParseInt (String str)

 Returns the int corresponding to the value stored in the
 specified string.

static String toBinaryString (int num)

static String tohexString (int num)

static String toOctalString (int num)

 Returns a string representation of the specified integer value in the
 corresponding base.

288 CHAPTER 5 enhancing classes

is not part of the Java standard class library. Our goal was to make the initial
exploration of Java programming a bit easier. Now that we have explored several
aspects of object-oriented programming, let’s revisit the concept of keyboard
input. Let’s see, at least in part, what the Keyboard class has been doing for us
and how we can write code that accepts keyboard input without using the
Keyboard class.

The program in Listing 5.6 is generally equivalent to the Wages program pre-
sented in Chapter 3. It accomplishes the same task—determining the wages for an
employee based on the number of hours worked—but it does so without relying
on the Keyboard class.

Java input and output (I/O) is accomplished using objects that represent
streams of data. A stream is an ordered sequence of bytes. The System.out
object represents a standard output stream, which defaults to the monitor screen.
We’ve been able to use that object (with its print and println methods) all
along because it requires no special setup or processing. Reading input from the
keyboard, however, is a bit more involved.

First we must establish the input stream from which we will read the incom-
ing data. The first line of the main method in the Wages2 program is a declara-
tion of the standard input stream object in a useful form. The System.in object
is used to create an InputStreamReader object, which is used in turn to create a
BufferedReader object. This declaration creates an input stream that treats the
input as characters (rather than arbitrary bits) and buffers the input so that it can
be read one line at a time.

The readLine method of the BufferedReader class reads an entire line of
input as a String. A line of input is terminated by the enter key. If we want to
treat the input as a numeric value, we must convert it. For example, in two places
in this program, we use the parseInt method of the Integer wrapper class and
the parseDouble method of the Double class to convert the input string to the
appropriate numeric type.

Also, several things could go wrong in the process of reading or converting a
value. These problems will manifest themselves as exceptions. Some exceptions in
Java have to be handled explicitly—or at least acknowledged that they could
occur—by the program. The Wages2 program acknowledges that the main
method may throw an IOException using a throws clause in the method header.

The Keyboard class hides these aspects of keyboard input. It declares and
manages the standard input stream. It provides methods that read and convert
specific data types. It catches exceptions if they occur and handles them grace-
fully. In addition, the Keyboard class allows multiple values to be put on one line
of input and uses the StringTokenizer class to separate the data items.

5.3 keyboard input revisited 289

We explore
exceptions and
I/O further in

listing
5.6

//**

// Wages2.java Author: Lewis/Loftus

//

// Demonstrates the use of Java I/O classes for keyboard input.

//**

import java.io.*;

import java.text.NumberFormat;

public class Wages2

{

//---

// Reads pertinent information and calculates wages.

//---

public static void main (String[] args) throws IOException

{

BufferedReader in =

new BufferedReader (new InputStreamReader (System.in));

String name;

int hours;

double rate, pay;

System.out.print ("Enter your name: ");

name = in.readLine ();

System.out.print ("Enter the number of hours worked: ");

hours = Integer.parseInt (in.readLine());

System.out.print ("Enter pay rate per hour: ");

rate = Double.parseDouble (in.readLine());

System.out.println ();

pay = hours * rate;

NumberFormat fmt = NumberFormat.getCurrencyInstance();

System.out.println (name + ", your pay is: " + fmt.format(pay));

}

}

Enter the number of hours worked: 46

Gross earnings: $404.25

output

code289.html

290 CHAPTER 5 enhancing classes

Chapter 8. It is important to learn how keyboard input is accomplished in Java
without any special third-party classes. Keep in mind that any general Java pro-
gramming environment will not have the Keyboard class to use. However, the
Keyboard class does represent a nice abstraction of these issues. We will continue
to use it as appropriate in examples throughout this book.

5.4 nested classes
A class can be declared inside another class. Just as a loop written inside another
loop is called a nested loop, a class written inside another class is called a nested
class. The nested class is considered a member of the enclosing class, just like a
variable or method.

Just like any other class, a nested class produces a separate bytecode file. The
name of the bytecode file is the name of the enclosing class followed by the $
character followed by the name of the nested class. Like any other bytecode file,
it has an extension of .class. A class called Nested that is declared inside a
class called Enclosing will result in a compiled bytecode file called
Enclosing$Nested.class.

Because it is a member of the enclosing class, a nested class has access to the
enclosing class’s instance variables and methods, even if they are declared with
private visibility. Now let’s look at it from the other direction. The enclosing class
can directly access data in the nested class only if the data is declared public. In
general, we’ve always said that public data is a bad idea because it violates encap-
sulation. However, nested classes provide an exception to that rule. It is reason-
able to declare the data of a private nested class with public visibility because only
the enclosing class can get to that data (despite its public declaration).

Such a privileged relationship should be reserved for appropriate situations. A
class should be nested inside another only if it makes sense in the context of the
enclosing class. In such cases, the nesting reinforces the relationship yet simplifies
the implementation by allowing direct access to the data.

The static modifier can be applied to a class, but only if the class is nested
inside another. Like static methods, a static nested class cannot reference instance
variables or methods defined in its enclosing class.

inner classes
A nonstatic nested class is called an inner class. Because it is not static, an inner
class is associated with each instance of the enclosing class. Therefore no mem-

5.4 nested classes 291

ber inside an inner class can be declared static. An instance of an inner class can
exist only within an instance of the enclosing class.

Let’s look at an example that shows the access capabilities of nested classes.
The program shown in Listing 5.7 contains a main method that creates one
Outer object, prints it, calls its changeMessages method, and then prints it
again.

listing
5.7

//**

// TestInner.java Author: Lewis/Loftus

//

// Demonstrates the access capabilities of inner classes.

//**

public class TestInner

{

//---

// Creates and manipulates an Outer object.

//---

public static void main (String[] args)

{

Outer out = new Outer();

System.out.println (out);

System.out.println();

out.changeMessages();

System.out.println (out);

}

}

Half of the problem is 90% mental.

Outer num = 9877

Another deadline. Another miracle.

Outer num = 9878

Life is uncertain. Eat dessert first.

Outer num = 9879

One seventh of your life is spent on Mondays.

Outer num = 9880

output

code291.html

292 CHAPTER 5 enhancing classes

The Outer class, shown in Listing 5.8, contains some private instance data,
some public methods, and a private inner class called Inner. The instance data
of the Outer class includes two references to Inner objects.

listing
5.8

//**

// Outer.java Author: Lewis/Loftus

//

// Represents a class that encapsulates an inner class.

//**

public class Outer

{

private int num;

private Inner in1, in2;

//---

// Sets up this object, initializing one int and two objects

// created from the inner class.

//---

public Outer()

{

num = 9876;

in1 = new Inner ("Half of the problem is 90% mental.");

in2 = new Inner ("Another deadline. Another miracle.");

}

//---

// Changes the messages in the Inner objects (directly).

//---

public void changeMessages()

{

in1.message = "Life is uncertain. Eat dessert first.";

in2.message = "One seventh of your life is spent on Mondays.";

}

//---

// Returns this object as a string.

//---

public String toString()

{

return in1 + "\n" + in2;

}

code292.html

Each Inner object contains a public String called message.
Because it is public, the changeMessages of the Outer class can reach
in and modify the contents. As we’ve stressed many times, giving data
public access should be avoided in general. However, in this case, since
Inner is a private class, no class other than Outer can refer to it.
Therefore no class other than Outer can directly access the public data
inside it either.

Using inner classes with public data should be done only in situations in which
the outer class is completely dependent on the inner class for its existence. The
nuances of nested and inner classes go beyond the scope of this text, but their basic

5.4 nested classes 293

listing
5.8 continued

//***

// Represents an inner class.

//***

private class Inner

{

public String message;

//--

// Sets up this Inner object with the specified string.

//--

public Inner (String str)

{

message = str;

}

//--

// Returns this object as a string, including a value from

// the outer class.

//--

public String toString()

{

num++;

return message + "\nOuter num = " + num;

}

}

}

If designed properly, inner
classes preserve encapsulation
while simplifying the imple-
mentation of related classes.

key
concept

294 CHAPTER 5 enhancing classes

concepts will prove useful in certain examples, particularly in the graphics track at
the end of this chapter.

5.5 interfaces
We’ve used the term interface to refer to the public methods through which we
can interact with an object. That definition is consistent with our use of it in this
section, but now we are going to formalize this concept using a particular lan-
guage construct in Java.

A Java interface is a collection of constants and abstract methods.
An abstract method is a method that does not have an implementation.
That is, there is no body of code defined for an abstract method. The
header of the method, including its parameter list, is simply followed by
a semicolon. An interface cannot be instantiated.

Listing 5.9 shows an interface called Complexity. It contains two abstract
methods: setComplexity and getComplexity.

An abstract method can be preceded by the reserved word
abstract, though in interfaces it usually is not. Methods in interfaces
have public visibility by default.

A class implements an interface by providing method implementa-
tions for each of the abstract methods defined in the interface. A class
that implements an interface uses the reserved word implements

An interface is a collection of
abstract methods. It cannot be
instantiated.ke

y
co

nc
ep

t

listing
5.9

//**

// Complexity.java Author: Lewis/Loftus

//

// Represents the interface for an object that can be assigned an

// explicit complexity.

//**

public interface Complexity

{

public void setComplexity (int complexity);

public int getComplexity();

}

A class implements an inter-
face, which formally defines a
set of methods used to interact
with objects of that class.

ke
y

co
nc

ep
t

code294.html

5.5 interfaces 295

followed by the interface name in the class header. If a class asserts that it imple-
ments a particular interface, it must provide a definition for all methods in the
interface. The compiler will produce errors if any of the methods in the interface
are not given a definition in the class.

The Question class, shown in Listing 5.10, implements the Complexity inter-
face. Both the setComplexity and getComplexity methods are implemented.
They must be declared with the same signatures as their abstract counterparts in
the interface. In the Question class, the methods are defined simply to set or
return a numeric value representing the complexity level of the question that the
object represents.

listing
5.10

//**

// Question.java Author: Lewis/Loftus

//

// Represents a question (and its answer).

//**

public class Question implements Complexity

{

private String question, answer;

private int complexityLevel;

//---

// Sets up the question with a default complexity.

//---

public Question (String query, String result)

{

question = query;

answer = result;

complexityLevel = 1;

}

//---

// Sets the complexity level for this question.

//---

public void setComplexity (int level)

{

complexityLevel = level;

}

code295.html

296 CHAPTER 5 enhancing classes

listing
5.10 continued

//---

// Returns the complexity level for this question.

//---

public int getComplexity()

{

return complexityLevel;

}

//---

// Returns the question.

//---

public String getQuestion()

{

return question;

}

//---

// Returns the answer to this question.

//---

public String getAnswer()

{

return answer;

}

//---

// Returns true if the candidate answer matches the answer.

//---

public boolean answerCorrect (String candidateAnswer)

{

return answer.equals(candidateAnswer);

}

//---

// Returns this question (and its answer) as a string.

//---

public String toString()

{

return question + "\n" + answer;

}

}

5.5 interfaces 297

Note that the Question class also implements additional methods that are not
part of the Complexity interface. Specifically, it defines methods called
getQuestion, getAnswer, answerCorrect, and toString, which have nothing
to do with the interface. The interface guarantees that the class implements cer-
tain methods, but it does not restrict it from having others. It is common for a
class that implements an interface to have other methods.

Listing 5.11 shows a program called MiniQuiz, which uses some Question
objects.

listing
5.11

//**

// MiniQuiz.java Author: Lewis/Loftus

//

// Demonstrates the use of a class that implements an interface.

//**

import cs1.Keyboard;

public class MiniQuiz

{

//---

// Presents a short quiz.

//---

public static void main (String[] args)

{

Question q1, q2;

String possible;

q1 = new Question ("What is the capital of Jamaica?",

"Kingston");

q1.setComplexity (4);

q2 = new Question ("Which is worse, ignorance or apathy?",

"I don't know and I don't care");

q2.setComplexity (10);

System.out.print (q1.getQuestion());

System.out.println (" (Level: " + q1.getComplexity() + ")");

possible = Keyboard.readString();

if (q1.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q1.getAnswer());

code297.html

298 CHAPTER 5 enhancing classes

An interface—as well as its relationship to a class that implements it—can be
shown in a UML diagram. An interface is represented similarly to a class node
except that the designation <<interface>> is inserted above the class name. A
dotted arrow with an open arrowhead is drawn from the class to the interface
that it implements. Figure 5.6 shows a UML class diagram for the MiniQuiz
program.

Multiple classes can implement the same interface, providing alternative defi-
nitions for the methods. For example, we could implement a class called Task
that also implements the Complexity interface. In it we could choose to manage
the complexity of a task in a different way (though it would still have to imple-
ment all the methods of the interface).

A class can implement more than one interface. In these cases, the class must
provide an implementation for all methods in all interfaces listed. To show that a

listing
5.11 continued

System.out.println();

System.out.print (q2.getQuestion());

System.out.println (" (Level: " + q2.getComplexity() + ")");

possible = Keyboard.readString();

if (q2.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q2.getAnswer());

}

}

What is the capital of Jamaica? (Level: 4)

Kingston

Correct

Which is worse, ignorance or apathy? (Level: 10)

apathy

No, the answer is I don't know and I don't care

output

5.5 interfaces 299

class implements multiple interfaces, they are listed in the implements clause, sep-
arated by commas. For example:

class ManyThings implements interface1, interface2, interface3

{

// all methods of all interfaces

}

In addition to, or instead of, abstract methods, an interface can also contain
constants, defined using the final modifier. When a class implements an inter-
face, it gains access to all of the constants defined in it. This mechanism allows
multiple classes to share a set of constants that are defined in a single location.

The interface construct formally defines the ways in which we can interact
with a class. It also serves as a basis for a powerful programming technique called
polymorphism, which we discuss in Chapter 7.

figure 5.6 A UML class diagram for the MiniQuiz program

+ main (args : String[]) : void

MiniQuiz

+ getQuestion () : String
+ getAnswer () : String
+ answerCorrect (String) : boolean
+ toString() : String

Question

1

2

+ getComplexity () : int
+ setComplexity (int) : void

<<interface>>
Complexity

the Comparable interface
The Java standard class library contains interfaces as well as classes. The
Comparable interface, for example, is defined in the java.lang package. It con-
tains only one method, compareTo, which takes an object as a parameter and
returns an integer.

The intention of this interface is to provide a common mechanism for compar-
ing one object to another. One object calls the method and passes another as a
parameter as follows:

if (obj1.compareTo(obj2) < 0)

System.out.println (“obj1 is less than obj2”);

As specified by the documentation for the interface, the integer that is returned
from the compareTo method should be negative if obj1 is less than obj2, 0 if
they are equal, and positive if obj1 is greater than obj2. It is up to the designer
of each class to decide what it means for one object of that class to be less than,
equal to, or greater than another.

In Chapter 3, we mentioned that the String class contains a compareTo
method that operates in this manner. Now we can clarify that the String class
has this method because it implements the Comparable interface. The String
class implementation of this method bases the comparison on the lexicographic
ordering defined by the Unicode character set.

the Iterator interface
The Iterator interface is another interface defined as part of the Java standard
class library. It is used by classes that represent a collection of objects, providing
a means to move through the collection one object at a time.

The two primary methods in the Iterator interface are hasNext, which
returns a boolean result, and next, which returns an object. Neither of these
methods takes any parameters. The hasNext method returns true if there are
items left to process, and next returns the next object. It is up to the designer of
the class that implements the Iterator interface to decide the order in which
objects will be delivered by the next method.

We should note that, according to the spirit of the interface, the next method
does not remove the object from the underlying collection; it simply returns a ref-
erence to it. The Iterator interface also has a method called remove, which
takes no parameters and has a void return type. A call to the remove method
removes the object that was most recently returned by the next method from the
underlying collection.

300 CHAPTER 5 enhancing classes

The Iterator interface is an improved version of an older interface called
Enumeration, which is still part of the Java standard class library. The
Enumeration interface does not have a remove method. Generally, the Iterator
interface is the preferred choice between the two.

We explore an example that uses the Iterator interface later in this text.

5.6 dialog boxes
A dialog box is a graphical window that pops up on top of any currently active
window so that the user can interact with it. A dialog box can serve a variety of
purposes, such as conveying some information, confirming an action, or allowing
the user to enter some information. Usually a dialog box has a solitary purpose,
and the user’s interaction with it is brief.

The Swing package (javax.swing) of the Java class library contains a class
called JOptionPane that simplifies the creation and use of basic dialog boxes.
Figure 5.7 lists some of the methods of JOptionPane.

The basic formats for a JOptionPane dialog box fall into
three categories. A message dialog simply displays an output
string. An input dialog presents a prompt and a single input
text field into which the user can enter one string of data. A
confirm dialog presents the user with a simple yes-or-no
question.

Let’s look at a program that uses each of these types of dialog boxes. Listing
5.12 shows a program that first presents the user with an input dialog box
requesting that an integer be entered. After the user presses the OK button on the

5.6 dialog boxes 301

figure 5.7 Some methods of the JOptionPane class

static String showInputDialog (Object msg)

 Displays a dialog box containg the specified message and an input text
field. The contents of the text field are returned.

static int showConfirmDialog (Component parent, Object msg)

 Displays a dialog box containing the specified message and Yes/No
button options. If the parent component is null, the box is centered on the screen.

static int showMessageDialog (Component parent, Object msg)

 Displays a dialog box containing the specified message. If the parent
component is null, the box is centered on the screen.

JOptionPane is a Swing class
that facilitates the creation of
dialog boxes.

key
concept

302 CHAPTER 5 enhancing classes

listing
5.12

//**

// EvenOdd.java Author: Lewis/Loftus

//

// Demonstrates the use of the JOptionPane class.

//**

import javax.swing.JOptionPane;

public class EvenOdd

{

//---

// Determines if the value input by the user is even or odd.

// Uses multiple dialog boxes for user interaction.

//---

public static void main (String[] args)

{

String numStr, result;

int num, again;

do

{

numStr = JOptionPane.showInputDialog ("Enter an integer: ");

num = Integer.parseInt(numStr);

result = "That number is " + ((num%2 == 0) ? "even" : "odd");

JOptionPane.showMessageDialog (null, result);

again = JOptionPane.showConfirmDialog (null, "Do Another?");

}

while (again == JOptionPane.YES_OPTION);

}

}

listing
5.12 continued

display

5.6 dialog boxes 303

input dialog, a second dialog box (this time a message dialog) appears informing
the user whether the number entered was even or odd. After the user dismisses
that box, a third dialog box appears to determine if the user would like to test
another number. If the user presses the button labeled Yes, the series of dialog
boxes repeats. Otherwise the program terminates.

The first parameter to the showMessageDialog and the showConfirmDialog
methods specifies the governing parent component for the dialog. Using a null
reference as this parameter causes the dialog box to appear centered on the
screen.

Many of the JOptionPane methods are overloaded in various ways to allow
the programmer to tailor the contents of the dialog box. Furthermore, the
showOptionDialog method can be used to create dialog boxes that combine
characteristics of the three basic formats for more elaborate interactions. Details
of these methods can be found in the class summary in Appendix M.

304 CHAPTER 5 enhancing classes

5.7 graphical user interfaces
Dialog boxes provide a brief glimpse into the world of graphical user interfaces
(GUIs) by permitting a user to interact with graphical elements such as buttons
and text boxes. However, in general, their interaction is limited by the predefined
nature of the dialog boxes. Furthermore, a GUI is far more than a series of dia-
log boxes that pop up as needed. A GUI is a well-designed layout of interactive
graphical components. There is usually significant programming logic designed to
respond to the various ways a user can interact with a GUI.

essential GUI elements
A GUI in Java is created with at least three kinds of objects:

◗ components

◗ events

◗ listeners

A GUI component is an object that defines a screen element to display infor-
mation or allow the user to interact with a program in a certain way. Examples of
GUI components include push buttons, text fields, labels, scroll bars, and menus.
A container is a special type of component that is used to hold and organize other
components. A dialog box and an applet are examples of container components.

An event is an object that represents some occurrence in which we may be
interested. Often, events correspond to user actions, such as pressing a mouse

button or typing a key on the keyboard. Most GUI com-
ponents generate events to indicate a user action related to
that component. For example, a component representing a
button will generate an event to indicate that it has been
pushed. A program that is oriented around a GUI,
responding to events from the user, is called event-driven.

A listener is an object that is “waiting” for an event to occur and that can
respond in some way when it does. The programmer must carefully establish the
relationships among the listener, the event it listens for, and the component that
will generate the event.

The remainder of this chapter introduces these essential elements of a GUI.
The graphic tracks in subsequent chapters expand on each of these topics, and
discuss additional events and components as well as additional features of com-
ponents already introduced. Chapter 9 is devoted to a complete discussion of GUI
issues, building on your evolving understanding of these topics.

A GUI is made up of graphical
components, events that repre-
sent user actions, and listeners
that respond to those events.

ke
y

co
nc

ep
t

5.7 graphical user interfaces 305

creating GUIs
To create a Java program that uses a GUI, we must:

◗ define and set up the necessary components,

◗ create listener objects and establish the relationship between the listeners
and the components which generate the events of interest, and

◗ define what happens as a result of the various user interactions that could
occur.

Let’s look at an example that performs these activities. The PushCounter pro-
gram shown in Listing 5.13 is an applet that presents the user with a single push
button (labeled “Push Me!”). Each time the button is pushed, a counter is
updated and displayed.

listing
5.13

//**

// PushCounter.java Authors: Lewis/Loftus

//

// Demonstrates a graphical user interface and an event listener.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class PushCounter extends JApplet

{

private int APPLET_WIDTH = 300, APPLET_HEIGHT = 35;

private int pushes;

private JLabel label;

private JButton push;

//---

// Sets up the GUI.

//---

public void init ()

{

pushes = 0;

push = new JButton ("Push Me!");

push.addActionListener (new ButtonListener());

listing
5.13 continued

label = new JLabel ("Pushes: " + Integer.toString (pushes));

Container cp = getContentPane();

cp.setBackground (Color.cyan);

cp.setLayout (new FlowLayout());

cp.add (push);

cp.add (label);

setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

//**

// Represents a listener for button push (action) events.

//**

private class ButtonListener implements ActionListener

{

//---

// Updates the counter when the button is pushed.

//---

public void actionPerformed (ActionEvent event)

{

pushes++;

label.setText("Pushes: " + Integer.toString (pushes));

repaint ();

}

}

}

display

306 CHAPTER 5 enhancing classes

5.7 graphical user interfaces 307

The components used in this program include a button, a label, and the applet
window that contains them. These components are defined by the classes
JButton, JLabel, and JApplet, respectively. These components are all part of
the Swing package (javax.swing). In Chapter 1 we mentioned that the Swing
package contains components that surpass those defined in the original AWT
package. These include JApplet, which is the Swing version of the Applet class
that we’ve used previously.

A push button is a component that allows the user to initiate an action with a
press of the mouse. A label is a component that displays a line of text in a GUI.
Labels are generally used to display information or to identify other components
in the GUI. Both push buttons and labels are fundamental components that can
be found in almost any GUI.

The init method of the applet sets up the GUI. The JButton constructor
takes a String parameter that specifies the label on the button. The JLabel con-
structor also takes a String parameter, which defines the initial content of the
label.

The only event of interest in this program occurs when
the button is pushed. To respond to an event, we must do
two things: create a listener object for the event and add that
listener to the graphical component that generates the event.
The listener object can contain a method that is called by the component when-
ever that event occurs.

A JButton generates an action event when it is pushed. Therefore we need an
action event listener. In this program, we define the ButtonListener class as the
listener for this event. In the init method, the listener object is instantiated and
then added to the button using the addActionListener method.

GUI components must be added to the container in which they are displayed.
In this example, the init method adds each component to the applet container.
More precisely, the button and label components are added to the content pane
that represents the primary container for the applet. The content pane is retrieved
using the getContentPane method of the JApplet class. The components are
then added to the content pane using the add method. The background color of
the content pane is set using the setBackground method. The layout manager for
the pane is set to a flow layout so that components are placed top to bottom and
left to right in each row as permitted by the width of the pane. (We discuss lay-
out managers in detail in Chapter 9.)

Now let’s take a closer look at the ButtonListener class. A common tech-
nique for creating a listener object is to define a class that implements a listener

A listener object contains a
method that is called whenever
an event occurs.

key
concept

308 CHAPTER 5 enhancing classes

interface. The Java standard class library contains a set of interfaces for various
event categories. For example, the interface for an action event is called
ActionListener. Recall from the discussion of interfaces earlier in this chapter
that an interface defines a set of methods that a class must implement. The
ActionListener interface specifies only one method, called actionPerformed.

Therefore the ButtonListener class implements the
ActionListener interface. The actionPerformed

method takes one parameter of type ActionEvent. Note
that ButtonListener is implemented as an inner class,
nested inside the primary applet class. Inner classes are

often used to define listener objects.

When the button is pushed, the JButton object invokes the actionPerformed
method of any listener that has been added to it. The JButton object generates
an ActionEvent object and passes it into the actionPerformed method. If nec-
essary, a listener can get information about the event from this parameter. In this
program, however, it is sufficient to know that the button was pushed. The
actionPerformed method responds by updating the counter used to keep track
of the number of times the button has been pushed, updating the content of the
label using the setText method of the JLabel class, and causing the applet to
repaint itself (so that the label is displayed correctly).

GUI applications
Let’s look at another example that uses some additional components. The
Fahrenheit program shown in Listing 5.14 is implemented as an application,
not an applet. The main method of the program instantiates the FahrenheitGUI
class and invokes its display method.

The program converts a temperature on the Fahrenheit scale into its equiva-
lent Celsius value. The user types an input value into a text field. A text field is a
component that displays an area into which the user can type a single line of
information. Text fields are commonly used in GUI programs as a means to
accept input. In this program, when the user enters a value and presses the enter
key, the result is computed and displayed using a label.

In the PushCounter applet, the applet window served
as the primary container of the GUI. However, because the
Fahrenheit program is an application, we need a differ-
ent container. A frame is a container component that is
generally used for standalone GUI-based applications. A

Inner classes are often used to
define listener objects.ke

y
co

nc
ep

t

A frame is a container that is
often used to display the inter-
face for a standalone GUI
application.

ke
y

co
nc

ep
t

5.7 graphical user interfaces 309

frame is displayed as a separate window with its own title bar. The Fahrenheit
program is executed just like any other application, but instead of interacting
with it through prompts in the command window, the application displays its
own frame containing the program’s graphical interface.

Listing 5.15 shows the FahrenheitGUI class. Its constructor sets up the GUI.
First it creates a frame using the JFrame class. The JFrame constructor accepts a
String parameter that will be shown in the title bar of the frame when it is dis-
played. The setDefaultCloseOperation method is used to specify what will
happen when the close button on the frame is pushed. In this case, we specify that

listing
5.14

//**

// Fahrenheit.java Author: Lewis/Loftus

//

// Demonstrates the use of JFrame and JTextArea GUI components.

//**

public class Fahrenheit

{

//---

// Creates and displays the temperature converter GUI.

//---

public static void main (String[] args)

{

FahrenheitGUI converter = new FahrenheitGUI();

converter.display();

}

}

display

310 CHAPTER 5 enhancing classes

listing
5.15

//**

// FahrenheitGUI.java Author: Lewis/Loftus

//

// Demonstrates the use of JFrame and JTextArea GUI components.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class FahrenheitGUI

{

private int WIDTH = 300;

private int HEIGHT = 75;

private JFrame frame;

private JPanel panel;

private JLabel inputLabel, outputLabel, resultLabel;

private JTextField fahrenheit;

//---

// Sets up the GUI.

//---

public FahrenheitGUI()

{

frame = new JFrame ("Temperature Conversion");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

inputLabel = new JLabel ("Enter Fahrenheit temperature:");

outputLabel = new JLabel ("Temperature in Celcius: ");

resultLabel = new JLabel ("---");

fahrenheit = new JTextField (5);

fahrenheit.addActionListener (new TempListener());

panel = new JPanel();

panel.setPreferredSize (new Dimension(WIDTH, HEIGHT));

panel.setBackground (Color.yellow);

panel.add (inputLabel);

panel.add (fahrenheit);

panel.add (outputLabel);

panel.add (resultLabel);

frame.getContentPane().add (panel);

}

5.7 graphical user interfaces 311

the program should terminate (exit) when the frame is closed. This is a typical
way to define the end of an event-driven application.

Another container used in this program is created using the JPanel class. A
panel is a container; however, unlike a frame, it cannot be displayed on its own.
A panel must be added to another container. Its role is to help organize the com-
ponents in a GUI.

listing
5.15 continued

//---

// Displays the primary application frame.

//---

public void display()

{

frame.pack();

frame.show();

}

//***

// Represents an action listener for the temperature input field.

//***

private class TempListener implements ActionListener

{

//--

// Performs the conversion when the enter key is pressed in

// the text field.

//--

public void actionPerformed (ActionEvent event)

{

int fahrenheitTemp, celciusTemp;

String text = fahrenheit.getText();

fahrenheitTemp = Integer.parseInt (text);

celciusTemp = (fahrenheitTemp-32) * 5/9;

resultLabel.setText (Integer.toString (celciusTemp));

}

}

}

312 CHAPTER 5 enhancing classes

The size of a panel can be specified using its setPreferredSize method,
which takes as a parameter a Dimension object. (A Dimension object encapsu-

lates the height and width of a component into one
object.) The background color of a panel can be set using
the setBackground method. Components are added to
the panel using the add method. In the Fahrenheit
example, once the entire panel is set up, it is added to the
content pane of the frame.

The components added to the panel in this program are three labels and a text
field. A text field is defined by the JTextField class. The constructor of the
JTextField class accepts an integer that indicates how many characters the text
field should be able to display.

Note that the order in which the labels and text field are added to the panel
dictates the order in which they appear. The size of the panel determines how the
components line up relative to each other. This is actually a function of the lay-
out manager. Panels, by default, are governed by a flow layout, which we explore
in detail in Chapter 9.

The display method of the FahrenheitGUI class invokes the pack and show
methods of the frame. The pack method sizes the frame to fit the components
that have been added to it, which in this case is the panel. The show method
causes the frame to be displayed on the monitor screen.

Note that the program responds only when the user presses the enter key inside
the text field. A JTextField object generates an action event when the enter key
is pressed. This is the same event that occurs when a button is pressed, as we saw
in the PushCounter example. The TempListener class is set up as the action lis-
tener for this program. Note that it is implemented as an inner class, which gives
it easy access to the components stored in the enclosing class.

In the actionPerformed method, the input string is obtained using the
getText method of the JTextField class. Then the input text is converted to a
numeric value, the equivalent Celsius temperature is computed, and the text of
the output label is set.

A panel is a container used
to organize other components.
It cannot be displayed on
its own.

ke
y

co
nc

ep
t

summary of key concepts 313

◗ An object reference variable stores the address of an object.

◗ The reserved word null represents a reference that does not point to a
valid object.

◗ The this reference always refers to the currently executing object.

◗ Several references can refer to the same object. These references are aliases
of each other.

◗ The == operator compares object references for equality, returning true if
the references are aliases of each other.

◗ The equals method can be defined to determine equality between objects
in any way we consider appropriate.

◗ If an object has no references to it, a program cannot use it. Java performs
automatic garbage collection by periodically reclaiming the memory space
occupied by these objects.

◗ When an object is passed to a method, the actual and formal parameters
become aliases of each other.

◗ A static variable is shared among all instances of a class.

◗ A method is made static by using the static modifier in the method
declaration.

◗ A wrapper class represents a primitive value so that it can be treated as an
object.

◗ If designed properly, inner classes preserve encapsulation while simplifying
the implementation of related classes.

◗ An interface is a collection of abstract methods. It cannot be instantiated.

◗ A class implements an interface, which formally defines a set of methods
used to interact with objects of that class.

◗ JOptionPane is a Swing class that facilitates the creation of dialog boxes.

◗ A GUI is made up of graphical components, events that represent user
actions, and listeners that respond to those events.

◗ A listener object contains a method that is called whenever an event
occurs.

◗ Inner classes are often used to define listener objects.

summary of
key concepts

314 CHAPTER 5 enhancing classes

◗ A frame is a container that is often used to display the interface for a
standalone GUI application.

◗ A panel is a container used to organize other components. It cannot be
displayed on its own.

self-review questions
5.1 What is a null reference?

5.2 What does the this reference refer to?

5.3 What is an alias? How does it relate to garbage collection?

5.4 How are objects passed as parameters?

5.5 What is the difference between a static variable and an instance
variable?

5.6 How can we represent a primitive value as an object?

5.7 What are some of the issues of Java keyboard input that the
Keyboard class hides?

5.8 Why might you declare an inner class?

5.9 What is the difference between a class and an interface?

5.10 What is a dialog box?

5.11 What is the relationship between an event and a listener?

5.12 Can a GUI-based program be implemented as a standalone applica-
tion? Explain.

exercises
5.1 Discuss the manner in which Java passes parameters to a method. Is

this technique consistent between primitive types and objects?
Explain.

5.2 Explain why a static method cannot refer to an instance variable.

5.3 Can a class implement two interfaces that each contains the same
method signature? Explain.

5.4 Create an interface called Visible that includes two methods:
makeVisible and makeInvisible. Both methods should take no

programming projects 315

parameters and should return a boolean result. Describe how a class
might implement this interface.

5.5 Draw a UML class diagram that shows the relationships among the
elements of Exercise 5.4.

5.6 Create an interface called VCR that has methods that represent the
standard operations on a video cassette recorder (play, stop, etc.).
Define the method signatures any way you desire. Describe how a
class might implement this interface.

5.7 Draw a UML class diagram that shows the relationships among the
elements of Exercise 5.6.

5.8 Draw a UML class diagram that shows the relationships among the
classes used in the PushCounter program.

5.9 Draw a UML class diagram that shows the relationships among the
classes used in the Fahrenheit program.

programming projects
5.1 Modify the PigLatinTranslator class from Chapter 4 so that its

translate method is static. Modify the PigLatin class so that it
invokes the method correctly.

5.2 Modify the Rational class from Chapter 4 so that it implements the
Comparable interface. To perform the comparison, compute an
equivalent floating point value from the numerator and denominator
for both Rational objects, then compare them using a tolerance
value of 0.0001. Write a main driver to test your modifications.

5.3 Design a Java interface called Priority that includes two methods:
setPriority and getPriority. The interface should define a way
to establish numeric priority among a set of objects. Design and
implement a class called Task that represents a task (such as on a to-
do list) that implements the Priority interface. Create a driver class
to exercise some Task objects.

5.4 Modify the Task class from Programming Project 5.3 so that it also
implements the Complexity interface defined in this chapter. Modify
the driver class to show these new features of Task objects.

a

b

project315b.html
project315a.html

316 CHAPTER 5 enhancing classes

5.5 Modify the Task class from Programming Projects 5.3 and 5.4 so
that it also implements the Comparable interface from the Java stan-
dard class library. Implement the interface such that the tasks are
ranked by priority. Create a driver class whose main method shows
these new features of Task objects.

5.6 Design a Java interface called Lockable that includes the following
methods: setKey, lock, unlock, and locked. The setKey, lock,
and unlock methods take an integer parameter that represents the
key. The setKey method establishes the key. The lock and unlock
methods lock and unlock the object, but only if the key passed in is
correct. The locked method returns a boolean that indicates
whether or not the object is locked. A Lockable object represents an
object whose regular methods are protected: if the object is locked,
the methods cannot be invoked; if it is unlocked, they can be
invoked. Redesign and implement a version of the Coin class from
Chapter 4 so that it is Lockable.

5.7 Redesign and implement a version of the Account class from
Chapter 4 so that it is Lockable as defined by Programming Project
5.6.

5.8 Design and implement an application that uses dialog boxes to
obtain two integer values (one dialog box for each value) and dis-
play the sum and product of the values. Use another dialog box to
see whether the user wants to process another pair of values.

5.9 Redesign and implement a version of the PalindromeTester pro-
gram from Chapter 3 so that it uses dialog boxes to obtain the input
string, display the results, and prompt to continue.

5.10 Modify the Fahrenheit program from this chapter so that it dis-
plays a button that, when pressed, also causes the conversion calcu-
lation to take place. (That is, the user will now have the option of
pressing enter in the text field or pressing the button.) Have the lis-
tener that is already defined for the text field also listen for the but-
ton push.

5.11 Design and implement an application that displays a button and a
label. Every time the button is pushed, the label should display a
random number between 1 and 100, inclusive.

5.12 Redesign and implement a version of the PigLatin program from
Chapter 4 so that it uses a GUI. Accept the sentence using a text
field and display the results using a label.

project316.html

answers to self-review questions 317

5.13 Design and implement an application that presents two buttons and
a label to the user. Label the buttons Increment and Decrement,
respectively. Display a numeric value (initially 50) using the label.
Each time the increment button is pushed, increment the value dis-
played. Likewise, each time the decrement button is pressed, decre-
ment the value displayed.

5.14 Design and implement an application that serves as a mortgage cal-
culator. Accept the mortgage amount, the interest rate, and the loan
duration (number of years) using three text fields. When the user
presses a button, determine and display the total of the monthly pay-
ments and the amount of interest that will be paid.

For additional programming projects, click the CodeMate icon below:

5.15

answers to self-review questions
5.1 A null reference is a reference that does not refer to any object. The

reserved word null can be used to check for null references before
following them.

5.2 The this reference always refers to the currently executing object. A
non-static method of a class is written generically for all objects of
the class, but it is invoked through a particular object. The this ref-
erence, therefore, refers to the object through which that method is
currently being executed.

5.3 Two references are aliases of each other if they refer to the same
object. Changing the state of the object through one reference
changes it for the other because there is actually only one object. An
object is marked for garbage collection only when there are no valid
references to it.

5.4 Objects are passed to methods by copying the reference to the object
(its address). Therefore the actual and formal parameters of a
method become aliases of each other.

project317.html

318 CHAPTER 5 enhancing classes

5.5 Memory space for an instance variable is created for each object that
is instantiated from a class. A static variable is shared among all
objects of a class.

5.6 A wrapper class is defined in the Java standard class library for each
primitive type. In situations where objects are called for, an object
created from a wrapper class may suffice.

5.7 The Keyboard class hides the declaration of a useful standard input
stream, handles exceptions that may occur, and performs data type
conversions.

5.8 An inner class is useful when two classes are tightly related and one
regularly changes the state of the other. If designed properly, an inner
class can preserve encapsulation while simplifying the implementa-
tions of both classes.

5.9 A class can be instantiated; an interface cannot. An interface con-
tains a set of abstract methods for which a class provides the imple-
mentation.

5.10 A dialog box is a small window that appears for the purpose of con-
veying information, confirming an action, or accepting input.
Generally, dialog boxes are used in specific situations for brief user
interactions.

5.11 Events usually represent user actions. A listener object is set up
to listen for a certain event to be generated from a particular
component.

5.12 A GUI-based program can be implemented as a standalone applica-
tion. The application needs a window such as a frame to serve as a
container for the GUI elements of the program.

introduces arrays, which are

programming constructs that

group data into lists. Arrays are

a fundamental component of

most high-level languages. We

also explore the ArrayList

class in the Java standard class

library, which provides capabili-

ties similar to arrays, with addi-

tional features.

◗ Define and use arrays for basic
data organization.

◗ Describe how arrays and array ele-
ments are passed as parameters.

◗ Explore how arrays and other
objects can be combined to man-
age complex information.

◗ Describe the use of multidimen-
sional arrays.

◗ Examine the ArrayList class and
the costs of its versatility.

chapter
objectives

In our programming efforts, we often want to
organize objects or primitive data in a form that

is easy to access and modify. This chapter

6
arrays

320 CHAPTER 6 arrays

6.0 arrays
An array is a simple but powerful programming language construct used to group
and organize data. When writing a program that manages a large amount of
information, such as a list of 100 names, it is not practical to declare separate
variables for each piece of data. Arrays solve this problem by letting us declare
one variable that can hold multiple, individually accessible values.

array indexing
An array is a list of values. Each value is stored at a specific, numbered position
in the array. The number corresponding to each position is called an index or a
subscript. Figure 6.1 shows an array of integers and the indexes that correspond
to each position. The array is called height; it contains integers that represent
several peoples’ heights in inches.

In Java, array indexes always begin at zero. Therefore the value
stored at index 5 is actually the sixth value in the array. The array
shown in Fig. 6.1 has 11 values, indexed from 0 to 10.

To access a value in an array, we use the name of the array followed
by the index in square brackets. For example, the following expression

refers to the ninth value in the array height:

height[8]

An array of size N is indexed
from 0 to N–1.ke

y
co

nc
ep

t

figure 6.1 An array called height containing integer values

index

value of height[5]

0

1

2

3

4

5

6

7

8

9

10

69

61

70

74

62

69

66

73

79

62

70

6.0 arrays 321

According to Fig. 6.1, height[8] (pronounced height-sub-eight) contains the
value 79. Don’t confuse the value of the index, in this case 8, with the value
stored in the array at that index, in this case 79.

The expression height[8] refers to a single integer stored at a particular
memory location. It can be used wherever an integer variable can be used.
Therefore you can assign a value to it, use it in calculations, print its value, and
so on. Furthermore, because array indexes are integers, you can use integer
expressions to specify the index used to access an array. These concepts are
demonstrated in the following lines of code:

height[2] = 72;

height[count] = feet * 12;

average = (height[0] + height[1] + height[2]) / 3;

System.out.println (“The middle value is “ + height[MAX/2]);

pick = height[rand.nextInt(11)];

declaring and using arrays
In Java, arrays are objects. To create an array, the reference to the array
must be declared. The array can then be instantiated using the new
operator, which allocates memory space to store values. The following
code represents the declaration for the array shown in Fig. 6.1:

int[] height = new int[11];

The variable height is declared to be an array of integers whose type is writ-
ten as int[]. All values stored in an array have the same type (or are at least com-
patible). For example, we can create an array that can hold integers or an array
that can hold strings, but not an array that can hold both integers and strings. An
array can be set up to hold any primitive type or any object (class) type. A value
stored in an array is sometimes called an array element, and the type of values
that an array holds is called the element type of the array.

Note that the type of the array variable (int[]) does not include the size of
the array. The instantiation of height, using the new operator, reserves the mem-
ory space to store 11 integers indexed from 0 to 10. Once an array is declared to
be a certain size, the number of values it can hold cannot be changed.

The example shown in Listing 6.1 creates an array called list that can hold
15 integers, which it loads with successive increments of 10. It then changes the
value of the sixth element in the array (at index 5). Finally, it prints all values
stored in the array.

In Java, an array is an object.
Memory space for the array
elements is reserved by instan-
tiating the array using the new
operator.

key
concept

322 CHAPTER 6 arrays

Figure 6.2 shows the array as it changes during the execution of the
BasicArray program. It is often convenient to use for loops when handling
arrays because the number of positions in the array is constant. Note that a con-
stant called LIMIT is used in several places in the BasicArray program. This con-

listing
6.1

//**

// BasicArray.java Author: Lewis/Loftus

//

// Demonstrates basic array declaration and use.

//**

public class BasicArray

{

final static int LIMIT = 15;

final static int MULTIPLE = 10;

//---

// Creates an array, fills it with various integer values,

// modifies one value, then prints them out.

//---

public static void main (String[] args)

{

int[] list = new int[LIMIT];

// Initialize the array values

for (int index = 0; index < LIMIT; index++)

list[index] = index * MULTIPLE;

list[5] = 999; // change one array value

for (int index = 0; index < LIMIT; index++)

System.out.print (list[index] + " ");

System.out.println ();

}

}

0 10 20 30 40 999 60 70 80 90 100 110 120 130 140

output

code322.html

6.0 arrays 323

stant is used to declare the size of the array, to control the for loop that initial-
izes the array values, and to control the for loop that prints the values. The use
of constants in this way is a good practice. It makes a program more readable and
easier to modify. For instance, if the size of the array needed to change, only one
line of code (the constant declaration) would need to be modified. We’ll see
another way to handle this situation in upcoming examples in this chapter.

The square brackets used to indicate the index of an array are treated as an
operator in Java. Therefore, just like the + operator or the <= operator, the index
operator ([]) has a precedence relative to the other Java operators that deter-
mines when it is executed. It has the highest precedence of all Java operators.

The index operator performs automatic bounds checking. Bounds checking
ensures that the index is in range for the array being referenced. Whenever a ref-
erence to an array element is made, the index must be greater than or equal to
zero and less than the size of the array. For example, suppose an array called
prices is created with 25 elements. The valid indexes for the array are from 0 to

figure 6.2 The array list as it changes in the BasicArray program

After three
iterations of the

first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After completing
the first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After changing
the value of
list[5]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The array is created
with 15 elements,

indexed from 0 to 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

10

20

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0

10

20

30

40

999

60

70

80

90

100

110

120

130

140

324 CHAPTER 6 arrays

24. Whenever a reference is made to a particular element in the array
(such as prices[count]), the value of the index is checked. If it is
in the valid range of indexes for the array (0 to 24), the reference is
carried out. If the index is not valid, an exception called
ArrayIndexOutOfBoundsException is thrown.

Because array indexes begin at zero and go up to one less than the
size of the array, it is easy to create off-by-one errors in a program. When refer-
encing array elements, be careful to ensure that the index stays within the array
bounds.

Another important characteristic of Java arrays is that their size is held in a
constant called length in the array object. It is a public constant and therefore
can be referenced directly. For example, after the array prices is created with 25
elements, the constant prices.length contains the value 25. Its value is set once
when the array is first created and cannot be changed. The length constant,
which is an integral part of each array, can be used when the array size is needed
without having to create a separate constant.

Let’s look at another example. The program shown in Listing 6.2 reads 10
integers into an array called numbers, and then prints them in reverse order.

Bounds checking ensures that
an index used to refer to an
array element is in range. The
Java index operator performs
automatic bounds checking.

ke
y

co
nc

ep
t

listing
6.2

//**

// ReverseOrder.java Author: Lewis/Loftus

//

// Demonstrates array index processing.

//**

import cs1.Keyboard;

public class ReverseOrder

{

//---

// Reads a list of numbers from the user, storing them in an

// array, then prints them in the opposite order.

//---

public static void main (String[] args)

{

double[] numbers = new double[10];

System.out.println ("The size of the array: " + numbers.length);

code324.html

6.0 arrays 325

Note that in the ReverseOrder program, the array numbers is declared to
have 10 elements and therefore is indexed from 0 to 9. The index range is con-
trolled in the for loops by using the length field of the array object. You should
carefully set the initial value of loop control variables and the conditions that ter-
minate loops to guarantee that all intended elements are processed and only valid
indexes are used to reference an array element.

The LetterCount example, shown in Listing 6.3, uses two arrays and a
String object. The array called upper is used to store the number of times each
uppercase alphabetic letter is found in the string. The array called lower serves
the same purpose for lowercase letters.

listing
6.2 continued

for (int index = 0; index < numbers.length; index++)

{

System.out.print ("Enter number " + (index+1) + ": ");

numbers[index] = Keyboard.readDouble();

}

System.out.println ("The numbers in reverse order:");

for (int index = numbers.length-1; index >= 0; index--)

System.out.print (numbers[index] + " ");

System.out.println ();

}

}

The size of the array: 10

Enter number 1: 18.36

Enter number 2: 48.9

Enter number 3: 53.5

Enter number 4: 29.06

Enter number 5: 72.404

Enter number 6: 34.8

Enter number 7: 63.41

Enter number 8: 45.55

Enter number 9: 69.0

Enter number 10: 99.18

The numbers in reverse order:

99.18 69.0 45.55 63.41 34.8 72.404 29.06 53.5 48.9 18.36

output

326 CHAPTER 6 arrays

listing
6.3

//**

// LetterCount.java Author: Lewis/Loftus

//

// Demonstrates the relationship between arrays and strings.

//**

import cs1.Keyboard;

public class LetterCount

{

//---

// Reads a sentence from the user and counts the number of

// uppercase and lowercase letters contained in it.

//---

public static void main (String[] args)

{

final int NUMCHARS = 26;

int[] upper = new int[NUMCHARS];

int[] lower = new int[NUMCHARS];

char current; // the current character being processed

int other = 0; // counter for non-alphabetics

System.out.println ("Enter a sentence:");

String line = Keyboard.readString();

// Count the number of each letter occurence

for (int ch = 0; ch < line.length(); ch++)

{

current = line.charAt(ch);

if (current >= 'A' && current <= 'Z')

upper[current-'A']++;

else

if (current >= 'a' && current <= 'z')

lower[current-'a']++;

else

other++;

}

// Print the results

System.out.println ();

for (int letter=0; letter < upper.length; letter++)

code326.html

6.0 arrays 327

listing
6.3 continued

{

System.out.print ((char) (letter + 'A'));

System.out.print (": " + upper[letter]);

System.out.print ("\t\t" + (char) (letter + 'a'));

System.out.println (": " + lower[letter]);

}

System.out.println ();

System.out.println ("Non-alphabetic characters: " + other);

}

}

Enter a sentence:

In Casablanca, Humphrey Bogart never says "Play it again, Sam."

A: 0 a: 10

B: 1 b: 1

C: 1 c: 1

D: 0 d: 0

E: 0 e: 3

F: 0 f: 0

G: 0 g: 2

H: 1 h: 1

I: 1 i: 2

J: 0 j: 0

K: 0 k: 0

L: 0 l: 2

M: 0 m: 2

N: 0 n: 4

O: 0 o: 1

P: 1 p: 1

Q: 0 q: 0

R: 0 r: 3

S: 1 s: 3

T: 0 t: 2

U: 0 u: 1

V: 0 v: 1

W: 0 w: 0

X: 0 x: 0

Y: 0 y: 3

Z: 0 z: 0

Non-alphabetic characters: 14

output

328 CHAPTER 6 arrays

Because there are 26 letters in the English alphabet, both the upper and lower
arrays are declared with 26 elements. Each element contains an integer that is ini-
tially zero by default. The for loop scans through the string one character at a
time. The appropriate counter in the appropriate array is incremented for each
character found in the string.

Both of the counter arrays are indexed from 0 to 25. We have to map each
character to a counter. A logical way to do this is to use upper[0] to count the
number of ‘A’ characters found, upper[1] to count the number of ‘B’ charac-
ters found, and so on. Likewise, lower[0] is used to count ‘a’ characters,
lower[1] is used to count ‘b’ characters, and so on. A separate variable called
other is used to count any nonalphabetic characters that are encountered.

We use the current character to calculate which index in the array to reference.
Remember that each character has a numeric value based on the Unicode char-
acter set, and that the uppercase and lowercase alphabetic letters are continuous
and in order (see Appendix C). Therefore, taking the numeric value of an upper-
case letter such as ‘E’ (which is 69) and subtracting the numeric value of the
character ‘A’ (which is 65) yields 4, which is the correct index for the counter of
the character ‘E’. Note that nowhere in the program do we actually need to
know the specific numeric values for each letter.

alternate array syntax
Syntactically, there are two ways to declare an array reference in Java. The first
technique, which is used in the previous examples and throughout this text, is to
associate the brackets with the type of values stored in the array. The second tech-
nique is to associate the brackets with the name of the array. Therefore the fol-
lowing two declarations are equivalent:

int[] grades;

int grades[];

Although there is no difference between these declaration techniques as far as
the compiler is concerned, the first is consistent with other types of declarations.
Consider the following declarations:

int total, sum, result;

int[] grade1, grade2, grade3;

6.0 arrays 329

In the first declaration, the type of the three variables, int, is given at the begin-
ning of the line. Similarly, in the second declaration, the type of the three vari-
ables, int[], is also given at the beginning of the line. In both cases, the type
applies to all variables in that particular declaration.

When the alternative form of array declaration is used, it can lead to poten-
tially confusing situations, such as the following:

int grade1[], grade2, grade3[];

The variables grade1 and grade3 are declared to be arrays of integers, whereas
grade2 is a single integer. Although most declarations declare variables of the
same type, this example declares variables of two different types. Why did the
programmer write a declaration in this way? Is it a mistake? Should grade2 be
an array? This confusion is eliminated if the array brackets are associated with
the element type. Therefore we associate the brackets with the element type
throughout this text.

initializer lists
An important alternative technique for instantiating arrays is using an initializer
list that provides the initial values for the elements of the array. It is essentially
the same idea as initializing a variable of a primitive data type in its declaration
except that an array requires several values.

The items in an initializer list are separated by commas and delimited by braces
({}). When an initializer list is used, the new operator is not used. The size of the
array is determined by the number of items in the initializer list. For example, the
following declaration instantiates the array scores as an array of eight integers,
indexed from 0 to 7 with the specified initial values:

int[] scores = {87, 98, 69, 54, 65, 76, 87, 99};

An initializer list can be used only when an array is first declared.

The type of each value in an initializer list must match the type of
the array elements. Let’s look at another example:

char[] letterGrades = {‘A’, ‘B’, ‘C’, ‘D’, ‘F’};

In this case, the variable letterGrades is declared to be an array of five charac-
ters, and the initializer list contains character literals. The program shown in
Listing 6.4 demonstrates the use of an initializer list to instantiate an array.

An initializer list can be used
to instantiate an array object
instead of using the new opera-
tor. The size of the array and
its initial values are determined
by the initializer list.

key
concept

330 CHAPTER 6 arrays

arrays as parameters
An entire array can be passed as a parameter to a method. Because an array is an
object, when an entire array is passed as a parameter, a copy of the reference to

the original array is passed. We discussed this issue as it applies to all
objects in Chapter 5.

A method that receives an array as a parameter can permanently
change an element of the array because it is referring to the original ele-
ment value. The method cannot permanently change the reference to

listing
6.4

//**

// Primes.java Author: Lewis/Loftus

//

// Demonstrates the use of an initializer list for an array.

//**

public class Primes

{

//---

// Stores some prime numbers in an array and prints them.

//---

public static void main (String[] args)

{

int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

System.out.println ("Array length: " + primeNums.length);

System.out.println ("The first few prime numbers are:");

for (int scan = 0; scan < primeNums.length; scan++)

System.out.print (primeNums[scan] + " ");

System.out.println ();

}

}

Array length: 8

The first few prime numbers are:

2 3 5 7 11 13 17 19

output

An entire array can be passed
as a parameter, making the for-
mal parameter an alias of the
original.

ke
y

co
nc

ep
t

code330.html

the array itself because a copy of the original reference is sent to the method.
These rules are consistent with the rules that govern any object type.

An element of an array can be passed to a method as well. If the element type
is a primitive type, a copy of the value is passed. If that element is a reference to
an object, a copy of the object reference is passed. As always, the impact of
changes made to a parameter inside the method depends on the type of the
parameter. We discuss arrays of objects further in the next section.

6.1 arrays of objects
In previous examples, the arrays stored primitive types such as integers and
characters. Arrays can also store references to objects as elements. Fairly complex
information management structures can be created using only arrays and other
objects. For example, an array could contain objects, and each of those objects
could consist of several variables and the methods that use them. Those variables
could themselves be arrays, and so on. The design of a program should capitalize
on the ability to combine these constructs to create the most appropriate repre-
sentation for the information.

arrays of string objects
Consider the following declaration:

String[] words = new String[25];

The variable words is an array of references to String objects. The new opera-
tor in the declaration instantiates the array and reserves space for 25 String ref-
erences. Note that this declaration does not create any String objects; it merely
creates an array that holds references to String objects.

The program called GradeRange shown in Listing 6.5 creates an array
of String objects called grades, which stores letter grades for a course. The
String objects are created using string literals in the initializer list. Note that this
array could not have been declared as an array of characters because the plus and
minus grades create two-character strings. The output for the GradeRange pro-
gram shown in Listing 6.5 lists various letter grades and their corresponding
lower numeric cutoff values, which have been stored in a corresponding array of
integers.

6.1 arrays of objects 331

332 CHAPTER 6 arrays

Sometimes two arrays with corresponding elements are called parallel arrays.
The danger of parallel arrays is that one may become out of synch with the other.
In an object-oriented approach, we would generally be better off creating one

listing
6.5

//**

// GradeRange.java Author: Lewis/Loftus

//

// Demonstrates the use of an array of String objects.

//**

public class GradeRange

{

//---

// Stores the possible grades and their numeric lowest value,

// then prints them out.

//---

public static void main (String[] args)

{

String[] grades = {"A", "A-", "B+", "B", "B-", "C+", "C", "C-",

"D+", "D", "D-", "F"};

int[] cutoff = {95, 90, 87, 83, 80, 77, 73, 70, 67, 63, 60, 0};

for (int level = 0; level < cutoff.length; level++)

System.out.println (grades[level] + "\t" + cutoff[level]);

}

}

A 95

A- 90

B+ 87

B 83

B- 80

C+ 77

C 73

C- 70

D+ 67

D 63

D- 60

F 0

output

code332.html

array that held a single object containing all necessary information. For example,
the GradeRange program could be changed to use a single array of objects that
contain both the grade string and the numeric cutoff value. This modification is
left as a programming project.

command-line arguments
The formal parameter to the main method of a Java application is always an
array of String objects. We’ve ignored that parameter in previous examples, but
now we can discuss how it might occasionally be useful.

The Java runtime environment invokes the main method when an
application is submitted to the interpreter. The String[] parameter,
which we typically call args, represents command-line arguments that
are provided when the interpreter is invoked. Any extra information on
the command line when the interpreter is invoked is stored in the args
array for use by the program. This technique is another way to provide input to
a program.

The program shown in Listing 6.6 uses command-line arguments to print a
nametag. It assumes the first argument represents some type of greeting and the
second argument represents a person’s name.

If two strings are not provided on the command line for the NameTag program,
the args array will not contain enough (if any) elements, and the references in the
program will cause an ArrayIndexOutOfBoundsException to be thrown. If
extra information is included on the command line, it would be stored in the
args array but ignored by the program.

Remember that the parameter to the main method is always an array of
String objects. If you want numeric information to be input as a command-line
argument, the program has to convert it from its string representation.

You also should be aware that in some program development environments a
command line is not used to submit a program to the interpreter. In such situa-
tions, the command-line information can be specified in some other way. Consult
the documentation for these specifics if necessary.

filling arrays of objects
We must always take into account an important characteristic of object arrays:
The creation of the array and the creation of the objects that we store in the array
are two separate steps. When we declare an array of String objects, for example,

6.1 arrays of objects 333

Command-line arguments are
stored in an array of String
objects and are passed to the
main method.

key
concept

334 CHAPTER 6 arrays

we create an array that holds String references. The String objects
themselves must be created separately. In previous examples, the String
objects were created using string literals in an initializer list, or, in the
case of command-line arguments, they were created by the Java runtime
environment.

This issue is demonstrated in the Tunes program and its accom-
panying classes. Listing 6.7 shows the Tunes class, which contains a main method
that creates, modifies, and examines a compact disc (CD) collection. Each CD
added to the collection is specified by its title, artist, purchase price, and number
of tracks.

listing
6.6

//**

// NameTag.java Author: Lewis/Loftus

//

// Demonstrates the use of command line arguments.

//**

public class NameTag

{

//---

// Prints a simple name tag using a greeting and a name that is

// specified by the user.

//---

public static void main (String[] args)

{

System.out.println ();

System.out.println (" " + args[0]);

System.out.println ("My name is " + args[1]);

System.out.println ();

}

}

>java NameTag Howdy John

Howdy

My name is John

>java NameTag Hello William

Hello

My name is William

output

Instantiating an array of objects
reserves room to store refer-
ences only. The objects that are
stored in each element must be
instantiated separately.

ke
y

co
nc

ep
t

code334.html

6.1 arrays of objects 335

listing
6.7

//**

// Tunes.java Author: Lewis/Loftus

//

// Driver for demonstrating the use of an array of objects.

//**

public class Tunes

{

//---

// Creates a CDCollection object and adds some CDs to it. Prints

// reports on the status of the collection.

//---

public static void main (String[] args)

{

CDCollection music = new CDCollection ();

music.addCD ("Storm Front", "Billy Joel", 14.95, 10);

music.addCD ("Come On Over", "Shania Twain", 14.95, 16);

music.addCD ("Soundtrack", "Les Miserables", 17.95, 33);

music.addCD ("Graceland", "Paul Simon", 13.90, 11);

System.out.println (music);

music.addCD ("Double Live", "Garth Brooks", 19.99, 26);

music.addCD ("Greatest Hits", "Jimmy Buffet", 15.95, 13);

System.out.println (music);

}

}

My CD Collection

Number of CDs: 4

Total value: $61.75

Average cost: $15.44

CD List:

$14.95 10 Storm Front Billy Joel

$14.95 16 Come On Over Shania Twain

$17.95 33 Soundtrack Les Miserables

$13.90 11 Graceland Paul Simon

output

code335.html

Listing 6.8 shows the CDCollection class. It contains an array of CD objects
representing the collection. It maintains a count of the CDs in the collection and
their combined value. It also keeps track of the current size of the collection array
so that a larger array can be created if too many CDs are added to the collection.

The collection array is instantiated in the CDCollection constructor. Every
time a CD is added to the collection (using the addCD method), a new CD object
is created and a reference to it is stored in the collection array.

Each time a CD is added to the collection, we check to see whether we have
reached the current capacity of the collection array. If we didn’t perform this
check, an exception would eventually be thrown when we try to store a new CD
object at an invalid index. If the current capacity has been reached, the private
increaseSize method is invoked, which first creates an array that is twice as big
as the current collection array. Each CD in the existing collection is then
copied into the new array. Finally, the collection reference is set to the larger
array. Using this technique, we theoretically never run out of room in our CD col-
lection. The user of the CDCollection object (the main method) never has to
worry about running out of space because it’s all handled internally.

Figure 6.3 shows a UML class diagram of the Tunes program. Recall that the
open diamond indicates aggregation (a has-a relationship). The cardinality of the
relationship is also noted: a CDCollection object contains zero or more CD
objects.

336 CHAPTER 6 arrays

My CD Collection

Number of CDs: 6

Total value: $97.69

Average cost: $16.28

CD List:

$14.95 10 Storm Front Billy Joel

$14.95 16 Come On Over Shania Twain

$17.95 33 Soundtrack Les Miserables

$13.90 11 Graceland Paul Simon

$19.99 26 Double Live Garth Brooks

$15.95 13 Greatest Hits Jimmy Buffet

listing
6.7 continued

6.1 arrays of objects 337

listing
6.8

//**

// CDCollection.java Author: Lewis/Loftus

//

// Represents a collection of compact discs.

//**

import java.text.NumberFormat;

public class CDCollection

{

private CD[] collection;

private int count;

private double totalCost;

//---

// Creates an initially empty collection.

//---

public CDCollection ()

{

collection = new CD[100];

count = 0;

totalCost = 0.0;

}

//---

// Adds a CD to the collection, increasing the size of the

// collection if necessary.

//---

public void addCD (String title, String artist, double cost,

int tracks)

{

if (count == collection.length)

increaseSize();

collection[count] = new CD (title, artist, cost, tracks);

totalCost += cost;

count++;

}

code337.html

338 CHAPTER 6 arrays

listing
6.8 continued

//---

// Returns a report describing the CD collection.

//---

public String toString()

{

NumberFormat fmt = NumberFormat.getCurrencyInstance();

String report = "&&&\n";

report += "My CD Collection\n\n";

report += "Number of CDs: " + count + "\n";

report += "Total cost: " + fmt.format(totalCost) + "\n";

report += "Average cost: " + fmt.format(totalCost/count);

report += "\n\nCD List:\n\n";

for (int cd = 0; cd < count; cd++)

report += collection[cd].toString() + "\n";

return report;

}

//---

// Doubles the size of the collection by creating a larger array

// and copying the existing collection into it.

//---

private void increaseSize ()

{

CD[] temp = new CD[collection.length * 2];

for (int cd = 0; cd < collection.length; cd++)

temp[cd] = collection[cd];

collection = temp;

}

}

The toString method of the CDCollection class returns an entire report
summarizing the collection. The report is created, in part, using calls to the
toString method of each CD object stored in the collection. Listing 6.9 shows the
CD class.

6.2 sorting
Sorting is the process of arranging a list of items in a well-defined order. For
example, you may want to alphabetize a list of names or put a list of survey
results into descending numeric order. Many sorting algorithms have been devel-
oped and critiqued over the years. In fact, sorting is considered to be a classic area
of study in computer science.

6.2 sorting 339

figure 6.3 A UML class diagram of the Tunes program

+ main (args : String[]) : void

Tunes

– collection : CD[]
– count : int
– totalCost : double

+ addCD(title : String, artist : String, cost :
 double, tracks : int) : void
+ to string() : String
– increaseSize() : void

CDCollection

– title : String
– artist : String
– cost : double
– tracks : int

+ toString() : String

CD

1

m

340 CHAPTER 6 arrays

listing
6.9

//**

// CD.java Author: Lewis/Loftus

//

// Represents a compact disc.

//**

import java.text.NumberFormat;

public class CD

{

private String title, artist;

private double cost;

private int tracks;

//---

// Creates a new CD with the specified information.

//---

public CD (String name, String singer, double price, int numTracks)

{

title = name;

artist = singer;

cost = price;

tracks = numTracks;

}

//---

// Returns a description of this CD.

//---

public String toString()

{

NumberFormat fmt = NumberFormat.getCurrencyInstance();

String description;

description = fmt.format(cost) + "\t" + tracks + "\t";

description += title + "\t" + artist;

return description;

}

}

code340.html

6.2 sorting 341

This section examines two sorting algorithms: selection sort and
insertion sort. Complete coverage of various sorting techniques is
beyond the scope of this text. Instead we introduce the topic and estab-
lish some of the fundamental ideas involved. We do not delve into a
detailed analysis of the algorithms but instead focus on the strategies
involved and general characteristics.

selection sort
The selection sort algorithm sorts a list of values by successively put-
ting particular values in their final, sorted positions. In other words, for
each position in the list, the algorithm selects the value that should go
in that position and puts it there. Let’s consider the problem of putting
a list of numeric values into ascending order.

The general strategy of selection sort is: Scan the entire list to find the smallest
value. Exchange that value with the value in the first position of the list. Scan the
rest of the list (all but the first value) to find the smallest value, then exchange it
with the value in the second position of the list. Scan the rest of the list (all but the
first two values) to find the smallest value, then exchange it with the value in
the third position of the list. Continue this process for all but the last position in
the list (which will end up containing the largest value). When the process is com-
plete, the list is sorted. Figure 6.4 demonstrates the use of the selection sort
algorithm.

Selection sort works by putting
each value in its final position,
one at a time.

key
concept

Selection sort and insertion
sort are two sorting algorithms
that define the processing
steps for putting a list of val-
ues into a well-defined order.

key
concept

figure 6.4 Selection sort processing

Scan right starting with 3.
1 is the smallest. Exchange 1 and 3.

Scan right starting with 9.
2 is the smallest. Exchange 9 and 2.

Scan right starting with 6.
3 is the smallest. Exchange 6 and 3.

Scan right starting with 6.
6 is the smallest. Exchange 6 and 6.

3 9 6 1 2

1 9 6 3 2

1 2 6 3 9

1 2 3 6 9

1 2 3 6 9

342 CHAPTER 6 arrays

The program shown in Listing 6.10 uses a selection sort to arrange a list of val-
ues into ascending order. The SortGrades class contains a main method that cre-
ates an array of integers. It calls the static method selectionSort in the Sorts
class to put them in ascending order.

Listing 6.11 shows the Sorts class. It contains three static sorting algorithms.
The SortGrades program uses only the selectionSort method. The other
methods are discussed later in this section.

The implementation of the selectionSort method uses two for loops to sort
an array of integers. The outer loop controls the position in the array where the
next smallest value will be stored. The inner loop finds the smallest value in the

rest of the list by scanning all positions greater than or equal to the
index specified by the outer loop. When the smallest value is deter-
mined, it is exchanged with the value stored at the index. This exchange
is done in three assignment statements by using an extra variable called
temp. This type of exchange is often called swapping.

listing
6.10

//**

// SortGrades.java Author: Lewis/Loftus

//

// Driver for testing a numeric selection sort.

//**

public class SortGrades

{

//---

// Creates an array of grades, sorts them, then prints them.

//---

public static void main (String[] args)

{

int[] grades = {89, 94, 69, 80, 97, 85, 73, 91, 77, 85, 93};

Sorts.selectionSort (grades);

for (int index = 0; index < grades.length; index++)

System.out.print (grades[index] + " ");

}

}

69 73 77 80 85 85 89 91 93 94 97

Swapping is the process of
exchanging two values.
Swapping requires three
assignment statements.

ke
y

co
nc

ep
t

output

code342.html

6.2 sorting 343

listing
6.11

//**

// Sorts.java Author: Lewis/Loftus

//

// Demonstrates the selection sort and insertion sort algorithms,

// as well as a generic object sort.

//**

public class Sorts

{

//---

// Sorts the specified array of integers using the selection

// sort algorithm.

//---

public static void selectionSort (int[] numbers)

{

int min, temp;

for (int index = 0; index < numbers.length-1; index++)

{

min = index;

for (int scan = index+1; scan < numbers.length; scan++)

if (numbers[scan] < numbers[min])

min = scan;

// Swap the values

temp = numbers[min];

numbers[min] = numbers[index];

numbers[index] = temp;

}

}

//---

// Sorts the specified array of integers using the insertion

// sort algorithm.

//---

public static void insertionSort (int[] numbers)

{

for (int index = 1; index < numbers.length; index++)

{

int key = numbers[index];

int position = index;

code343.html

344 CHAPTER 6 arrays

Note that because this algorithm finds the smallest value during each iteration,
the result is an array sorted in ascending order (that is, smallest to largest). The
algorithm can easily be changed to put values in descending order by finding the
largest value each time.

listing
6.11 continued

// shift larger values to the right

while (position > 0 && numbers[position-1] > key)

{

numbers[position] = numbers[position-1];

position--;

}

numbers[position] = key;

}

}

//---

// Sorts the specified array of objects using the insertion

// sort algorithm.

//---

public static void insertionSort (Comparable[] objects)

{

for (int index = 1; index < objects.length; index++)

{

Comparable key = objects[index];

int position = index;

// shift larger values to the right

while (position > 0 && objects[position-1].compareTo(key) > 0)

{

objects[position] = objects[position-1];

position--;

}

objects[position] = key;

}

}

}

6.2 sorting 345

insertion sort
The Sorts class also contains a method that performs an insertion sort on an
array of integers. If used to sort the array of grades in the SortGrades program,
it would produce the same results as the selection sort did. However, the pro-
cessing to put the numbers in order is different.

The insertion sort algorithm sorts a list of values by repetitively
inserting a particular value into a subset of the list that has already been
sorted. One at a time, each unsorted element is inserted at the appro-
priate position in that sorted subset until the entire list is in order.

The general strategy of insertion sort is: Begin with a “sorted” list containing
only one value. Sort the first two values in the list relative to each other by
exchanging them if necessary. Insert the list’s third value into the appropriate
position relative to the first two (sorted) values. Then insert the fourth value into
its proper position relative to the first three values in the list. Each time an inser-
tion is made, the number of values in the sorted subset increases by one. Continue
this process until all values are inserted in their proper places, at which point the
list is completely sorted.

The insertion process requires that the other values in the array shift to make
room for the inserted element. Figure 6.5 demonstrates the behavior of the inser-
tion sort algorithm.

Insertion sort works by insert-
ing each value into a previ-
ously sorted subset of the list.

key
concept

figure 6.5 Insertion sort processing

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6 and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6 and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 2.

All values are sorted.

3 9 6 1 2

3 9 6 1 2

3 6 9 1 2

1 3 6 9 2

1 2 3 6 9

346 CHAPTER 6 arrays

Similar to the selection sort implementation, the insertionSort method uses
two for loops to sort an array of integers. In the insertion sort, however, the
outer loop controls the index in the array of the next value to be inserted. The
inner loop compares the current insert value with values stored at lower indexes
(which make up a sorted subset of the entire list). If the current insert value is less
than the value at position, that value is shifted to the right. Shifting continues
until the proper position is opened to accept the insert value. Each iteration of the
outer loop adds one more value to the sorted subset of the list, until the entire list
is sorted.

sorting an array of objects
The Sorts class in Listing 6.11 contains an overloaded version of the
insertionSort method. This version of the method accepts an array of
Comparable objects and uses the insertion sort algorithm to put the objects in
sorted order. Note the similarities in the general logic of both versions of the
insertionSort method.

The main difference between the two versions of the insertionSort method
is that one sorts an array of integers, whereas the other sorts an array of objects.
We know what it means for one integer to be less than another integer, but what
does it mean for one object to be less than another object? Basically, that decision
depends on the objects being sorted and the characteristics on which the objects
are to be ordered.

The key is that the parameter to the method is an array of Comparable
objects. That is, the array is filled with objects that have implemented the
Comparable interface, which we discussed in Chapter 5. Recall that the
Comparable interface contains one method, compareTo, which is designed to
return an integer that is less than zero, equal to zero, or greater than zero if the
executing object is less than, equal to, or greater than the object to which it is
being compared, respectively.

Let’s look at an example. The SortPhoneList program shown in Listing 6.12
creates an array of Contact objects, sorts these objects using a call to the
insertionSort method, and prints the sorted list.

Each Contact object represents a person with a last name, a first name, and a
phone number. Listing 6.13 shows the Contact class.

6.2 sorting 347

listing
6.12

//**

// SortPhoneList.java Author: Lewis/Loftus

//

// Driver for testing an object sort.

//**

public class SortPhoneList

{

//---

// Creates an array of Contact objects, sorts them, then prints

// them.

//---

public static void main (String[] args)

{

Contact[] friends = new Contact[7];

friends[0] = new Contact ("John", "Smith", "610-555-7384");

friends[1] = new Contact ("Sarah", "Barnes", "215-555-3827");

friends[2] = new Contact ("Mark", "Riley", "733-555-2969");

friends[3] = new Contact ("Laura", "Getz", "663-555-3984");

friends[4] = new Contact ("Larry", "Smith", "464-555-3489");

friends[5] = new Contact ("Frank", "Phelps", "322-555-2284");

friends[6] = new Contact ("Marsha", "Grant", "243-555-2837");

Sorts.insertionSort(friends);

for (int index = 0; index < friends.length; index++)

System.out.println (friends[index]);

}

}

Barnes, Sarah 215-555-3827

Getz, Laura 663-555-3984

Grant, Marsha 243-555-2837

Phelps, Frank 322-555-2284

Riley, Mark 733-555-2969

Smith, John 610-555-7384

Smith, Larry 464-555-3489

output

code347.html

348 CHAPTER 6 arrays

listing
6.13

//**

// Contact.java Author: Lewis/Loftus

//

// Represents a phone contact.

//**

public class Contact implements Comparable

{

private String firstName, lastName, phone;

//---

// Sets up this contact with the specified information.

//---

public Contact (String first, String last, String telephone)

{

firstName = first;

lastName = last;

phone = telephone;

}

//---

// Returns a description of this contact as a string.

//---

public String toString ()

{

return lastName + ", " + firstName + "\t" + phone;

}

//---

// Uses both last and first names to determine lexical ordering.

//---

public int compareTo (Object other)

{

int result;

if (lastName.equals(((Contact)other).lastName))

result = firstName.compareTo(((Contact)other).firstName);

else

result = lastName.compareTo(((Contact)other).lastName);

return result;

}

}

code348.html

6.2 sorting 349

The Contact class implements the Comparable interface and therefore pro-
vides a definition of the compareTo method. In this case, the contacts are sorted
by last name; if two contacts have the same last name, their first names are used.

When the insertionSort method executes, it relies on the compareTo
method of each object to determine the order. We are guaranteed that the objects
in the array have implemented the compareTo method because they are all
Comparable objects (according to the parameter type). The compiler will issue an
error message if we attempt to pass an array to this method that does not contain
Comparable objects. Therefore this version of the insertionSort method can
be used to sort any array of objects as long as the objects have implemented the
Comparable interface. This example demonstrates a classic and powerful use of
interfaces to create generic algorithms that work on a variety of data.

comparing sorts
There are various reasons for choosing one sorting algorithm over another,
including the algorithm’s simplicity, its level of efficiency, the amount of memory
it uses, and the type of data being sorted. An algorithm that is easier to
understand is also easier to implement and debug. However, often the
simplest sorts are the most inefficient ones. Efficiency is usually con-
sidered to be the primary criterion when comparing sorting algorithms.
In general, one sorting algorithm is less efficient than another if it per-
forms more comparisons than the other. There are several algorithms
that are more efficient than the two we examined, but they are also
more complex.

Both selection sort and insertion sort have essentially the same level of effi-
ciency. Both have an outer loop and an inner loop with similar properties, if not
purposes. The outer loop is executed once for each value in the list, and the inner
loop compares the value in the outer loop with most, if not all, of the
values in the rest of the list. Therefore, both algorithms perform
approximately n2 number of comparisons, where n is the number of
values in the list. We say that both selection sort and insertion sort are
algorithms of order n2. More efficient sorts perform fewer comparisons
and are of a smaller order, such as n log2 n.

Because both selection sort and insertion sort have the same general efficiency,
the choice between them is almost arbitrary. However, there are some additional
issues to consider. Selection sort is usually easy to understand and will often suf-
fice in many situations. Further, each value moves exactly once to its final place

Sorting algorithms are ranked
according to their efficiency,
which is usually defined as the
number of comparisons
required to perform the sort.

key
concept

Both selection sort and inser-
tion sort algorithms are of
order n2. Other sorts are more
efficient.

key
concept

in the list. That is, although the selection and insertion sorts are equivalent (gen-
erally) in the number of comparisons made, selection sort makes fewer swaps.

6.3 two-dimensional arrays
The arrays we’ve examined so far have all been one-dimensional arrays in the
sense that they represent a simple list of values. As the name implies, a two-dimen-
sional array has values in two dimensions, which are often thought of as the rows
and columns of a table. Figure 6.6 graphically compares a one-dimensional array
with a two-dimensional array. We must use two indexes to refer to a value in a
two-dimensional array, one specifying the row and another the column.

Brackets are used to represent each dimension in the array. Therefore the type
of a two-dimensional array that stores integers is int[][]. Technically, Java rep-
resents two-dimensional arrays as an array of arrays. A two-dimensional integer
array is really a one-dimensional array of references to one-dimensional integer
arrays.

The TwoDArray program shown in Listing 6.14 instantiates a two-dimensional
array of integers. As with one-dimensional arrays, the size of the dimensions is
specified when the array is created. The size of the dimensions can be different.

350 CHAPTER 6 arrays

figure 6.6 A one-dimensional array and a two-dimensional array

one dimension two dimensions

The text’s Web site contains a discussion and examples of additional sorting
algorithms.

web
bonus

6.3 two-dimensional arrays 351

listing
6.14

//**

// TwoDArray.java Author: Lewis/Loftus

//

// Demonstrates the use of a two-dimensional array.

//**

public class TwoDArray

{

//---

// Creates a 2D array of integers, fills it with increasing

// integer values, then prints them out.

//---

public static void main (String[] args)

{

int[][] table = new int[5][10];

// Load the table with values

for (int row=0; row < table.length; row++)

for (int col=0; col < table[row].length; col++)

table[row][col] = row * 10 + col;

// Print the table

for (int row=0; row < table.length; row++)

{

for (int col=0; col < table[row].length; col++)

System.out.print (table[row][col] + "\t");

System.out.println();

}

}

}

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

output

code351.html

352 CHAPTER 6 arrays

Nested for loops are used in the TwoDArray program to load the array with
values and also to print those values in a table format. Carefully trace the pro-
cessing to see how the nested loops eventually visit each element in the two-
dimensional array. Note that the outer loops are governed by table.length,
which represents the number of rows, and the inner loops are governed by
table[row].length, which represents the number of columns in that row.

As with one-dimensional arrays, an initializer list can be used to instantiate a
two-dimensional array, where each element is itself an array initializer list. This
technique is used in the SodaSurvey program, which is shown in Listing 6.15.

listing
6.15

//**

// SodaSurvey.java Author: Lewis/Loftus

//

// Demonstrates the use of a two-dimensional array.

//**

import java.text.DecimalFormat;

public class SodaSurvey

{

//---

// Determines and prints the average of each row (soda) and each

// column (respondent) of the survey scores.

//---

public static void main (String[] args)

{

int[][] scores = { {3, 4, 5, 2, 1, 4, 3, 2, 4, 4},

{2, 4, 3, 4, 3, 3, 2, 1, 2, 2},

{3, 5, 4, 5, 5, 3, 2, 5, 5, 5},

{1, 1, 1, 3, 1, 2, 1, 3, 2, 4} };

final int SODAS = scores.length;

final int PEOPLE = scores[0].length;

int[] sodaSum = new int[SODAS];

int[] personSum = new int[PEOPLE];

code352.html

for (int soda=0; soda < SODAS; soda++)

for (int person=0; person < PEOPLE; person++)

{

sodaSum[soda] += scores[soda][person];

personSum[person] += scores[soda][person];

}

DecimalFormat fmt = new DecimalFormat ("0.#");

System.out.println ("Averages:\n");

for (int soda=0; soda < SODAS; soda++)

System.out.println ("Soda #" + (soda+1) + ": " +

fmt.format ((float)sodaSum[soda]/PEOPLE));

System.out.println ();

for (int person =0; person < PEOPLE; person++)

System.out.println ("Person #" + (person+1) + ": " +

fmt.format ((float)personSum[person]/SODAS));

}

}

Averages:

Soda #1: 3.2

Soda #2: 2.6

Soda #3: 4.2

Soda #4: 1.9

Person #1: 2.2

Person #2: 3.5

Person #3: 3.2

Person #4: 3.5

Person #5: 2.5

Person #6: 3

Person #7: 2

Person #8: 2.8

Person #9: 3.2

Person #10: 3.8

listing
6.15 continued

output

6.3 two-dimensional arrays 353

354 CHAPTER 6 arrays

Suppose a soda manufacturer held a taste test for four new flavors to see how
people liked them. The manufacturer got 10 people to try each new flavor and
give it a score from 1 to 5, where 1 equals poor and 5 equals excellent. The two-
dimensional array called scores in the SodaSurvey program stores the results of
that survey. Each row corresponds to a soda and each column in that row corre-
sponds to the person who tasted it. More generally, each row holds the responses
that all testers gave for one particular soda flavor, and each column holds the
responses of one person for all sodas.

The SodaSurvey program computes and prints the average responses for each
soda and for each respondent. The sums of each soda and person are first stored
in one-dimensional arrays of integers. Then the averages are computed and
printed.

multidimensional arrays
An array can have one, two, three, or even more dimensions. Any array with
more than one dimension is called a multidimensional array.

It’s fairly easy to picture a two-dimensional array as a table. A three-dimensional
array could be drawn as a cube. However, once you are past three dimensions,
multidimensional arrays might seem hard to visualize. Yet, consider that each sub-
sequent dimension is simply a subdivision of the previous one. It is often best to
think of larger multidimensional arrays in this way.

For example, suppose we wanted to store the number of students attending
universities across the United States, broken down in a meaningful way. We
might represent it as a four-dimensional array of integers. The first dimension
represents the state. The second dimension represents the universities in each
state. The third dimension represents the colleges in each university. Finally, the
fourth dimension represents departments in each college. The value stored at
each location is the number of students in one particular department. Figure 6.7
shows these subdivisions.

Two-dimensional arrays are fairly common. However, care should
be taken when deciding to create multidimensional arrays in a pro-
gram. When dealing with large amounts of data that are managed at
multiple levels, additional information and the methods needed to man-
age that information will probably be required. It is far more likely, for
instance, that in the previous example, each state would be represented
by an object, which may contain, among other things, an array to store
information about each university, and so on.

Using an array with more than
two dimensions is rare in an
object-oriented system because
intermediate levels are usually
represented as separate
objects.

ke
y

co
nc

ep
t

There is one other important characteristic of Java arrays to con-
sider. As we established previously, Java does not directly support mul-
tidimensional arrays. Instead, they are represented as arrays of refer-
ences to array objects. Those arrays could themselves contain refer-
ences to other arrays. This layering continues for as many dimensions
as required. Because of this technique for representing each dimension, the
arrays in any one dimension could be of different lengths. These are sometimes
called ragged arrays. For example, the number of elements in each row of a two-
dimensional array may not be the same. In such situations, care must be taken
to make sure the arrays are managed appropriately.

6.4 the ArrayList class
The ArrayList class is part of the java.util package of the Java
standard class library. It provides a service similar to an array in that it
can store a list of values and reference them by an index. However,
whereas an array remains a fixed size throughout its existence, an
ArrayList object dynamically grows and shrinks as needed. A data
element can be inserted into or removed from any location (index) of
an ArrayList object with a single method invocation.

The ArrayList class is part of the Collections API, a group of classes that
serve to organize and manage other objects. We discuss collection classes further
in Chapter 12.

Unlike an array, an ArrayList is not declared to store a particular type. An
ArrayList object stores a list of references to the Object class. A reference to
any type of object can be added to an ArrayList object. Because an ArrayList
stores references, a primitive value must be stored in an appropriate wrapper class
in order to be stored in an ArrayList. Figure 6.8 lists several methods of the
ArrayList class.

6.4 the ArrayList class 355

figure 6.7 Visualization of a four-dimensional array

state

university

college

department

Each array in a given dimen-
sion of a multidimensional
array could have a different
length.

key
concept

An ArrayList object is simi-
lar to an array, but it dynami-
cally changes size as needed,
and elements can be inserted
and removed.

key
concept

356 CHAPTER 6 arrays

The program shown in Listing 6.16 instantiates an ArrayList called band.
The method add is used to add several String objects to the ArrayList in a spe-
cific order. Then one particular string is deleted and another is inserted at a par-
ticular index. As with any other object, the toString method of the ArrayList
class is automatically called whenever it is sent to the println method.

Note that when an element from an ArrayList is deleted, the list of elements
“collapses” so that the indexes are kept continuous for the remaining elements.
Likewise, when an element is inserted at a particular point, the indexes of the
other elements are adjusted accordingly.

The objects stored in an ArrayList object can be of different reference types.
The methods of the ArrayList class are designed to accept references to the
Object class as parameters, thus allowing a reference to any kind of object to be
passed to it. Note that an implication of this implementation is that the

figure 6.8 Some methods of the ArrayList class

ArrayList()

Constructor: creates an initially empty list.

boolean add (Object obj)

Inserts the specified object to the end of this list.

void add (int index, Object obj)

Inserts the specified object into this list at the specified index.

void clear()

Removes all elements from this list.

Object remove (int index)

Removes the element at the specified index in this list and returns it.

Object get (int index)

Returns the object at the specified index in this list without removing it.

int indexOf (Object obj)

Returns the index of the first occurrence of the specified object.

boolean contains (Object obj)

Returns true if this list contains the specified object.

boolean isEmpty()

Returns true if this list contains no elements.

int size()

Returns the number of elements in this list.

6.4 the ArrayList class 357

listing
6.16

//**

// Beatles.java Author: Lewis/Loftus

//

// Demonstrates the use of a ArrayList object.

//**

import java.util.ArrayList;

public class Beatles

{

//---

// Stores and modifies a list of band members.

//---

public static void main (String[] args)

{

ArrayList band = new ArrayList();

band.add ("Paul");

band.add ("Pete");

band.add ("John");

band.add ("George");

System.out.println (band);

int location = band.indexOf ("Pete");

band.remove (location);

System.out.println (band);

System.out.println ("At index 1: " + band.get(1));

band.add (2, "Ringo");

System.out.println (band);

System.out.println ("Size of the band: " + band.size());

}

}

[Paul, Pete, John, George]

[Paul, John, George]

At index 1: John

Size of the band: 4

output

code357.html

358 CHAPTER 6 arrays

elementAt method’s return type is an Object reference. In order to retrieve a
specific object from the ArrayList, the returned object must be cast to its origi-
nal class. We discuss the Object class and its relationship to other classes in
Chapter 7.

ArrayList efficiency
The ArrayList class is implemented, as you might imagine, using an array. That
is, the ArrayList class stores as instance data an array of Object references. The
methods provided by the class manipulate that array so that the indexes remain
continuous as elements are added and removed.

When an ArrayList object is instantiated, the internal array is created with
an initial capacity that defines the number of references it can currently handle.
Elements can be added to the list without needing to allocate more memory until
it reaches this capacity. When required, the capacity is expanded to accommodate
the new need. We performed a similar operation in the Tunes program earlier in
this chapter.

When an element is inserted into an ArrayList, all of the elements at higher
indexes are copied into their new locations to make room for the new element.
Figure 6.9 illustrates this process. Similar processing occurs when an element is
removed from an ArrayList, except that the items are shifted in the other direc-
tion, closing the gap created by the deleted element to keep the indexes continu-
ous. If several elements are inserted or deleted, this copying is repeated many
times over.

If, in general, elements are added to or removed from the end of an
ArrayList, it’s efficiency is not affected. But if elements are added to and/or

removed from the front part of a long ArrayList, a huge amount of
element copying will occur. An ArrayList, with its dynamic character-
istics, is a useful abstraction of an array, but the abstraction masks
some underlying activity that can be fairly inefficient depending on how
it is used.

figure 6.9 Inserting an element into an ArrayList object

14

4 7 8 12 15 17 20 22

ArrayList processing can be
inefficient depending on how it
is used.

ke
y

co
nc

ep
t

6.5 polygons and polylines 359

6.5 polygons and polylines
Arrays are helpful when drawing complex shapes. A polygon, for example, is a
multisided shape that is defined in Java using a series of (x, y) points that indicate
the vertices of the polygon. Arrays are often used to store the list of coordinates.

Polygons are drawn using methods of the Graphics class, similar to how we
draw rectangles and ovals. Like these other shapes, a polygon can be drawn filled
or unfilled. The methods used to draw a polygon are called drawPolygon and
fillPolygon. Both of these methods are overloaded. One version uses arrays of
integers to define the polygon, and the other uses an object of the Polygon class
to define the polygon. We discuss the Polygon class later in this section.

In the version that uses arrays, the drawPolygon and fillPolygon methods
take three parameters. The first is an array of integers representing the x coordi-
nates of the points in the polygon, the second is an array of integers representing
the corresponding y coordinates of those points, and the third is an integer that
indicates how many points are used from each of the two arrays. Taken together,
the first two parameters represent the (x, y) coordinates of the vertices of the
polygons.

A polygon is always closed. A line segment is always
drawn from the last point in the list to the first point in the
list.

Similar to a polygon, a polyline contains a series of
points connected by line segments. Polylines differ from
polygons in that the first and last coordinates are not auto-
matically connected when it is drawn. Since a polyline is
not closed, it cannot be filled. Therefore there is only one
method, called drawPolyline, used to draw a polyline.

As with the drawPolygon method, the first two parameters of the
drawPolyline method are both arrays of integers. Taken together, the first two
parameters represent the (x, y) coordinates of the end points of the line segments
of the polyline. The third parameter is the number of points in the coordinate list.

The program shown in Listing 6.17 uses polygons to draw a rocket. The arrays
called xRocket and yRocket define the points of the polygon that make up the
main body of the rocket. The first point in the arrays is the upper tip of the
rocket, and they progress clockwise from there. The xWindow and yWindow arrays
specify the points for the polygon that form the window in the rocket. Both the
rocket and the window are drawn as filled polygons.

A polygon is always a closed
shape. The last point is auto-
matically connected back to
the first one.

key
concept

A polyline is similar to a poly-
gon except that a polyline is
not a closed shape.

key
concept

360 CHAPTER 6 arrays

listing
6.17

//**

// Rocket.java Author: Lewis/Loftus

//

// Demonstrates the use of polygons and polylines.

//**

import javax.swing.JApplet;

import java.awt.*;

public class Rocket extends JApplet

{

private final int APPLET_WIDTH = 200;

private final int APPLET_HEIGHT = 200;

private int[] xRocket = {100, 120, 120, 130, 130, 70, 70, 80, 80};

private int[] yRocket = {15, 40, 115, 125, 150, 150, 125, 115, 40};

private int[] xWindow = {95, 105, 110, 90};

private int[] yWindow = {45, 45, 70, 70};

private int[] xFlame = {70, 70, 75, 80, 90, 100, 110, 115, 120,

130, 130};

private int[] yFlame = {155, 170, 165, 190, 170, 175, 160, 185,

160, 175, 155};

//---

// Sets up the basic applet environment.

//---

public void init()

{

setBackground (Color.black);

setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

//---

// Draws a rocket using polygons and polylines.

//---

public void paint (Graphics page)

{

page.setColor (Color.cyan);

page.fillPolygon (xRocket, yRocket, xRocket.length);

page.setColor (Color.gray);

page.fillPolygon (xWindow, yWindow, xWindow.length);

page.setColor (Color.red);

page.drawPolyline (xFlame, yFlame, xFlame.length);

}

}

6.5 polygons and polylines 361

The xFlame and yFlame arrays define the points of a polyline that are used to
create the image of flame shooting out of the tail of the rocket. Because it is
drawn as a polyline, and not a polygon, the flame is not closed or filled.

the Polygon class
A polygon can also be defined explicitly using an object of the Polygon class,
which is defined in the java.awt package of the Java standard class library. Two
versions of the overloaded drawPolygon and fillPolygon methods take a sin-
gle Polygon object as a parameter.

display

listing
6.17 continued

362 CHAPTER 6 arrays

A Polygon object encapsulates the coordinates of the polygon sides. The con-
structors of the Polygon class allow the creation of an initially empty polygon,
or one defined by arrays of integers representing the point coordinates. The
Polygon class contains methods to add points to the polygon and to determine
whether a given point is contained within the polygon shape. It also contains
methods to get a representation of a bounding rectangle for the polygon, as well
as a method to translate all of the points in the polygon to another position.
Figure 6.10 lists these methods.

figure 6.10 Some methods of the Polygon class

Polygon ()

Constructor: Creates an empty polygon.

Polygon (int[] xpoints, int[] ypoints, int npoints)

Constructor: Creates a polygon using the (x, y) coor dinate pairs
in corresponding entries of xpoints and ypoints.

void addPoint (int x, int y)

Appends the specified point to this polygon.

boolean contains (int x, int y)

Returns true if the specified point is contained in this polygon.

boolean contains (Point p)

Returns true if the specified point is contained in this polygon.

Rectangle getBounds ()

Gets the bounding rectangle for this polygon.

void translate (int deltaX, int deltaY)

Translates the vertices of this polygon by deltaX along the x axis
and deltaY along the y axis.

6.6 other button components 363

6.6 other button components
In the graphics track of Chapter 5, we introduced the basics of graphical user
interface (GUI) construction: components, events, and listeners. Recall that the
JButton class represents a push button. When pushed, an action event is gener-
ated and we can set up a listener to respond accordingly. Let’s now examine some
additional components—buttons of a different kind.

check boxes
A check box is a button that can be toggled on or off using
the mouse, indicating that a particular boolean condition is
set or unset. For example, a check box labeled Collate
might be used to indicate whether the output of a print job
should be collated. Although you might have a group of
check boxes indicating a set of options, each check box operates independently.
That is, each can be set to on or off and the status of one does not influence the
others.

The program in Listing 6.18 displays two check boxes and a label. The check
boxes determine whether the text of the label is displayed in bold, italic, both, or
neither. Any combination of bold and italic is valid. For example, both check
boxes could be checked (on), in which case the text is displayed in both bold and
italic. If neither is checked, the text of the label is displayed in a plain style.

The GUI for the StyleOptions program is embodied in the StyleGUI class
shown in Listing 6.19. This organization is somewhat different than that used in
the Fahrenheit program in the previous chapter. In this example, the frame is
created in the main method. The StyleGUI object creates a panel on which the
label and check boxes are arranged. The panel is returned to the main method
using a call to getPanel and is added to the application frame.

A check box is represented by the JCheckBox class. When a check box changes
state from selected (checked) to deselected (unchecked), or vice versa, it generates
an item event. The ItemListener interface contains a single method called
itemStateChanged. In this example, we use the same listener object to handle
both check boxes.

A check box allows the user to
set the status of a boolean
condition.

key
concept

364 CHAPTER 6 arrays

listing
6.18

//**

// StyleOptions.java Author: Lewis/Loftus

//

// Demonstrates the use of check boxes.

//**

import javax.swing.*;

public class StyleOptions

{

//---

// Creates and presents the program frame.

//---

public static void main (String[] args)

{

JFrame styleFrame = new JFrame ("Style Options");

styleFrame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

StyleGUI gui = new StyleGUI();

styleFrame.getContentPane().add (gui.getPanel());

styleFrame.pack();

styleFrame.show();

}

}

display

6.6 other button components 365

listing
6.19

//**

// StyleGUI.java Author: Lewis/Loftus

//

// Represents the user interface for the StyleOptions program.

//**

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class StyleGUI

{

private final int WIDTH = 300, HEIGHT = 100, FONT_SIZE = 36;

private JLabel saying;

private JCheckBox bold, italic;

private JPanel primary;

//---

// Sets up a panel with a label and some check boxes that

// control the style of the label's font.

//---

public StyleGUI()

{

saying = new JLabel ("Say it with style!");

saying.setFont (new Font ("Helvetica", Font.PLAIN, FONT_SIZE));

bold = new JCheckBox ("Bold");

bold.setBackground (Color.cyan);

italic = new JCheckBox ("Italic");

italic.setBackground (Color.cyan);

StyleListener listener = new StyleListener();

bold.addItemListener (listener);

italic.addItemListener (listener);

primary = new JPanel();

primary.add (saying);

primary.add (bold);

primary.add (italic);

primary.setBackground (Color.cyan);

primary.setPreferredSize (new Dimension(WIDTH, HEIGHT));

}

366 CHAPTER 6 arrays

This program also uses the Font class, which represents a particular character
font. A Font object is defined by the font name, the font style, and the font size.
The font name establishes the general visual characteristics of the characters. We
are using the Helvetica font in this program. The style of a Java font can be plain,
bold, italic, or bold and italic combined. The check boxes in our graphical user
interface are set up to change the characteristics of our font style.

The style of a font is represented as an integer, and integer constants defined
in the Font class are used to represent the various aspects of the style. The con-

listing
6.19 continued

//---

// Returns the primary panel containing the GUI.

//---

public JPanel getPanel()

{

return primary;

}

//***

// Represents the listener for both check boxes.

//***

private class StyleListener implements ItemListener

{

//--

// Updates the style of the label font style.

//--

public void itemStateChanged (ItemEvent event)

{

int style = Font.PLAIN;

if (bold.isSelected())

style = Font.BOLD;

if (italic.isSelected())

style += Font.ITALIC;

saying.setFont (new Font ("Helvetica", style, FONT_SIZE));

}

}

}

6.6 other button components 367

stant PLAIN is used to represent a plain style. The constants BOLD and ITALIC are
used to represent bold and italic, respectively. The sum of the BOLD and ITALIC
constants indicates a style that is both bold and italic.

The itemStateChanged method of the listener determines what the revised
style should be now that one of the check boxes has changed state. It initially sets
the style to be plain. Then each check box is consulted in turn using the
isSelected method, which returns a boolean value. First, if the bold check box
is selected (checked), then the style is set to bold. Then, if the italic check box is
selected, the ITALIC constant is added to the style variable. Finally, the font of
the label is set to a new font with its revised style.

Note that, given the way the listener is written in this program, it doesn’t mat-
ter which check box was clicked to generate the event. Both check boxes are
processed by the same listener. It also doesn’t matter whether the changed check
box was toggled from selected to unselected or vice versa. The state of both check
boxes is examined if either is changed.

radio buttons
A radio button is used with other radio buttons to provide
a set of mutually exclusive options. Unlike a check box, a
radio button is not useful by itself. It has meaning only
when it is used with one or more other radio buttons. Only
one option out of the group is valid. At any point in time,
one and only one button of the group of radio buttons is
selected (on). When a radio button from the group is
pushed, the other button in the group that is currently on is
automatically toggled off.

The term radio buttons comes from the way the buttons worked on an old-
fashioned car radio. At any point, one button was pushed to specify the current
choice of station; when another was pushed, the current one automatically
popped out.

The QuoteOptions program, shown in Listing 6.20, displays a label and a
group of radio buttons. The radio buttons determine which quote is displayed in
the label. Because only one of the quotes can be displayed at a time, the use of
radio buttons is appropriate. For example, if the Comedy radio button is selected,
the comedy quote is displayed in the label. If the Philosophy button is then
pressed, the Comedy radio button is automatically toggled off and the comedy
quote is replaced by a philosophical one.

Radio buttons operate as a
group, providing a set of mutu-
ally exclusive options. When
one button is selected, the cur-
rently selected button is tog-
gled off.

key
concept

368 CHAPTER 6 arrays

listing
6.20

//**

// QuoteOptions.java Author: Lewis/Loftus

//

// Demonstrates the use of radio buttons.

//**

import javax.swing.*;

public class QuoteOptions

{

//---

// Creates and presents the program frame.

//---

public static void main (String[] args)

{

JFrame quoteFrame = new JFrame ("Quote Options");

quoteFrame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

QuoteGUI gui = new QuoteGUI();

quoteFrame.getContentPane().add (gui.getPanel());

quoteFrame.pack();

quoteFrame.show();

}

}

display

6.6 other button components 369

The structure of this program is similar to that of the StyleOptions program
from the previous section. The label and radio buttons are displayed on a panel
defined in the QuoteGUI class, shown in Listing 6.21. A radio button is repre-
sented by the JRadioButton class. Because the radio buttons in a set work
together, the ButtonGroup class is used to define a set of related radio buttons.

listing
6.21

//**

// QuoteGUI.java Author: Lewis/Loftus

//

// Represents the user interface for the QuoteOptions program.

//**

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class QuoteGUI

{

private final int WIDTH = 300, HEIGHT = 100;

private JPanel primary;

private JLabel quote;

private JRadioButton comedy, philosophy, carpentry;

private String comedyQuote = "Take my wife, please.";

private String philosophyQuote = "I think, therefore I am.";

private String carpentryQuote = "Measure twice. Cut once.";

//---

// Sets up a panel with a label and a set of radio buttons

// that control its text.

//---

public QuoteGUI()

{

quote = new JLabel (comedyQuote);

quote.setFont (new Font ("Helvetica", Font.BOLD, 24));

comedy = new JRadioButton ("Comedy", true);

comedy.setBackground (Color.green);

philosophy = new JRadioButton ("Philosophy");

philosophy.setBackground (Color.green);

carpentry = new JRadioButton ("Carpentry");

carpentry.setBackground (Color.green);

370 CHAPTER 6 arrays

listing
6.21 continued

ButtonGroup group = new ButtonGroup();

group.add (comedy);

group.add (philosophy);

group.add (carpentry);

QuoteListener listener = new QuoteListener();

comedy.addActionListener (listener);

philosophy.addActionListener (listener);

carpentry.addActionListener (listener);

primary = new JPanel();

primary.add (quote);

primary.add (comedy);

primary.add (philosophy);

primary.add (carpentry);

primary.setBackground (Color.green);

primary.setPreferredSize (new Dimension(WIDTH, HEIGHT));

}

//---

// Returns the primary panel containing the GUI.

//---

public JPanel getPanel()

{

return primary;

}

//***

// Represents the listener for all radio buttons

//***

private class QuoteListener implements ActionListener

{

//--

// Sets the text of the label depending on which radio

// button was pressed.

//--

public void actionPerformed (ActionEvent event)

{

Object source = event.getSource();

6.6 other button components 371

Note that each button is added to the button group, and also that each button
is added individually to the panel. A ButtonGroup object is not a container to
organize and display components; it is simply a way to define the group of radio
buttons that work together to form a set of dependent options. The ButtonGroup
object ensures that the currently selected radio button is turned off when another
in the group is selected.

A radio button produces an action event when it is selected. The
actionPerformed method of the listener first determines the source of the event
using the getSource method, and then compares it to each of the three radio but-
tons in turn. Depending on which button was selected, the text of the label is set
to the appropriate quote.

Note that unlike push buttons, both check boxes and radio buttons are toggle
buttons, meaning that at any time they are either on or off. The difference is in
how they are used. Independent options (choose any combination) are controlled
with check boxes. Dependent options (choose one of a set) are controlled with
radio buttons. If there is only one option to be managed, a check box can be used
by itself. As we mentioned earlier, a radio button, on the other hand, makes sense
only in conjunction with one or more other radio buttons.

Also note that check boxes and radio buttons produce different types of
events. A check box produces an item event and a radio button produces an
action event. The use of different event types is related to the differences in but-
ton functionality. A check box produces an event when it is selected or deselected,
and the listener could make the distinction if desired. A radio button, on the other
hand, only produces an event when it is selected (the currently selected button
from the group is deselected automatically).

listing
6.21 continued

if (source == comedy)

quote.setText (comedyQuote);

else

if (source == philosophy)

quote.setText (philosophyQuote);

else

quote.setText (carpentryQuote);

}

}

}

372 CHAPTER 6 arrays

◗ An array of size N is indexed from 0 to N–1.

◗ In Java, an array is an object. Memory space for the array elements is
reserved by instantiating the array using the new operator.

◗ Bounds checking ensures that an index used to refer to an array element is
in range. The Java index operator performs automatic bounds checking.

◗ An initializer list can be used to instantiate an array object instead of
using the new operator. The size of the array and its initial values are
determined by the initializer list.

◗ An entire array can be passed as a parameter, making the formal parame-
ter an alias of the original.

◗ Command-line arguments are stored in an array of String objects and
are passed to the main method.

◗ Instantiating an array of objects reserves room to store references only.
The objects that are stored in each element must be instantiated
separately.

◗ Selection sort and insertion sort are two sorting algorithms that define the
processing steps for putting a list of values into a well-defined order.

◗ Selection sort works by putting each value in its final position, one at a
time.

◗ Swapping is the process of exchanging two values. Swapping requires
three assignment statements.

◗ Insertion sort works by inserting each value into a previously sorted sub-
set of the list.

◗ Sorting algorithms are ranked according to their efficiency, which is usu-
ally defined as the number of comparisons required to perform the sort.

◗ Both selection sort and insertion sort algorithms are of order n2. Other
sorts are more efficient.

◗ Using an array with more than two dimensions is rare in an object-ori-
ented system because intermediate levels are usually represented as sepa-
rate objects.

◗ Each array in a given dimension of a multidimensional array could have a
different length.

summary of
key concepts

self-review questions 373

◗ An ArrayList object is similar to an array, but it dynamically changes
size as needed, and elements can be inserted and removed.

◗ ArrayList processing can be inefficient depending on how it is used.

◗ A polygon is always a closed shape. The last point is automatically con-
nected back to the first one.

◗ A polyline is similar to a polygon except that a polyline is not a closed
shape.

◗ A check box allows the user to set the status of a boolean condition.

◗ Radio buttons operate as a group, providing a set of mutually exclusive
options. When one button is selected, the currently selected button is tog-
gled off.

self-review questions
6.1 Explain the concept of array bounds checking. What happens when

a Java array is indexed with an invalid value?

6.2 Describe the process of creating an array. When is memory allocated
for the array?

6.3 What is an off-by-one error? How does it relate to arrays?

6.4 What does an array initializer list accomplish?

6.5 Can an entire array be passed as a parameter? How is this accom-
plished?

6.6 How is an array of objects created?

6.7 What is a command-line argument?

6.8 What are parallel arrays?

6.9 Which is better: selection sort or insertion sort? Explain.

6.10 How are multidimensional arrays implemented in Java?

6.11 What are the advantages of using an ArrayList object as opposed
to an array? What are the disadvantages?

6.12 What is a polyline? How do we specify its shape?

6.13 Compare and contrast check boxes and radio buttons.

6.14 How does the Timer class help us perform animations in Java?

374 CHAPTER 6 arrays

exercises
6.1 Which of the following are valid declarations? Which instantiate an

array object? Explain your answers.

int primes = {2, 3, 4, 5, 7, 11};

float elapsedTimes[] = {11.47, 12.04, 11.72, 13.88};

int[] scores = int[30];

int[] primes = new {2,3,5,7,11};

int[] scores = new int[30];

char grades[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘f’};

char[] grades = new char[];

6.2 Describe five programs that are difficult to implement without using
arrays.

6.3 Describe what problem occurs in the following code. What modifica-
tions should be made to it to eliminate the problem?

int[] numbers = {3, 2, 3, 6, 9, 10, 12, 32, 3, 12, 6};

for (int count = 1; count <= numbers.length; count++)

System.out.println (numbers[count]);

6.4 Write an array declaration and any necessary supporting classes to
represent the following statements:

◗ students’ names for a class of 25 students

◗ students’ test grades for a class of 40 students

◗ credit-card transactions that contain a transaction number, a mer-
chant name, and a charge

◗ students’ names for a class and homework grades for each student

◗ for each employee of the L&L International Corporation: the
employee number, hire date, and the amount of the last five raises

6.5 Write a method called sumArray that accepts an array of floating
point values and returns the sum of the values stored in the array.

6.6 Write a method called switchThem that accepts two integer arrays
as parameters and switches the contents of the arrays. Take into
account that the arrays may be of different sizes.

6.7 Describe a program for which you would use the ArrayList class
instead of arrays to implement choices. Describe a program for
which you would use arrays instead of the ArrayList class. Explain
your choices.

programming projects 375

6.8 Explain what would happen if the radio buttons used in the
QuoteOptions program were not organized into a ButtonGroup
object. Modify the program to test your answer.

programming projects
6.1 Design and implement an application that reads an arbitrary number

of integers that are in the range 0 to 50 inclusive and counts how
many occurrences of each are entered. After all input has been
processed, print all of the values (with the number of occurrences)
that were entered one or more times.

6.2 Modify the program from Programming Project 6.1 so that it works
for numbers in the range between –25 and 25.

6.3 Rewrite the Sorts class so that both sorting algorithms put the val-
ues in descending order. Create a driver class with a main method to
exercise the modifications.

6.4 Design and implement an application that creates a histogram that
allows you to visually inspect the frequency distribution of a set of
values. The program should read in an arbitrary number of integers
that are in the range 1 to 100 inclusive; then produce a chart similar
to the one below that indicates how many input values fell in the
range 1 to 10, 11 to 20, and so on. Print one asterisk for each value
entered.

6.5 The lines in the histogram in Programming Project 6.4 will be too
long if a large number of values is entered. Modify the program so
that it prints an asterisk for every five values in each category. Ignore

1 - 10 | *****

11 - 20 | **

21 - 30 | *******************

31 - 40 |

41 - 50 | ***

51 - 60 | ********

61 - 70 | **

71 - 80 | *****

81 - 90 | *******

91 - 100 | *********

project375.html

376 CHAPTER 6 arrays

leftovers. For example, if a category had 17 values, print three aster-
isks in that row. If a category had 4 values, do not print any aster-
isks in that row.

6.6 Design and implement an application that computes and prints the
mean and standard deviation of a list of integers x1 through xn.
Assume that there will be no more than 50 input values. Compute
both the mean and standard deviation as floating point values, using
the following formulas.

mean =

sd = ��
6.7 The L&L Bank can handle up to 30 customers who have savings

accounts. Design and implement a program that manages the
accounts. Keep track of key information and allow each customer to
make deposits and withdrawals. Produce appropriate error messages
for invalid transactions. Hint: you may want to base your accounts
on the Account class from Chapter 4. Also provide a method to add
3 percent interest to all accounts whenever the method is invoked.

6.8 Modify the GradeRange program from this chapter so that it elimi-
nates the use of parallel arrays. Instead, design a new class called
Grade that stores both the grade string and its cutoff value. Set both
values using the Grade constructor and provide methods that return
the values. In the main method of the revised GradeRange program,
populate a single array with Grade objects, and then produce the
same output as the original GradeRange program did.

6.9 The programming projects of Chapter 4 discussed a Card class that
represents a standard playing card. Create a class called
DeckOfCards that stores 52 objects of the Card class. Include meth-
ods to shuffle the deck, deal a card, and report the number of cards
left in the deck. The shuffle method should assume a full deck.

�
n

i = 1
(xi – mean)2

��
n – 1

�
n

i = 1
xi

�
n

project376b.html
project376a.html

programming projects 377

Create a driver class with a main method that deals each card from a
shuffled deck, printing each card as it is dealt.

6.10 Use the Question class from Chapter 5 to define a Quiz class. A
quiz can be composed of up to 25 questions. Define the add method
of the Quiz class to add a question to a quiz. Define the giveQuiz
method of the Quiz class to present each question in turn to the user,
accept an answer for each one, and keep track of the results. Define
a class called QuizTime with a main method that populates a quiz,
presents it, and prints the final results.

6.11 Modify your answer to Programming Project 6.10 so that the com-
plexity level of the questions given in the quiz is taken into account.
Overload the giveQuiz method so that it accepts two integer
parameters that specify the minimum and maximum complexity lev-
els for the quiz questions and only presents questions in that com-
plexity range. Modify the main method to demonstrate this feature.

6.12 Modify the Tunes program so that it keeps the CDs sorted by title.
Use the general object sort defined in the Sorts class from this
chapter.

6.13 Modify the Sorts class to include an overloaded version of the
SelectionSort method that performs a general object sort. Modify
the SortPhoneList program to test the new sort.

6.14 Design and implement an applet that graphically displays the pro-
cessing of a selection sort. Use bars of various heights to represent
the values being sorted. Display the set of bars after each swap. Put
a delay in the processing of the sort to give the human observer a
chance to see how the order of the values changes.

6.15 Repeat Programming Project 6.14 using an insertion sort.

6.16 Design a class that represents a star with a specified radius and
color. Use a filled polygon to draw the star. Design and implement
an applet that draws 10 stars of random radius in random locations.

6.17 Design a class that represents the visual representation of a car. Use
polylines and polygons to draw the car in any graphics context and
at any location. Create a main driver to display the car.

6.18 Modify the solution to Programming Project 6.17 so that it uses the
Polygon class to represent all polygons used in the drawing.

6.19 Modify the Fahrenheit program from Chapter 5 so that it uses a
structure similar to the StyleOptions and QuoteOptions programs

project377a.html
project377b.html

378 CHAPTER 6 arrays

from this chapter. Specifically, create the application frame in the
main method and add the GUI panel to it.

6.20 Modify the StyleOptions program in this chapter to allow the user
to specify the size of the font. Use a text field to obtain the size.

6.21 Modify the QuoteOptions program in this chapter so that it pro-
vides three additional quote options. Use an array to store all of the
quote strings.

6.22 Design and implement an applet that draws 20 circles, with the
radius and location of each circle determined at random. If a circle
does not overlap any other circle, draw that circle in black. If a circle
overlaps one or more other circles, draw it in cyan. Use an array to
store a representation of each circle, then determine the color of each
circle. Two circles overlap if the distance between their center points
is less than the sum of their radii.

6.23 Design and implement an applet that draws a checkerboard with five
red and eight black checkers on it in various locations. Store the
checkerboard as a two-dimensional array.

6.24 Modify the applet from Programming Project 6.23 so that the pro-
gram determines whether any black checkers can jump any red
checkers. Under the checkerboard, print (using drawString) the row
and column position of all black checkers that have possible jumps.

answers to self-review questions
6.1 Whenever a reference is made to a particular array element, the

index operator (the brackets that enclose the subscript) ensures that
the value of the index is greater than or equal to zero and less than
the size of the array. If it is not within the valid range, an
ArrayIndexOutOfBoundsException is thrown.

6.2 Arrays are objects. Therefore, as with all objects, to create an array
we first create a reference to the array (its name). We then instantiate
the array itself, which reserves memory space to store the array ele-
ments. The only difference between a regular object instantiation
and an array instantiation is the bracket syntax.

6.3 An off-by-one error occurs when a program’s logic exceeds the
boundary of an array (or similar structure) by one. These errors
include forgetting to process a boundary element as well as attempt-

answers to self-review questions 379

ing to process a nonexistent element. Array processing is susceptible
to off-by-one errors because their indexes begin at zero and run to
one less than the size of the array.

6.4 An array initializer list is used in the declaration of an array to set
up the initial values of its elements. An initializer list instantiates the
array object, so the new operator is needed.

6.5 An entire array can be passed as a parameter. Specifically, because an
array is an object, a reference to the array is passed to the method.
Any changes made to the array elements will be reflected outside of
the method.

6.6 An array of objects is really an array of object references. The array
itself must be instantiated, and the objects that are stored in the
array must be created separately.

6.7 A command-line argument is data that is included on the command
line when the interpreter is invoked to execute the program.
Command-line arguments are another way to provide input to a
program. They are accessed using the array of strings that is passed
into the main method as a parameter.

6.8 Parallel arrays are two or more arrays whose corresponding elements
are related in some way. Because parallel arrays can easily get out of
synch if not managed carefully, it is often better to create a single
array of objects that encapsulate the related elements.

6.9 Selection sort and insertion sort are generally equivalent in efficiency,
because they both take about n2 number of comparisons to sort a
list of n numbers. Selection sort, though, generally makes fewer
swaps. Several sorting algorithms are more efficient than either of
these.

6.10 A multidimensional array is implemented in Java as an array of
array objects. The arrays that are elements of the outer array could
also contain arrays as elements. This nesting process could continue
for as many levels as needed.

6.11 An ArrayList keeps the indexes of its objects continuous as they
are added and removed, and an ArrayList dynamically increases its
capacity as needed. In addition, an ArrayList is implemented so
that it stores references to the Object class, which allows any object
to be stored in it. A disadvantage of the ArrayList class is that it

380 CHAPTER 6 arrays

copies a significant amount of data in order to insert and delete ele-
ments, and this process is inefficient.

6.12 A polyline is defined by a series of points that represent its vertices.
The drawPolyline method takes three parameters to specify its
shape. The first is an array of integers that represent the x coordi-
nates of the points. The second is an array of integers that represent
the y coordinates of the points. The third parameter is a single inte-
ger that indicates the number of points to be used from the arrays.

6.13 Both check boxes and radio buttons show a toggled state: either on
or off. However, radio buttons work as a group in which only one
can be toggled on at any point in time. Check boxes, on the other
hand, represent independent options. They can be used alone or in a
set in which any combination of toggled states is valid.

6.14 The Timer class represents an object that generates an action event
at regular intervals. The programmer sets the interval delay. An ani-
mation can be set up to change its display every time the timer goes
off.

the way we design object-

oriented software. Furthermore,

inheritance enhances our ability

to reuse classes in other situa-

tions and programs. We explore

how classes can be related to

form inheritance hierarchies and

how these relationships allow us

to create polymorphic refer-

ences. This chapter also revisits

the concept of a formal Java

interface. Finally, we discuss

how inheritance affects various

issues related to graphical user

interfaces (GUIs) in Java.

◗ Derive new classes from existing
ones.

◗ Explain how inheritance supports
software reuse.

◗ Add and modify methods in child
classes.

◗ Discuss how to design class
hierarchies.

◗ Define polymorphism and deter-
mine how it can be accomplished.

◗ Examine inheritance hierarchies for
interfaces.

◗ Discuss the use of inheritance in
Java GUI frameworks.

◗ Examine and use the GUI compo-
nent class hierarchy.

chapter
objectives

This chapter explains inheritance, a fundamental
technique for organizing and creating classes. It is

a simple but powerful idea that influences

7
inheritance

382 CHAPTER 7 inheritance

7.0 creating subclasses
In Chapter 4 we presented the analogy that a class is to an object as a blueprint
is to a house. A class establishes the characteristics and behaviors of an object but
reserves no memory space for variables (unless those variables are declared as
static). Classes are the plan, and objects are the embodiment of that plan.

Many houses can be created from the same blueprint. They are essentially the
same house in different locations with different people living in them. But sup-
pose you want a house that is similar to another but with some different or addi-
tional features. You want to start with the same basic blueprint but modify it to
suit your needs and desires. Many housing developments are created this way.
The houses in the development have the same core layout, but they have unique
features. For instance, they might all be split-level homes with the same bedroom,
kitchen, and living-room configuration, but some have a fireplace or full base-
ment while others do not, or an attached garage instead of a carport.

It’s likely that the housing developer commissioned a master architect to cre-
ate a single blueprint to establish the basic design of all houses in the develop-
ment, then a series of new blueprints that include variations designed to appeal
to different buyers. The act of creating the series of blueprints was simplified since
they all begin with the same underlying structure, while the variations give them
unique characteristics that may be important to the prospective owners.

Creating a new blueprint that is based on an existing blueprint is analogous to
the object-oriented concept of inheritance, which is a powerful software develop-
ment technique and a defining characteristic of object-oriented programming.

derived classes
Inheritance is the process in which a new class is derived from an exist-
ing one. The new class automatically contains some or all of the vari-
ables and methods in the original class. Then, to tailor the class as
needed, the programmer can add new variables and methods to the
derived class or modify the inherited ones.

In general, new classes can be created via inheritance faster, easier,
and cheaper than by writing them from scratch. At the heart of inheritance is the
idea of software reuse. By using existing software components to create new ones,
we capitalize on the effort that went into the design, implementation, and testing
of the existing software.

Inheritance is the process of
deriving a new class from an
existing one.ke

y
co

nc
ep

t

7.0 creating subclasses 383

Keep in mind that the word class comes from the idea of classifying
groups of objects with similar characteristics. Classification schemes
often use levels of classes that relate to each other. For example, all
mammals share certain characteristics: They are warmblooded, have
hair, and bear live offspring. Now consider a subset of mammals, such as horses.
All horses are mammals and have all of the characteristics of mammals, but they
also have unique features that make them different from other mammals.

If we translate this idea into software terms, an existing class called Mammal
would have certain variables and methods that describe the state and behavior of
mammals. A Horse class could be derived from the existing Mammal class,
automatically inheriting the variables and methods contained in
Mammal. The Horse class can refer to the inherited variables and meth-
ods as if they had been declared locally in that class. New variables and
methods can then be added to the derived class to distinguish a horse
from other mammals. Inheritance thus nicely models many situations
found in the natural world.

The original class that is used to derive a new one is called the parent class,
superclass, or base class. The derived class is called a child class, or subclass. Java
uses the reserved word extends to indicate that a new class is being derived from
an existing class.

The derivation process should establish a specific kind of relation-
ship between two classes: an is-a relationship. This type of relationship
means that the derived class should be a more specific version of the
original. For example, a horse is a mammal. Not all mammals are
horses, but all horses are mammals.

Let’s look at an example. The program shown in Listing 7.1 instantiates an
object of class Dictionary, which is derived from a class called Book. In the main
method, two methods are invoked through the Dictionary object: one that was
declared locally in the Dictionary class and one that was inherited from the
Book class.

The Book class (see Listing 7.2) is used to derive the Dictionary class (see
Listing 7.3) using the reserved word extends in the header of Dictionary. The
Dictionary class automatically inherits the definition of the pageMessage
method and the pages variable. It is as if the pageMessage method and the
pages variable were declared inside the Dictionary class. Note that the
definitionMessage method refers explicitly to the pages variable.

One purpose of inheritance is
to reuse existing software.

key
concept

Inherited variables and meth-
ods can be used in the derived
class as if they had been
declared locally.

key
concept

Inheritance creates an is-a rela-
tionship between all parent and
child classes.

key
concept

384 CHAPTER 7 inheritance

Also, note that although the Book class is needed to create the definition of
Dictionary, no Book object is ever instantiated in the program. An instance of
a child class does not rely on an instance of the parent class.

Inheritance is a one-way street. The Book class cannot use variables or meth-
ods that are declared explicitly in the Dictionary class. For instance, if we cre-
ated an object from the Book class, it could not be used to invoke the
definitionMessage method. This restriction makes sense because a child class
is a more specific version of the parent class. A dictionary has pages because all
books have pages; but although a dictionary has definitions, not all books do.

Inheritance relationships are often represented in UML class diagrams. Figure
7.1 shows the inheritance relationship between the Book and Dictionary classes.
An arrow with an open arrowhead is used to show inheritance in a UML dia-
gram, with the arrow pointing from the child class to the parent class.

listing
7.1

//**

// Words.java Author: Lewis/Loftus

//

// Demonstrates the use of an inherited method.

//**

public class Words

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary webster = new Dictionary ();

webster.pageMessage();

webster.definitionMessage();

}

}

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35

output

code384.html

7.0 creating subclasses 385

the protected modifier
Not all variables and methods are inherited in a derivation. The visibility modi-
fiers used to declare the members of a class determine which ones are inherited
and which ones are not. Specifically, the child class inherits variables and meth-
ods that are declared public and does not inherit those that are declared private.
The pageMessage method is inherited by Dictionary because it is declared with
public visibility.

However, if we declare a variable with public visibility so that a
derived class can inherit it, we violate the principle of encapsulation.
Therefore, Java provides a third visibility modifier: protected. Note
that the variable pages is declared with protected visibility in the Book
class. When a variable or method is declared with protected visibility,
a derived class will inherit it, retaining some of its encapsulation prop-
erties. The encapsulation with protected visibility is not as tight as it
would be if the variable or method were declared private, but it is better than if
it were declared public. Specifically, a variable or method declared with protected

listing
7.2

//**

// Book.java Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a derived class to

// demonstrate inheritance.

//**

public class Book

{

protected int pages = 1500;

//--

// Prints a message about the pages of this book.

//--

public void pageMessage ()

{

System.out.println ("Number of pages: " + pages);

}

}

Visibility modifiers determine
which variables and methods
are inherited. Protected visibil-
ity provides the best possible
encapsulation that permits
inheritance.

key
concept

code385.html

386 CHAPTER 7 inheritance

listing
7.3

//**

// Dictionary.java Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// inheritance.

//**

public class Dictionary extends Book

{

private int definitions = 52500;

//---

// Prints a message using both local and inherited values.

//---

public void definitionMessage ()

{

System.out.println ("Number of definitions: " + definitions);

System.out.println ("Definitions per page: " + definitions/pages);

}

}

figure 7.1 A UML class diagram showing an inheritance relationship

+ main (args : String[]) : void

Words

+ definitionMessage() : void

– definition : int

Dictionary

+ pageMessage() : void

pages : int

Book

code386.html

7.0 creating subclasses 387

visibility may be accessed by any class in the same package. The relationships
among all Java modifiers are explained completely in Appendix F.

In a UML diagram, protected visibility can be indicated by proceeding the pro-
tected member with a hash mark (#). The pages variable of the Book class has
this annotation in Fig. 7.1.

Each inherited variable or method retains the effect of its original visibility
modifier. For example, the pageMessage method is still considered to be public
in its inherited form.

Constructors are not inherited in a derived class, even though they have pub-
lic visibility. This is an exception to the rule about public members being inher-
ited. Constructors are special methods that are used to set up a particular type of
object, so it wouldn’t make sense for a class called Dictionary to have a con-
structor called Book.

the super reference
The reserved word super can be used in a class to refer to its parent class. Using
the super reference, we can access a parent’s members, even if they aren’t inher-
ited. Like the this reference, what the word super refers to depends on the class
in which it is used. However, unlike the this reference, which refers to a partic-
ular instance of a class, super is a general reference to the members of the par-
ent class.

One use of the super reference is to invoke a parent’s constructor.
Let’s look at an example. Listing 7.4 shows a modification of the orig-
inal Words program shown in Listing 7.1. Similar to the original ver-
sion, we use a class called Book2 (see Listing 7.5) as the parent of the
derived class Dictionary2 (see Listing 7.6). However, unlike earlier
versions of these classes, Book2 and Dictionary2 have explicit constructors used
to initialize their instance variables. The output of the Words2 program is the
same as it is for the original Words program.

The Dictionary2 constructor takes two integer values as parameters, repre-
senting the number of pages and definitions in the book. Because the Book2 class
already has a constructor that performs the work to set up the parts of the dictio-
nary that were inherited, we rely on that constructor to do that work. However,
since the constructor is not inherited, we cannot invoke it directly, and so we use
the super reference to get to it in the parent class. The Dictionary2 constructor
then proceeds to initialize its definitions variable.

A parent’s constructor can be
invoked using the super
reference.

key
concept

388 CHAPTER 7 inheritance

In this case, it would have been just as easy to set the pages variable explicitly
in the Dictionary2 constructor instead of using super to call the Book2 con-
structor. However, it is good practice to let each class “take care” of itself. If we
choose to change the way that the Book2 constructor sets up its pages variable,
we would also have to remember to make that change in Dictionary2. By using
the super reference, a change made in Book2 is automatically reflected in
Dictionary2.

A child’s constructor is responsible for calling its parent’s constructor. Gener-
ally, the first line of a constructor should use the super reference call to a con-
structor of the parent class. If no such call exists, Java will automatically make a
call to super() at the beginning of the constructor. This rule ensures that a par-
ent class initializes its variables before the child class constructor begins to exe-
cute. Using the super reference to invoke a parent’s constructor can be done in

listing
7.4

//**

// Words2.java Author: Lewis/Loftus

//

// Demonstrates the use of the super reference.

//**

public class Words2

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void main (String[] args)

{

Dictionary2 webster = new Dictionary2 (1500, 52500);

webster.pageMessage();

webster.definitionMessage();

}

}

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35

output

code388.html

7.0 creating subclasses 389

only the child’s constructor, and if included it must be the first line of the
constructor.

The super reference can also be used to reference other variables and methods
defined in the parent’s class. We discuss this technique later in this chapter.

multiple inheritance
Java’s approach to inheritance is called single inheritance. This term means that
a derived class can have only one parent. Some object-oriented languages allow
a child class to have multiple parents. This approach is called multiple inheri-
tance and is occasionally useful for describing objects that are in between two

listing
7.5

//**

// Book2.java Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a dervied class to

// demonstrate inheritance and the use of the super reference.

//**

public class Book2

{

protected int pages;

//--

// Sets up the book with the specified number of pages.

//--

public Book2 (int numPages)

{

pages = numPages;

}

//--

// Prints a message about the pages of this book.

//--

public void pageMessage ()

{

System.out.println ("Number of pages: " + pages);

}

}

code389.html

390 CHAPTER 7 inheritance

categories or classes. For example, suppose we had a class Car and a class Truck
and we wanted to create a new class called PickupTruck. A pickup truck is
somewhat like a car and somewhat like a truck. With single inheritance, we must
decide whether it is better to derive the new class from Car or Truck. With mul-
tiple inheritance, it can be derived from both, as shown in Fig. 7.2.

listing
7.6

//**

// Dictionary2.java Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// the use of the super reference.

//**

public class Dictionary2 extends Book2

{

private int definitions;

//---

// Sets up the dictionary with the specified number of pages

// (maintained by the Book parent class) and defintions.

//---

public Dictionary2 (int numPages, int numDefinitions)

{

super (numPages);

definitions = numDefinitions;

}

//---

// Prints a message using both local and inherited values.

//---

public void definitionMessage ()

{

System.out.println ("Number of definitions: " + definitions);

System.out.println ("Definitions per page: " + definitions/pages);

}

}

code390.html

Multiple inheritance works well in some situations, but it comes with a price.
What if both Truck and Car have methods with the same name? Which method
would PickupTruck inherit? The answer to this question is complex, and it
depends on the rules of the language that supports multiple inheritance.

Java does not support multiple inheritance, but interfaces provide some of the
abilities of multiple inheritance. Although a Java class can be derived from only
one parent class, it can implement many different interfaces. Therefore, we can
interact with a particular class in particular ways while inheriting the core infor-
mation from one particular parent.

7.1 overriding methods
When a child class defines a method with the same name and signature
as a method in the parent class, we say that the child’s version overrides
the parent’s version in favor of its own. The need for overriding occurs
often in inheritance situations.

The program in Listing 7.7 provides a simple demonstration of method
overriding in Java. The Messages class contains a main method that instantiates
two objects: one from class Thought and one from class Advice. The Thought
class is the parent of the Advice class.

Both the Thought class (see Listing 7.8) and the Advice class (see Listing 7.9)
contain a definition for a method called message. The version of message
defined in the Thought class is inherited by Advice, but Advice overrides it with
an alternative version. The new version of the method prints out an entirely dif-
ferent message and then invokes the parent’s version of the message method
using the super reference.

7.1 overriding methods 391

figure 7.2 A UML class diagram showing multiple inheritance

Car Truck

PickupTruck

A child class can override
(redefine) the parent’s defini-
tion of an inherited method.

key
concept

392 CHAPTER 7 inheritance

The object that is used to invoke a method determines which version of the
method is actually executed. When message is invoked using the parked object
in the main method, the Thought version of message is executed. When message
is invoked using the dates object, the Advice version of message is executed.
This flexibility allows two objects that are related by inheritance to use the same
naming conventions for methods that accomplish the same general task in differ-
ent ways.

A method can be defined with the final modifier. A child class cannot over-
ride a final method. This technique is used to ensure that a derived class uses a
particular definition for a method.

listing
7.7

//**

// Messages.java Author: Lewis/Loftus

//

// Demonstrates the use of an overridden method.

//**

public class Messages

{

//---

// Instatiates two objects a invokes the message method in each.

//---

public static void main (String[] args)

{

Thought parked = new Thought();

Advice dates = new Advice();

parked.message();

dates.message(); // overridden

}

}

I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.

output

code392.html

7.1 overriding methods 393

The concept of method overriding is important to several issues related to
inheritance. We explore these issues throughout this chapter.

shadowing variables
It is possible, although not recommended, for a child class to declare a variable
with the same name as one that is inherited from the parent. This technique is
called shadowing variables. It is similar to the process of overriding methods but
creates confusing subtleties. Note the distinction between redeclaring a variable
and simply giving an inherited variable a particular value.

Because an inherited variable is already available to the child class, there is
usually no good reason to redeclare it. Someone reading code with a shadowed
variable will find two different declarations that seem to apply to a variable used
in the child class. This confusion causes problems and serves no purpose. A rede-
claration of a particular variable name could change its type, but that is usually
unnecessary. In general, shadowing variables should be avoided.

listing
7.8

//**

// Thought.java Author: Lewis/Loftus

//

// Represents a stray thought. Used as the parent of a derived

// class to demonstrate the use of an overridden method.

//**

public class Thought

{

//---

// Prints a message.

//---

public void message()

{

System.out.println ("I feel like I'm diagonally parked in a " +

"parallel universe.");

System.out.println();

}

}

code393.html

394 CHAPTER 7 inheritance

7.2 class hierarchies
A child class derived from one parent can be the parent of its own child
class. Furthermore, multiple classes can be derived from a single parent.
Therefore, inheritance relationships often develop into class hierar-
chies. The UML class diagram in Fig. 7.3 shows a class hierarchy that
incorporates the inheritance relationship between the Mammal and
Horse classes.

There is no limit to the number of children a class can have or to the number
of levels to which a class hierarchy can extend. Two children of the same parent
are called siblings. Although siblings share the characteristics passed on by their
common parent, they are not related by inheritance because one is not used to
derive the other.

listing
7.9

//**

// Advice.java Author: Lewis/Loftus

//

// Represents a piece of advice. Used to demonstrate the use of an

// overridden method.

//**

public class Advice extends Thought

{

//---

// Prints a message. This method overrides the parent's version.

// It also invokes the parent's version explicitly using super.

//---

public void message()

{

System.out.println ("Warning: Dates in calendar are closer " +

"than they appear.");

System.out.println();

super.message();

}

}

The child of one class can be
the parent of one or more
other classes, creating a class
hierarchy.

ke
y

co
nc

ep
t

code394.html

7.2 class hierarchies 395

In class hierarchies, common features should be kept as high in the
hierarchy as reasonably possible. That way, the only characteristics
explicitly established in a child class are those that make the class dis-
tinct from its parent and from its siblings. This approach maximizes the
potential to reuse classes. It also facilitates maintenance activities
because when changes are made to the parent, they are automatically
reflected in the descendents. Always remember to maintain the is-a
relationship when building class hierarchies.

The inheritance mechanism is transitive. That is, a parent passes along a trait
to a child class, and that child class passes it along to its children, and so on. An
inherited feature might have originated in the immediate parent or possibly sev-
eral levels higher in a more distant ancestor class.

There is no single best hierarchy organization for all situations. The decisions
you make when you are designing a class hierarchy restrict and guide more
detailed design decisions and implementation options, so you must make them
carefully.

Earlier in this chapter we discussed a class hierarchy that organized animals by
their major biological classifications, such as Mammal, Bird, and Reptile.
However, in a different situation, the same animals might logically be organized
in a different way. For example, as shown in Fig. 7.4, the class hierarchy might
be organized around a function of the animals, such as their ability to fly. In this
case, a Parrot class and a Bat class would be siblings derived from a general
FlyingAnimal class. This class hierarchy is as valid and reasonable as the origi-
nal one. The needs of the programs that use the classes will determine which is
best for the particular situation.

figure 7.3 A UML class diagram showing a class hierarchy

Animal

ParrotSnake Lizard Horse Bat

BirdReptile Mammal

Common features should be
located as high in a class hier-
archy as is reasonably possible,
minimizing maintenance
efforts.

key
concept

396 CHAPTER 7 inheritance

the Object class
In Java, all classes are derived ultimately from the Object class. If a class defi-
nition doesn’t use the extends clause to derive itself explicitly from another class,
then that class is automatically derived from the Object class by default.
Therefore, the following two class definitions are equivalent:

class Thing

{

// whatever

}

and

class Thing extends Object

{

// whatever

}

Because all classes are derived from Object, any public method of
Object can be invoked through any object created in any Java pro-
gram. The Object class is defined in the java.lang package of the
Java standard class library. Figure 7.5 lists some of the methods of the
Object class.

As it turns out, we’ve been using Object methods quite often in our examples.
The toString method, for instance, is defined in the Object class, so the
toString method can be called on any object. As we’ve seen several times, when
a println method is called with an object parameter, toString is called to deter-
mine what to print.

The definition for toString that is provided by the Object class returns a
string containing the object’s class name followed by a numeric value that is
unique for that object. Usually, we override the Object version of toString to

figure 7.4 An alternative hierarchy for organizing animals

Parrot

FlyingAnimal

Bat Mosquito

All Java classes are derived,
directly or indirectly, from the
Object class.ke

y
co

nc
ep

t

7.2 class hierarchies 397

fit our own needs. The String class has overridden the toString method so that
it returns its stored string value.

The equals method of the Object class is also useful. As we’ve dis-
cussed previously, its purpose is to determine whether two objects are
equal. The definition of the equals method provided by the Object
class returns true if the two object references actually refer to the same
object (that is, if they are aliases). Classes often override the inherited
definition of the equals method in favor of a more appropriate defini-
tion. For instance, the String class overrides equals so that it returns
true only if both strings contain the same characters in the same order.

Listing 7.10 shows the program called Academia. In this program, a Student
object and a GradStudent object are instantiated. The Student class (see Listing
7.11) is the parent of GradStudent (see Listing 7.12). A graduate student is a stu-
dent that has a potential source of income, such as being a graduate teaching
assistant (GTA).

The GradStudent class inherits the variables name and numCourses, as well
as the method toString that was defined in Student (overriding the version
from Object). The GradStudent constructor uses the super reference to invoke
the constructor of Student, and then initializes its own variables.

The GradStudent class augments its inherited definition with variables con-
cerning financial support, and it overrides toString (yet again) to print addi-
tional information. Note that the GradStudent version of toString explicitly
invokes the Student version of toString using the super reference.

figure 7.5 Some methods of the Object class

boolean equals (Object obj)

Returns true if this object is an alias of the specified object.

String toString ()

Returns a string representation of this object.

Object clone ()

Creates and returns a copy of this object.

The toString and equals
methods are defined in the
Object class and therefore are
inherited by every class in
every Java program.

key
concept

398 CHAPTER 7 inheritance

listing
7.10

//**

// Academia.java Author: Lewis/Loftus

//

// Demonstrates the use of methods inherited from the Object class.

//**

public class Academia

{

//---

// Creates objects of two student types, prints some information

// about them, then checks them for equality.

//---

public static void main (String[] args)

{

Student susan = new Student ("Susan", 5);

GradStudent frank = new GradStudent ("Frank", 3, "GTA", 12.75);

System.out.println (susan);

System.out.println ();

System.out.println (frank);

System.out.println ();

if (! susan.equals(frank))

System.out.println ("These are two different students.");

}

}

Student name: Susan

Number of courses: 5

Student name: Frank

Number of courses: 3

Support source: GTA

Hourly pay rate: 12.75

These are two different students.

output

code398.html

7.2 class hierarchies 399

listing
7.11

//**

// Student.java Author: Lewis/Loftus

//

// Represents a student. Used to demonstrate inheritance.

//**

public class Student

{

protected String name;

protected int numCourses;

//---

// Sets up a student with the specified name and number of

// courses.

//---

public Student (String studentName, int courses)

{

name = studentName;

numCourses = courses;

}

//---

// Returns information about this student as a string.

//---

public String toString()

{

String result = "Student name: " + name + "\n";

result += "Number of courses: " + numCourses;

return result;

}

}

code399.html

400 CHAPTER 7 inheritance

listing
7.12

//**

// GradStudent.java Author: Lewis/Loftus

//

// Represents a graduate student with financial support. Used to

// demonstrate inheritance.

//**

public class GradStudent extends Student

{

private String source;

private double rate;

//---

// Sets up the graduate student using the specified information.

//---

public GradStudent (String studentName, int courses,

String support, double payRate)

{

super (studentName, courses);

source = support;

rate = payRate;

}

//---

// Returns a description of this graduate student as a string.

//---

public String toString()

{

String result = super.toString();

result += "\nSupport source: " + source + "\n";

result += "Hourly pay rate: " + rate;

return result;

}

}

code400.html

7.2 class hierarchies 401

abstract classes
An abstract class represents a generic concept in a class hierarchy. An abstract
class cannot be instantiated and usually contains one or more abstract methods,
which have no definition. In this sense, an abstract class is similar to an interface.
Unlike interfaces, however, an abstract class can contain methods that are not
abstract. It can also contain data declarations other than constants.

A class is declared as abstract by including the abstract modifier in the class
header. Any class that contains one or more abstract methods must be declared
as abstract. In abstract classes (unlike interfaces) the abstract modifier must be
applied to each abstract method. A class declared as abstract does not have to
contain abstract methods.

Abstract classes serve as placeholders in a class hierarchy. As the
name implies, an abstract class represents an abstract entity that is usu-
ally insufficiently defined to be useful by itself. Instead, an abstract
class may contain a partial description that is inherited by all of its
descendants in the class hierarchy. Its children, which are more specific,
fill in the gaps.

Consider the class hierarchy shown in Fig. 7.6. The Vehicle class at the top
of the hierarchy may be too generic for a particular application. Therefore we
may choose to implement it as an abstract class. In UML diagram, abstract class
names are shown in italic. Concepts that apply to all vehicles can be represented
in the Vehicle class and are inherited by its descendants. That way, each of its
descendants doesn’t have to define the same concept redundantly (and perhaps
inconsistently.) For example, we may say that all vehicles have a particular speed.
Therefore we declare a speed variable in the Vehicle class, and all specific vehi-
cles below it in the hierarchy automatically have that variable because of inheri-
tance. Any change we make to the representation of the speed of a vehicle is auto-
matically reflected in all descendant classes. Similarly, we may declare an abstract

figure 7.6 A vehicle class hierarchy

Car

Vehicle

Boat Plane

An abstract class cannot be
instantiated. It represents a
concept on which other classes
can build their definitions.

key
concept

402 CHAPTER 7 inheritance

method called fuelConsumption, whose purpose is to calculate how quickly fuel
is being consumed by a particular vehicle. The details of the fuelConsumption
method must be defined by each type of vehicle, but the Vehicle class establishes
that all vehicles consume fuel and provides a consistent way to compute that
value.

Some concepts don’t apply to all vehicles, so we wouldn’t represent those con-
cepts at the Vehicle level. For instance, we wouldn’t include a variable called
numberOfWheels in the Vehicle class, because not all vehicles have wheels. The
child classes for which wheels are appropriate can add that concept at the appro-
priate level in the hierarchy.

There are no restrictions as to where in a class hierarchy an abstract class can
be defined. Usually they are located at the upper levels of a class hierarchy.
However, it is possible to derive an abstract class from a nonabstract parent.

Usually, a child of an abstract class will provide a specific definition
for an abstract method inherited from its parent. Note that this is just
a specific case of overriding a method, giving a different definition than
the one the parent provides. If a child of an abstract class does not give
a definition for every abstract method that it inherits from its parent,
the child class is also considered abstract.

Note that it would be a contradiction for an abstract method to be modified
as final or static. Because a final method cannot be overridden in subclasses,
an abstract final method would have no way of being given a definition in sub-
classes. A static method can be invoked using the class name without declaring
an object of the class. Because abstract methods have no implementation, an
abstract static method would make no sense.

Choosing which classes and methods to make abstract is an important part of
the design process. You should make such choices only after careful considera-
tion. By using abstract classes wisely, you can create flexible, extensible software
designs. We present an example later in this chapter that relies on an abstract
class to organize a class hierarchy.

7.3 indirect use of class members
There is a subtle feature of inheritance that is worth noting at this point. The
visibility modifiers determine whether a variable or method is inherited into a
subclass. If a variable or method is inherited, it can be referenced directly in the
subclass by name, as if it were declared locally in the subclass. However, all vari-

A class derived from an
abstract parent must override
all of its parent’s abstract meth-
ods, or the derived class will
also be considered abstract.

ke
y

co
nc

ep
t

7.3 indirect use of class members 403

ables and methods that are defined in a parent class exist for an object of a
derived class, even though they can’t be referenced directly. They can, however,
be referenced indirectly.

Let’s look at an example that demonstrates this situation. The program shown
in Listing 7.13 contains a main method that instantiates a Pizza object and
invokes a method to determine how many calories the pizza has per serving due
to its fat content.

The FoodItem class shown in Listing 7.14 represents a generic type of food.
The constructor of FoodItem accepts the number of grams of fat and the number
of servings of that food. The calories method returns the number of calories
due to fat, which the caloriesPerServing method invokes to help compute the
number of fat calories per serving.

listing
7.13

//**

// FoodAnalysis.java Author: Lewis/Loftus

//

// Demonstrates indirect referencing through inheritance.

//**

public class FoodAnalysis

{

//---

// Instantiates a Pizza object and prints its calories per

// serving.

//---

public static void main (String[] args)

{

Pizza special = new Pizza (275);

System.out.println ("Calories per serving: " +

special.caloriesPerServing());

}

}

Calories per serving: 309

output

code403.html

404 CHAPTER 7 inheritance

listing
7.14

//**

// FoodItem.java Author: Lewis/Loftus

//

// Represents an item of food. Used as the parent of a derived class

// to demonstrate indirect referencing through inheritance.

//**

public class FoodItem

{

final private int CALORIES_PER_GRAM = 9;

private int fatGrams;

protected int servings;

//---

// Sets up this food item with the specified number of fat grams

// and number of servings.

//---

public FoodItem (int numFatGrams, int numServings)

{

fatGrams = numFatGrams;

servings = numServings;

}

//---

// Computes and returns the number of calories in this food item

// due to fat.

//---

private int calories()

{

return fatGrams * CALORIES_PER_GRAM;

}

//---

// Computes and returns the number of fat calories per serving.

//---

public int caloriesPerServing()

{

return (calories() / servings);

}

}

code404.html

7.3 indirect use of class members 405

The Pizza class, shown in Listing 7.15, is derived from FoodItem class, but
it adds no special functionality or data. Its constructor calls the constructor of
FoodItem, using the super reference assuming that there are eight servings per
pizza.

Note that the Pizza object called special in the main method is
used to invoke the method caloriesPerServing, which is defined as
a public method of FoodItem and is therefore inherited by Pizza.
However, caloriesPerServing calls calories, which is declared
private, and is therefore not inherited by Pizza. Furthermore,
calories references the variable fatGrams and the constant
CALORIES_PER_GRAM, which are also declared with private visibility.

Even though Pizza did not inherit calories, fatGrams, or
CALORIES_PER_GRAM, they are available for use indirectly when the Pizza object
needs them. The Pizza class cannot refer to them directly by name because they
are not inherited, but they do exist. Note that a FoodItem object was never cre-
ated or needed.

listing
7.15

//**

// Pizza.java Author: Lewis/Loftus

//

// Represents a pizza, which is a food item. Used to demonstrate

// indirect referencing through inheritance.

//**

public class Pizza extends FoodItem

{

//---

// Sets up a pizza with the specified amount of fat (assumes

// eight servings).

//---

public Pizza (int fatGrams)

{

super (fatGrams, 8);

}

}

All members of a superclass
exist for a subclass, but they
are not necessarily inherited.
Only inherited members can
be referenced by name in the
subclass.

key
concept

code405.html

Figure 7.7 lists each variable and method declared in the FoodItem class and
indicates whether it exists in or is inherited by the Pizza class. Note that every
FoodItem member exists in the Pizza class, no matter how it is declared. The
items that are not inherited can be referenced only indirectly.

7.4 polymorphism
Usually, the type of a reference variable matches exactly the class of the object to
which it refers. That is, if we declare a reference as follows, the bishop reference
is used to refer to an object created by instantiating the ChessPiece class.

ChessPiece bishop;

However, the relationship between a reference variable and the object it refers to
is more flexible than that.

The term polymorphism can be defined as “having many forms.” A
polymorphic reference is a reference variable that can refer to different
types of objects at different points in time. The specific method invoked
through a polymorphic reference can change from one invocation to
the next.

Consider the following line of code:

obj.doIt();

406 CHAPTER 7 inheritance

figure 7.7 The relationship between FoodItem
members and the Pizza class

CALORIES_PER_GRAM

fatGrams

servings

FoodItem

calories

caloriesPerServing

Defined in
Pizza class

yes

yes

yes

yes

yes

yes

no, because the constant is private

no, because the variable is private

yes, because the variable is protected

no, because the constructors are not inherited

no, because the method is private

yes, because the method is public

Inherited in
Pizza class

Declared in
FoodItem class

A polymorphic reference can
refer to different types of
objects over time.

ke
y

co
nc

ep
t

7.4 polymorphism 407

If the reference obj is polymorphic, it can refer to different types of objects at dif-
ferent times. If that line of code is in a loop or in a method that is called more
than once, that line of code might call a different version of the doIt method each
time it is invoked.

At some point, the commitment is made to execute certain code to carry out a
method invocation. This commitment is referred to as binding a method invo-
cation to a method definition. In most situations, the binding of a method invoca-
tion to a method definition can occur at compile time. For polymorphic references,
however, the decision cannot be made until run time. The method definition that
is used is based on the object that is being referred to by the reference variable at
that moment. This deferred commitment is called late binding or dynamic bind-
ing. It is less efficient than binding at compile time because the decision must be
made during the execution of the program. This overhead is generally acceptable
in light of the flexibility that a polymorphic reference provides.

We can create a polymorphic reference in Java in two ways: using inheritance
and using interfaces. This section describes how we can accomplish polymor-
phism using inheritance. Later in the chapter we revisit the issue of interfaces and
describe how polymorphism can be accomplished using interfaces as well.

references and class hierarchies
In Java, a reference that is declared to refer to an object of a particular class can
also be used to refer to an object of any class related to it by inheritance. For
example, if the class Mammal is used to derive the class Horse, then a Mammal ref-
erence can be used to refer to an object of class Horse. This ability is
shown in the following code segment:

Mammal pet;

Horse secretariat = new Horse();

pet = secretariat; // a valid assignment

The reverse operation, assigning the Mammal object to a Horse reference, is
also valid but requires an explicit cast. Assigning a reference in this direction is
generally less useful and more likely to cause problems because although a horse
has all the functionality of a mammal (because a horse is-a mammal), the reverse
is not necessarily true.

This relationship works throughout a class hierarchy. If the Mammal class were
derived from a class called Animal, the following assignment would also be valid:

Animal creature = new Horse();

A reference variable can refer
to any object created from
any class related to it by
inheritance.

key
concept

408 CHAPTER 7 inheritance

Carrying this to the limit, an Object reference can be used to refer to any
object because ultimately all classes are descendants of the Object class. An
ArrayList, for example, uses polymorphism in that it is designed to hold Object
references. That’s why an ArrayList can be used to store any kind of object. In
fact, a particular ArrayList can be used to hold several different types of objects
at one time because, in essence, they are all Object objects.

polymorphism via inheritance
The reference variable creature, as defined in the previous section, can be poly-
morphic because at any point in time it can refer to an Animal object, a Mammal
object, or a Horse object. Suppose that all three of these classes have a method
called move that is implemented in different ways (because the child class over-
rode the definition it inherited). The following invocation calls the move method,
but the particular version of the method it calls is determined at runtime:

creature.move();

At the point when this line is executed, if creature currently refers to
an Animal object, the move method of the Animal class is invoked.
Likewise, if creature currently refers to a Mammal or Horse object, the
Mammal or Horse version of move is invoked, respectively.

Of course, since Animal and Mammal represent general concepts,
they may be defined as abstract classes. This situation does not elimi-

nate the ability to have polymorphic references. Suppose the move method in the
Mammal class is abstract, and is given unique definitions in the Horse, Dog, and
Whale classes (all derived from Mammal). A Mammal reference variable can be used
to refer to any objects created from any of the Horse, Dog, and Whale classes, and
can be used to execute the move method on any of them.

Let’s look at another situation. Consider the class hierarchy shown in Fig. 7.8.
The classes in it represent various types of employees that might be employed at
a particular company. Let’s explore an example that uses this hierarchy to dem-
onstrate several inheritance issues, including polymorphism.

The Firm class shown in Listing 7.16 contains a main driver that creates a
Staff of employees and invokes the payday method to pay them all. The pro-
gram output includes information about each employee and how much each is
paid (if anything).

A polymorphic reference uses
the type of the object, not the
type of the reference, to deter-
mine which version of a
method to invoke.

ke
y

co
nc

ep
t

7.4 polymorphism 409

figure 7.8 A class hierarchy of employees

+ main (args : String[]) : void

Firm

+ payday() : void

– staffList : StaffMember[]

Staff

+ awardBonus (execBonus : double) : void
+ pay() : double

– bonus : double

Executive

+ addHours (moreHours : int) : void
+ pay() : double
+ toString() : String

– hoursWorked : int

Hourly

+ pay() : double

Volunteer Employee

socialSecurityNumber : String
payRate : double

+ toString() : String
+ pay() : double

name : String
address : String
phone : String

+ toString() : String
+ pay() : double

StaffMember

410 CHAPTER 7 inheritance

listing
7.16

//**

// Firm.java Author: Lewis/Loftus

//

// Demonstrates polymorphism via inheritance.

//**

public class Firm

{

//---

// Creates a staff of employees for a firm and pays them.

//---

public static void main (String[] args)

{

Staff personnel = new Staff();

personnel.payday();

}

}

Name: Sam

Address: 123 Main Line

Phone: 555-0469

Social Security Number: 123-45-6789

Paid: 2923.07

Name: Carla

Address: 456 Off Line

Phone: 555-0101

Social Security Number: 987-65-4321

Paid: 1246.15

Name: Woody

Address: 789 Off Rocker

Phone: 555-0000

Social Security Number: 010-20-3040

Paid: 1169.23

Name: Diane

Address: 678 Fifth Ave.

Phone: 555-0690

Social Security Number: 958-47-3625

Current hours: 40

Paid: 422.0

output

code410.html

7.4 polymorphism 411

The Staff class shown in Listing 7.17 maintains an array of objects that rep-
resent individual employees of various kinds. Note that the array is declared to
hold StaffMember references, but it is actually filled with objects created from
several other classes, such as Executive and Employee. These classes are all
descendants of the StaffMember class, so the assignments are valid.

The payday method of the Staff class scans through the list of employees,
printing their information and invoking their pay methods to determine how
much each employee should be paid. The invocation of the pay method is poly-
morphic because each class has its own version of the pay method.

The StaffMember class shown in Listing 7.18 is abstract. It does not represent
a particular type of employee and is not intended to be instantiated. Rather, it
serves as the ancestor of all employee classes and contains information that
applies to all employees. Each employee has a name, address, and phone number,
so variables to store these values are declared in the StaffMember class and are
inherited by all descendants.

The StaffMember class contains a toString method to return the informa-
tion managed by the StaffMember class. It also contains an abstract method
called pay, which takes no parameters and returns a value of type double. At
the generic StaffMember level, it would be inappropriate to give a definition for
this method. The descendants of StaffMember, however, each provide their own

listing
7.16 continued

Name: Norm

Address: 987 Suds Blvd.

Phone: 555-8374

Thanks!

Name: Cliff

Address: 321 Duds Lane

Phone: 555-7282

Thanks!

412 CHAPTER 7 inheritance

listing
7.17

//**

// Staff.java Author: Lewis/Loftus

//

// Represents the personnel staff of a particular business.

//**

public class Staff

{

private StaffMember[] staffList;

//---

// Sets up the list of staff members.

//---

public Staff ()

{

staffList = new StaffMember[6];

staffList[0] = new Executive ("Sam", "123 Main Line",

"555-0469", "123-45-6789", 2423.07);

staffList[1] = new Employee ("Carla", "456 Off Line",

"555-0101", "987-65-4321", 1246.15);

staffList[2] = new Employee ("Woody", "789 Off Rocker",

"555-0000", "010-20-3040", 1169.23);

staffList[3] = new Hourly ("Diane", "678 Fifth Ave.",

"555-0690", "958-47-3625", 10.55);

staffList[4] = new Volunteer ("Norm", "987 Suds Blvd.",

"555-8374");

staffList[5] = new Volunteer ("Cliff", "321 Duds Lane",

"555-7282");

((Executive)staffList[0]).awardBonus (500.00);

((Hourly)staffList[3]).addHours (40);

}

//---

// Pays all staff members.

//---

code412.html

7.4 polymorphism 413

specific definition for pay. By defining pay abstractly in StaffMember, the
payday method of Staff can polymorphically pay each employee.

The Volunteer class shown in Listing 7.19 represents a person that is not
compensated monetarily for his or her work. We keep track only of a volunteer’s
basic information, which is passed into the constructor of Volunteer, which in
turn passes it to the StaffMember constructor using the super reference. The pay
method of Volunteer simply returns a zero pay value. If pay had not been over-
ridden, the Volunteer class would have been considered abstract and could not
have been instantiated.

Note that when a volunteer gets “paid” in the payday method of Staff, a sim-
ple expression of thanks is printed. In all other situations, where the pay value is
greater than zero, the payment itself is printed.

The Employee class shown in Listing 7.20 represents an employee that gets
paid at a particular rate each pay period. The pay rate, as well as the employee’s
social security number, is passed along with the other basic information to the
Employee constructor. The basic information is passed to the constructor of
StaffMember using the super reference.

listing
7.17 continued

public void payday ()

{

double amount;

for (int count=0; count < staffList.length; count++)

{

System.out.println (staffList[count]);

amount = staffList[count].pay(); // polymorphic

if (amount == 0.0)

System.out.println ("Thanks!");

else

System.out.println ("Paid: " + amount);

System.out.println ("-----------------------------------");

}

}

}

414 CHAPTER 7 inheritance

listing
7.18

//**

// StaffMember.java Author: Lewis/Loftus

//

// Represents a generic staff member.

//**

abstract public class StaffMember

{

protected String name;

protected String address;

protected String phone;

//---

// Sets up a staff member using the specified information.

//---

public StaffMember (String eName, String eAddress, String ePhone)

{

name = eName;

address = eAddress;

phone = ePhone;

}

//---

// Returns a string including the basic employee information.

//---

public String toString()

{

String result = "Name: " + name + "\n";

result += "Address: " + address + "\n";

result += "Phone: " + phone;

return result;

}

//---

// Derived classes must define the pay method for each type of

// employee.

//---

public abstract double pay();

}

code414.html

7.4 polymorphism 415

The toString method of Employee is overridden to concatenate the addi-
tional information that Employee manages to the information returned by the
parent’s version of toString, which is called using the super reference. The pay
method of an Employee simply returns the pay rate for that employee.

The Executive class shown in Listing 7.21 represents an employee that may
earn a bonus in addition to his or her normal pay rate. The Executive class is
derived from Employee and therefore inherits from both StaffMember and
Employee. The constructor of Executive passes along its information to the
Employee constructor and sets the executive bonus to zero.

listing
7.19

//**

// Volunteer.java Author: Lewis/Loftus

//

// Represents a staff member that works as a volunteer.

//**

public class Volunteer extends StaffMember

{

//---

// Sets up a volunteer using the specified information.

//---

public Volunteer (String eName, String eAddress, String ePhone)

{

super (eName, eAddress, ePhone);

}

//---

// Returns a zero pay value for this volunteer.

//---

public double pay()

{

return 0.0;

}

}

code415.html

416 CHAPTER 7 inheritance

listing
7.20

//**

// Employee.java Author: Lewis/Loftus

//

// Represents a general paid employee.

//**

public class Employee extends StaffMember

{

protected String socialSecurityNumber;

protected double payRate;

//---

// Sets up an employee with the specified information.

//---

public Employee (String eName, String eAddress, String ePhone,

String socSecNumber, double rate)

{

super (eName, eAddress, ePhone);

socialSecurityNumber = socSecNumber;

payRate = rate;

}

//---

// Returns information about an employee as a string.

//---

public String toString()

{

String result = super.toString();

result += "\nSocial Security Number: " + socialSecurityNumber;

return result;

}

//---

// Returns the pay rate for this employee.

//---

public double pay()

{

return payRate;

}

}

code416.html

7.4 polymorphism 417

listing
7.21

//**

// Executive.java Author: Lewis/Loftus

//

// Represents an executive staff member, who can earn a bonus.

//**

public class Executive extends Employee

{

private double bonus;

//---

// Sets up an executive with the specified information.

//---

public Executive (String eName, String eAddress, String ePhone,

String socSecNumber, double rate)

{

super (eName, eAddress, ePhone, socSecNumber, rate);

bonus = 0; // bonus has yet to be awarded

}

//---

// Awards the specified bonus to this executive.

//---

public void awardBonus (double execBonus)

{

bonus = execBonus;

}

//---

// Computes and returns the pay for an executive, which is the

// regular employee payment plus a one-time bonus.

//---

public double pay()

{

double payment = super.pay() + bonus;

bonus = 0;

return payment;

}

}

code417.html

418 CHAPTER 7 inheritance

A bonus is awarded to an executive using the awardBonus method. This
method is called in the payday method in Staff for the only executive that is part
of the personnel array. Note that the generic StaffMember reference must
be cast into an Executive reference to invoke the awardBonus method (which
doesn’t exist for a StaffMember).

The Executive class overrides the pay method so that it first determines the
payment as it would for any employee, then adds the bonus. The pay method of
the Employee class is invoked using super to obtain the normal payment
amount. This technique is better than using just the payRate variable because if
we choose to change how Employee objects get paid, the change will automati-
cally be reflected in Executive. After the bonus is awarded, it is reset to zero.

The Hourly class shown in Listing 7.22 represents an employee whose pay rate
is applied on an hourly basis. It keeps track of the number of hours worked in the
current pay period, which can be modified by calls to the addHours method. This
method is called from the payday method of Staff. The pay method of Hourly
determines the payment based on the number of hours worked, and then resets
the hours to zero.

listing
7.22

//**

// Hourly.java Author: Lewis/Loftus

//

// Represents an employee that gets paid by the hour.

//**

public class Hourly extends Employee

{

private int hoursWorked;

//---

// Sets up this hourly employee using the specified information.

//---

public Hourly (String eName, String eAddress, String ePhone,

String socSecNumber, double rate)

{

super (eName, eAddress, ePhone, socSecNumber, rate);

hoursWorked = 0;

}

code418.html

7.4 polymorphism 419

listing
7.22 continued

//---

// Adds the specified number of hours to this employee's

// accumulated hours.

//---

public void addHours (int moreHours)

{

hoursWorked += moreHours;

}

//---

// Computes and returns the pay for this hourly employee.

//---

public double pay()

{

double payment = payRate * hoursWorked;

hoursWorked = 0;

return payment;

}

//---

// Returns information about this hourly employee as a string.

//---

public String toString()

{

String result = super.toString();

result += "\nCurrent hours: " + hoursWorked;

return result;

}

}

420 CHAPTER 7 inheritance

7.5 interfaces revisited
We introduced interfaces in Chapter 5. We revisit them here because they have a
lot in common with the topic of inheritance. Like classes, interfaces can be organ-
ized into inheritance hierarchies. And just as we can accomplish polymorphism
using the inheritance relationship, we can also accomplish it using interfaces. This
section discusses both of these topics.

interface hierarchies
The concept of inheritance can be applied to interfaces as well as classes. That is,
one interface can be derived from another interface. These relationships can form
an interface hierarchy, which is similar to a class hierarchy. Inheritance relation-
ships between interfaces are shown in UML using the same connection (an arrow
with an open arrowhead) as they are with classes.

When a parent interface is used to derive a child interface, the child
inherits all abstract methods and constants of the parent. Any class that
implements the child interface must implement all of the methods.
There are no restrictions on the inheritance between interfaces, as there
are with protected and private members of a class, because all members
of an interface are public.

Class hierarchies and interface hierarchies do not overlap. That is, an interface
cannot be used to derive a class, and a class cannot be used to derive an interface.
A class and an interface interact only when a class is designed to implement a
particular interface.

polymorphism via interfaces
As we’ve seen many times, a class name is used to declare the type of
an object reference variable. Similarly, an interface name can be used as
the type of a reference variable as well. An interface reference variable
can be used to refer to any object of any class that implements that
interface.

Inheritance can be applied to
interfaces so that one interface
can be derived from another.ke

y
co

nc
ep

t

An interface name can be used
to declare an object reference
variable. An interface reference
can refer to any object of any
class that implements that
interface.

ke
y

co
nc

ep
t

7.5 interfaces revisited 421

Suppose we declare an interface called Speaker as follows:

public interface Speaker

{

public void speak();

public void announce (String str);

}

The interface name, Speaker, can now be used to declare an object reference
variable:

Speaker current;

The reference variable current can be used to refer to any object of any class that
implements the Speaker interface. For example, if we define a class called
Philosopher such that it implements the Speaker interface, we can then assign
a Philosopher object to a Speaker reference as follows:

current = new Philosopher();

This assignment is valid because a Philosopher is, in fact, a Speaker.

The flexibility of an interface reference allows us to create polymor-
phic references. As we saw earlier in this chapter, using inheritance, we
can create a polymorphic reference that can refer to any one of a set of
objects related by inheritance. Using interfaces, we can create similar
polymorphic references, except that the objects being referenced,
instead of being related by inheritance, are related by implementing the
same interface.

For example, if we create a class called Dog that also implements the Speaker
interface, it can be assigned to a Speaker reference variable. The same reference,
in fact, can at one point refer to a Philosopher object and then later refer to a
Dog object. The following lines of code illustrate this:

Speaker guest;

guest = new Philosopher();

guest.speak();

guest = new Dog();

guest.speak();

Interfaces allow us to make
polymorphic references in
which the method that is
invoked is based on the partic-
ular object being referenced at
the time.

key
concept

In this code, the first time the speak method is called, it invokes the speak
method defined in the Philosopher class. The second time it is called, it invokes
the speak method of the Dog class. As with polymorphic references via inheri-
tance, it is not the type of the reference that determines which method gets
invoked; it depends on the type of the object that the reference points to at the
moment of invocation.

Note that when we are using an interface reference variable, we can invoke
only the methods defined in the interface, even if the object it refers to has other
methods to which it can respond. For example, suppose the Philosopher class
also defined a public method called pontificate. The second line of the follow-
ing code would generate a compiler error, even though the object can in fact
respond to the pontificate method:

Speaker special = new Philosopher();

special.pontificate(); // generates a compiler error

The problem is that the compiler can determine only that the object is a
Speaker, and therefore can guarantee only that the object can respond to the
speak and announce methods. Because the reference variable special could
refer to a Dog object (which cannot pontificate), it does not allow the reference.
If we know in a particular situation that such an invocation is valid, we can cast
the object into the appropriate reference so that the compiler will accept it as fol-
lows:

((Philosopher)special).pontificate();

Similar to polymorphic references based in inheritance, an interface name can
be used as the type of a method parameter. In such situations, any object of any
class that implements the interface can be passed into the method. For example,
the following method takes a Speaker object as a parameter. Therefore both a
Dog object and a Philosopher object can be passed into it in separate invoca-
tions:

public void sayIt (Speaker current)

{

current.speak();

}

7.6 inheritance and GUIs
The concept of inheritance affects our use of graphics and GUIs. This section
explores some of these issues.

422 CHAPTER 7 inheritance

7.6 inheritance and GUIs 423

It’s important in these discussions to recall that there are two primary GUI
APIs used in Java: the Abstract Windowing Toolkit (AWT) and the Swing classes.
The AWT is the original set of graphics classes in Java. Swing classes were intro-
duced later, adding components that provided much more functionality than their
AWT counterparts. In general, we use Swing components in our examples in this
book.

applets revisited
In previous chapters, we’ve created applets using inheritance. Initially, we
extended the Applet class, which is an original AWT component that is part of
the java.applet package. In Chapter 5 and beyond, we’ve derived our applets
from the JApplet class, which is the Swing version. The primary difference
between these two classes is that a JApplet has a content pane to which GUI
components are added. Also, in general, a JApplet component should not be
drawn on directly. It’s better to draw on a panel and add that panel to the applet
to be displayed, especially if there is to be user interaction.

The extension of an applet class demonstrates a classic
use of inheritance, allowing the parent class to shoulder the
responsibilities that apply to all of its descendants. The
JApplet class is already designed to handle all of the
details concerning applet creation and execution. For
example, an applet program interacts with a browser, can accept parameters
through HTML code, and is constrained by certain security limitations. The
JApplet class already takes care of these details in a generic way that applies to
all applets.

Because of inheritance, the applet class that we write (the one derived from
JApplet) is ready to focus on the purpose of that particular program. In other
words, the only issues that we address in our applet code are those that make it
different from other applets.

Note that we’ve been using applets even before we examined what inheritance
accomplishes for us and what the parent applet class does in particular. We used
the parent applet classes simply for the services it provides. Therefore applets are
another wonderful example of abstraction in which certain details can be ignored.

the component class hierarchy
All of the Java classes that define GUI components are part of a class hierarchy,
shown in part in Fig. 7.9. Almost all Swing GUI components are derived from

An applet is a good example of
inheritance. The JApplet par-
ent class handles characteris-
tics common to all applets.

key
concept

424 CHAPTER 7 inheritance

the JComponent class, which defines how all components
work in general. JComponent is derived from the
Container class, which in turn is derived from the
Component class.

Both Container and Component are original AWT classes. The Component
class contains much of the general functionality that applies to all GUI compo-
nents, such as basic painting and event handling. So although we may prefer to
use some of the specific Swing components, they are based on core AWT concepts
and respond to the same events as AWT components. Because they are derived
from Container, many Swing components can serve as containers, though in
most circumstances those abilities are curtailed. For example, a JLabel object
can contain an image (as described in the next chapter) but it cannot be used as
a generic container to which any component can be added.

The classes that represent Java
GUI components are organized
into a class hierarchy.

ke
y

co
nc

ep
t

figure 7.9 Part of the GUI component class hierarchy

Component

JComponent

JPanel JAbstractButton JLabel JTextComponent

JTextField
JButton JToggleButton

JCheckBox JRadioButton

Container

Many features that apply to all Swing components are defined in the
JComponent class and are inherited into its descendants. For example, we have
the ability to put a border on any Swing component (we discuss this more in
Chapter 9). This ability is defined, only once, in the JComponent class and is
inherited by any class that is derived, directly or indirectly, from it.

Some component classes, such as JPanel and JLabel, are derived directly
from JComponent. Other component classes are nested further down in the inher-
itance hierarchy structure. For example, the JAbstractButton class is an
abstract class that defines the functionality that applies to all types of GUI but-
tons. JButton is derived directly from it. However, note that JCheckBox and
JRadioButton are both derived from a class called JToggleButton, which
embodies the common characteristics for buttons that can be in one of two states.
The set of classes that define GUI buttons shows once again how common char-
acteristics are put at appropriately high levels of the class hierarchy rather than
duplicated in multiple classes.

The world of text components demonstrates this as well. The JTextField
class that we’ve used in previous examples is one of many Java GUI components
that support the management of text data. They are organized under a class called
JTextComponent. Keep in mind that there are many GUI component classes that
are not shown in the diagram in Fig. 7.9.

Painting is another GUI feature affected by the inheritance hierarchy. The
paint method we’ve used in applets is defined in the Component class. The
Applet class inherits the default version of this method, which we have regularly
overridden in our applet programs to paint particular shapes. Most Swing
classes, however, use a method called paintComponent to perform custom
painting. Usually, we will draw on a JPanel using its paintComponent method
and use the super reference to invoke the version of the paintComponent
method defined in JComponent, which draws the background and outline of the
component. This technique is demonstrated in the next section.

7.7 mouse events
Let’s examine the events that are generated when using a mouse. Java divides
these events into two categories: mouse events and mouse motion events. The
table in Fig. 7.10 defines these events.

7.7 mouse events 425

426 CHAPTER 7 inheritance

When you click the mouse button over a Java GUI component, three events are
generated: one when the mouse button is pushed down (mouse pressed) and two
when it is let up (mouse released and mouse clicked). A mouse click is defined as
pressing and releasing the mouse button in the same location. If you press the
mouse button down, move the mouse, and then release the mouse button, a
mouse clicked event is not generated.

A component will generate a mouse entered event when the mouse pointer
passes into its graphical space. Likewise, it generates a mouse exited event when
the mouse pointer leaves.

Mouse motion events, as the name implies, occur while
the mouse is in motion. The mouse moved event indicates
simply that the mouse is in motion. The mouse dragged
event is generated when the user has pressed the mouse
button down and moved the mouse without releasing the
button. Mouse motion events are generated many times,
very quickly, while the mouse is in motion.

In a specific situation, we may care about only one or two mouse events. What
we listen for depends on what we are trying to accomplish.

The Dots program shown in Listing 7.23 responds to one mouse event.
Specifically, it draws a green dot at the location of the mouse pointer whenever
the mouse button is pressed.

figure 7.10 Mouse events and mouse motion events

mouse pressed The mouse button is pressed down.

The mouse button is released.

The mouse pointer is moved onto (over) a component.

The mouse pointer is moved off of a component.

The mouse button is pressed down and released without moving
the mouse in between.

mouse released

mouse clicked

mouse entered

mouse exited

Mouse Event Description

mouse moved The mouse is moved.

The mouse is moved while the mouse button is pressed down.mouse dragged

Mouse Motion Event Description

Moving the mouse and clicking
the mouse button generate
mouse events to which a pro-
gram can respond.

ke
y

co
nc

ep
t

7.7 mouse events 427

listing
7.23

//**

// Dots.java Author: Lewis/Loftus

//

// Demonstrates mouse events and drawing on a panel.

//**

import javax.swing.*;

public class Dots

{

//---

// Creates and displays the application frame.

//---

public static void main (String[] args)

{

JFrame dotsFrame = new JFrame ("Dots");

dotsFrame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

dotsFrame.getContentPane().add (new DotsPanel());

dotsFrame.pack();

dotsFrame.show();

}

}

display

428 CHAPTER 7 inheritance

The main method of the Dots class creates a frame and adds one panel to it.
That panel is defined by the DotsPanel class shown in Listing 7.24. The
DotsPanel class is derived from JPanel. This panel serves as the surface on
which the dots are drawn.

listing
7.24

//**

// DotsPanel.java Author: Lewis/Loftus

//

// Represents the primary panel for the Dots program on which the

// dots are drawn.

//**

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class DotsPanel extends JPanel

{

private final int WIDTH = 300, HEIGHT = 200;

private final int RADIUS = 6;

private ArrayList pointList;

private int count;

//---

// Sets up this panel to listen for mouse events.

//---

public DotsPanel()

{

pointList = new ArrayList();

count = 0;

addMouseListener (new DotsListener());

setBackground (Color.black);

setPreferredSize (new Dimension(WIDTH, HEIGHT));

}

//---

// Draws all of the dots stored in the list.

//---

7.7 mouse events 429

listing
7.24 continued

public void paintComponent (Graphics page)

{

super.paintComponent(page);

page.setColor (Color.green);

// Retrieve an iterator for the ArrayList of points

Iterator pointIterator = pointList.iterator();

while (pointIterator.hasNext())

{

Point drawPoint = (Point) pointIterator.next();

page.fillOval (drawPoint.x - RADIUS, drawPoint.y - RADIUS,

RADIUS * 2, RADIUS * 2);

}

page.drawString ("Count: " + count, 5, 15);

}

//***

// Represents the listener for mouse events.

//***

private class DotsListener implements MouseListener

{

//--

// Adds the current point to the list of points and redraws

// whenever the mouse button is pressed.

//--

public void mousePressed (MouseEvent event)

{

pointList.add (event.getPoint());

count++;

repaint();

}

//---

// Provide empty definitions for unused event methods.

//---

public void mouseClicked (MouseEvent event) {}

public void mouseReleased (MouseEvent event) {}

public void mouseEntered (MouseEvent event) {}

public void mouseExited (MouseEvent event) {}

}

}

430 CHAPTER 7 inheritance

The DotsPanel class keeps track of a list of Point objects that represent all of
the locations at which the user has clicked the mouse. A Point class represents
the (x, y) coordinates of a given point in two-dimensional space. It provides pub-
lic access to the instance variables x and y for the point. Each time the panel is
painted, all of the points stored in the list are drawn. The list is maintained as an
ArrayList object. To draw the points, an Iterator object is obtained from
the ArrayList so that each point can be processed in turn. We discussed the
ArrayList class in Chapter 6 and the Iterator interface in Chapter 5.

The listener for the mouse pressed event is defined as a private inner class that
implements the MouseListener interface. The mousePressed method is invoked
by the panel each time the user presses down on the mouse button while it is over
the panel.

A mouse event always occurs at some point in space, and the object that repre-
sents that event keeps track of that location. In a mouse listener, we can get and use
that point whenever we need it. In the Dots program, each time the mousePressed
method is called, the location of the event is obtained using the getPoint method
of the MouseEvent object. That point is stored in the ArrayList, and the panel is
then repainted.

Note that, unlike the ActionListener and ItemListener interfaces that
we’ve used in previous examples, which contain one method each, the
MouseListener interface contains five methods. For this program, the only event
in which we are interested is the mouse pressed event. Therefore, the only method
in which we have any interest is the mousePressed method. However, imple-
menting an interface means we must provide definitions for all methods in the
interface. Therefore we provide empty methods corresponding to the other
events. When those events are generated, the empty methods are called, but no
code is executed.

Let’s look at an example that responds to two mouse-oriented events. The
RubberLines program shown in Listing 7.25 draws a line between two points.
The first point is determined by the location at which the mouse is first pressed
down. The second point changes as the mouse is dragged while the mouse button
is held down. When the button is released, the line remains fixed between the first
and second points. When the mouse button is pressed again, a new line is started.
This program is implemented as an applet.

The panel on which the lines are drawn is represented by the
RubberLinesPanel class shown in Listing 7.26. Because we need to listen for
both a mouse pressed event and a mouse dragged event, we need a listener that
responds to both mouse events and mouse motion events. Note that the listener
class implements both the MouseListener and MouseMotionListener inter-

7.7 mouse events 431

listing
7.25

//**

// RubberLines.java Author: Lewis/Loftus

//

// Demonstrates mouse events and rubberbanding.

//**

import javax.swing.*;

public class RubberLines extends JApplet

{

private final int WIDTH = 300, HEIGHT = 200;

//---

// Sets up the applet to contain the drawing panel.

//---

public void init()

{

getContentPane().add (new RubberLinesPanel());

setSize (WIDTH, HEIGHT);

}

}

display

432 CHAPTER 7 inheritance

faces. It must therefore implement all methods of both classes. The two methods
of interest, mousePressed and mouseDragged, are implemented, and the rest are
given empty definitions.

listing
7.26

//**

// RubberLinesPanel.java Author: Lewis/Loftus

//

// Represents the primary drawing panel for the RubberLines applet.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class RubberLinesPanel extends JPanel

{

private Point point1 = null, point2 = null;

//---

// Sets up the applet to listen for mouse events.

//---

public RubberLinesPanel()

{

LineListener listener = new LineListener();

addMouseListener (listener);

addMouseMotionListener (listener);

setBackground (Color.black);

}

//---

// Draws the current line from the intial mouse down point to

// the current position of the mouse.

//---

public void paintComponent (Graphics page)

{

super.paintComponent (page);

page.setColor (Color.green);

if (point1 != null && point2 != null)

page.drawLine (point1.x, point1.y, point2.x, point2.y);

}

7.7 mouse events 433

listing
7.26 continued

//***

// Represents the listener for all mouse events.

//***

private class LineListener implements MouseListener,

MouseMotionListener

{

//--

// Captures the initial position at which the mouse button is

// pressed.

//--

public void mousePressed (MouseEvent event)

{

point1 = event.getPoint();

}

//--

// Gets the current position of the mouse as it is dragged and

// draws the line to create the rubberband effect.

//--

public void mouseDragged (MouseEvent event)

{

point2 = event.getPoint();

repaint();

}

//--

// Provide empty definitions for unused event methods.

//--

public void mouseClicked (MouseEvent event) {}

public void mouseReleased (MouseEvent event) {}

public void mouseEntered (MouseEvent event) {}

public void mouseExited (MouseEvent event) {}

public void mouseMoved (MouseEvent event) {}

}

}

434 CHAPTER 7 inheritance

When the mousePressed method is called, the variable
point1 is set. Then, as the mouse is dragged, the
variable point2 is continually reset and the panel
repainted. Therefore the line is constantly being redrawn
as the mouse is dragged, giving the appearance that one
line is being stretched between a fixed point and a moving
point. This effect is called rubberbanding and is common
in graphical programs.

Note that, in the RubberLinesPanel constructor, the listener object is added
to the panel twice: once as a mouse listener and once as a mouse motion listener.
The method called to add the listener must correspond to the object passed as the
parameter. In this case, we had one object that served as a listener for both cate-
gories of events. We could have had two listener classes if desired: one listening
for mouse events and one listening for mouse motion events. A component can
have multiple listeners for various event categories.

Also note that this program draws one line at a time. That is, when the user
begins to draw another line with a new mouse click, the previous one disappears.
This is because the paintComponent method redraws its background, eliminat-
ing the line every time. To see the previous lines, we’d have to keep track of them,
perhaps using an ArrayList as was done in the Dots program. This modifica-
tion to the RubberLines program is left as a programming project.

extending event adapter classes
In previous event-based examples, we’ve created the listener classes by imple-
menting a particular listener interface. For instance, to create a class that listens
for mouse events, we created a listener class that implements the MouseListener
interface. As we saw in the Dots and RubberLines programs, a listener interface
often contains event methods that are not important to a particular program, in
which case we provided empty definitions to satisfy the interface requirement.

An alternative technique for creating a listener class is
to extend an event adapter class. Each listener interface
that contains more than one method has a corresponding
adapter class that already contains empty definitions for
all of the methods in the interface. To create a listener, we
can derive a new listener class from the appropriate

adapter class and override any event methods in which we are interested. Using
this technique, we no longer must provide empty definitions for unused methods.

Rubberbanding is the visual
effect created when a graphical
shape seems to expand and
contract as the mouse is
dragged.

ke
y

co
nc

ep
t

A listener class can be created
by deriving it from an event
adapter class.

ke
y

co
nc

ep
t

7.7 mouse events 435

The program shown in Listing 7.27 is an applet that responds to mouse click
events. Whenever the mouse button is clicked over the applet, a line is drawn
from the location of the mouse pointer to the center of the applet. The distance
that line represents in pixels is displayed.

The structure of the OffCenter program is similar to that of the RubberLines
program. It loads a display panel, represented by the OffCenterPanel class
shown in Listing 7.28 into the applet window.

The listener class, instead of implementing the MouseListener interface
directly as we have done in previous examples, extends the MouseAdapter class,
which is defined in the java.awt.event package of the Java standard class
library. The MouseAdapter class implements the MouseListener interface and
contains empty definitions for all of the mouse event methods. In our listener
class, we override the definition of the mouseClicked method to suit our needs.

listing
7.27

//**

// OffCenter.java Author: Lewis/Loftus

//

// Demonstrates the use of an event adatpter class.

//**

import javax.swing.*;

public class OffCenter extends JApplet

{

private final int WIDTH = 300, HEIGHT = 300;

//---

// Sets up the applet.

//---

public void init()

{

getContentPane().add(new OffCenterPanel (WIDTH, HEIGHT));

setSize (WIDTH, HEIGHT);

}

}

436 CHAPTER 7 inheritance

Because we inherit the other empty methods corresponding to the rest of the
mouse events, we don’t have to provide our own empty definitions.

Because of inheritance, we now have a choice when it comes to creating event
listeners. We can implement an event listener interface, or we can extend an event
adapter class. This is a design decision that should be considered carefully. The
best technique depends on the situation.

listing
7.27 continued

display

7.7 mouse events 437

listing
7.28

//**

// OffCenterPanel.java Author: Lewis/Loftus

//

// Represents the primary drawing panel for the OffCenter applet.

//**

import java.awt.*;

import java.awt.event.*;

import java.text.DecimalFormat;

import javax.swing.*;

public class OffCenterPanel extends JPanel

{

private DecimalFormat fmt;

private Point current;

private int centerX, centerY;

private double length;

//---

// Sets up the panel and necessary data.

//---

public OffCenterPanel (int width, int height)

{

addMouseListener (new OffCenterListener());

centerX = width / 2;

centerY = height / 2;

fmt = new DecimalFormat ("0.##");

setBackground (Color.yellow);

}

//---

// Draws a line from the mouse pointer to the center point of

// the applet and displays the distance.

//---

public void paintComponent (Graphics page)

{

super.paintComponent (page);

page.setColor (Color.black);

page.drawOval (centerX-3, centerY-3, 6, 6);

438 CHAPTER 7 inheritance

listing
7.28 continued

if (current != null)

{

page.drawLine (current.x, current.y, centerX, centerY);

page.drawString ("Distance: " + fmt.format(length), 10, 15);

}

}

//***

// Represents the listener for mouse events.

//***

private class OffCenterListener extends MouseAdapter

{

//--

// Computes the distance from the mouse pointer to the center

// point of the applet.

//--

public void mouseClicked (MouseEvent event)

{

current = event.getPoint();

length = Math.sqrt(Math.pow((current.x-centerX), 2) +

Math.pow((current.y-centerY), 2));

repaint();

}

}

}

summary of key concepts 439

◗ Inheritance is the process of deriving a new class from an existing one.

◗ One purpose of inheritance is to reuse existing software.

◗ Inherited variables and methods can be used in the derived class as if they
had been declared locally.

◗ Inheritance creates an is-a relationship between all parent and child
classes.

◗ Visibility modifiers determine which variables and methods are inherited.
Protected visibility provides the best possible encapsulation that permits
inheritance.

◗ A parent’s constructor can be invoked using the super reference.

◗ A child class can override (redefine) the parent’s definition of an inherited
method.

◗ The child of one class can be the parent of one or more other classes, cre-
ating a class hierarchy.

◗ Common features should be located as high in a class hierarchy as is
reasonably possible, minimizing maintenance efforts.

◗ All Java classes are derived, directly or indirectly, from the Object class.

◗ The toString and equals methods are defined in the Object class and
therefore are inherited by every class in every Java program.

◗ An abstract class cannot be instantiated. It represents a concept on which
other classes can build their definitions.

◗ A class derived from an abstract parent must override all of its parent’s
abstract methods, or the derived class will also be considered abstract.

◗ All members of a superclass exist for a subclass, but they are not necessar-
ily inherited. Only inherited members can be referenced by name in the
subclass.

◗ A polymorphic reference can refer to different types of objects over time.

◗ A reference variable can refer to any object created from any class related
to it by inheritance.

◗ A polymorphic reference uses the type of the object, not the type of the
reference, to determine which version of a method to invoke.

◗ Inheritance can be applied to interfaces so that one interface can be
derived from another.

summary of
key concepts

440 CHAPTER 7 inheritance

◗ An interface name can be used to declare an object reference variable. An
interface reference can refer to any object of any class that implements
that interface.

◗ Interfaces allow us to make polymorphic references in which the method
that is invoked is based on the particular object being referenced at the
time.

◗ An applet is a good example of inheritance. The JApplet parent class
handles characteristics common to all applets.

◗ The classes that represent Java GUI components are organized into a class
hierarchy.

◗ Moving the mouse and clicking the mouse button generate mouse events
to which a program can respond.

◗ Rubberbanding is the visual effect created when a graphical shape seems
to expand and contract as the mouse is dragged.

◗ A listener class can be created by deriving it from an event adapter class.

self-review questions
7.1 Describe the relationship between a parent class and a child class.

7.2 How does inheritance support software reuse?

7.3 What relationship should every class derivation represent?

7.4 Why would a child class override one or more of the methods of its
parent class?

7.5 Why is the super reference important to a child class?

7.6 What is the significance of the Object class?

7.7 What is the role of an abstract class?

7.8 Are all members of a parent class inherited by the child? Explain.

7.9 What is polymorphism?

7.10 How does inheritance support polymorphism?

7.11 How is overriding related to polymorphism?

7.12 What is an interface hierarchy?

7.13 How can polymorphism be accomplished using interfaces?

7.14 What is an adapter class?

exercises 441

exercises
7.1 Draw a UML class diagram showing an inheritance hierarchy con-

taining classes that represent different types of clocks. Show the vari-
ables and method names for two of these classes.

7.2 Show an alternative diagram for the hierarchy in Exercise 7.1.
Explain why it may be a better or worse approach than the original.

7.3 Draw and annotate a class hierarchy that represents various types of
faculty at a university. Show what characteristics would be repre-
sented in the various classes of the hierarchy. Explain how polymor-
phism could play a role in the process of assigning courses to each
faculty member.

7.4 Experiment with a simple derivation relationship between two
classes. Put println statements in constructors of both the parent
and child classes. Do not explicitly call the constructor of the parent
in the child. What happens? Why? Change the child’s constructor to
explicitly call the constructor of the parent. Now what happens?

7.5 What would happen if the pay method were not defined as an
abstract method in the StaffMember class of the Firm program?

7.6 What would happen if, in the Dots program, we did not provide
empty definitions for one or more of the unused mouse events?

7.7 The Dots program listens for a mouse pressed event to draw a dot.
How would the program behave differently if it listened for a mouse
released event instead? A mouse clicked event?

7.8 What would happen if the call to super.paintComponent were
removed from the paintComponent method of the DotsPanel class?
Remove it and run the program to test your answer.

7.9 What would happen if the call to super.paintComponent were
removed from the paintComponent method of the
RubberLinesPanel class? Remove it and run the program to test
your answer. In what ways is the answer different from the answer
to Exercise 7.8?

7.10 Explain how a call to the addMouseListener method represents a
polymorphic situation.

442 CHAPTER 7 inheritance

programming projects
7.1 Design and implement a class called MonetaryCoin that is derived

from the Coin class presented in Chapter 4. Store a value in the
monetary coin that represents its value and add a method that
returns its value. Create a main driver class to instantiate and com-
pute the sum of several MonetaryCoin objects. Demonstrate that a
monetary coin inherits its parent’s ability to be flipped.

7.2 Design and implement a set of classes that define the employees of a
hospital: doctor, nurse, administrator, surgeon, receptionist, janitor,
and so on. Include methods in each class that are named according
to the services provided by that person and that print an appropriate
message. Create a main driver class to instantiate and exercise sev-
eral of the classes.

7.3 Design and implement a set of classes that define various types of
reading material: books, novels, magazines, technical journals, text-
books, and so on. Include data values that describe various attrib-
utes of the material, such as the number of pages and the names of
the primary characters. Include methods that are named appropri-
ately for each class and that print an appropriate message. Create a
main driver class to instantiate and exercise several of the classes.

7.4 Design and implement a set of classes that keeps track of various
sports statistics. Have each low-level class represent a specific sport.
Tailor the services of the classes to the sport in question, and move
common attributes to the higher-level classes as appropriate. Create
a main driver class to instantiate and exercise several of the classes.

7.5 Design and implement a set of classes that keeps track of demo-
graphic information about a set of people, such as age, nationality,
occupation, income, and so on. Design each class to focus on a par-
ticular aspect of data collection. Create a main driver class to instan-
tiate and exercise several of the classes.

7.6 Modify the StyleOptions program from Chapter 6 so that it
accomplishes the same task but derives its primary panel using inher-
itance. Specifically, replace the StyleGUI class with one called
StylePanel that extends the JPanel class. Eliminate the getPanel
method.

7.7 Perform the same modifications described in Programming Project
7.6 to the QuoteOptions program from Chapter 6.

project442a.html
project442b.html
project442c.html

programming projects 443

7.8 Design and implement an application that draws a traffic light and
uses a push button to change the state of the light. Derive the draw-
ing surface from the JPanel class and use another panel to organize
the drawing surface and the button.

7.9 Modify the RubberLines program from this chapter so that it
shows all of the lines drawn. Show only the final lines (from initial
mouse press to mouse release), not the intermediate lines drawn to
show the rubberbanding effect. Hint: Keep track of a list of objects
that represent the lines similar to how the Dots program kept track
of multiple dots.

7.10 Design and implement an applet that counts the number of times the
mouse has been clicked. Display that number in the center of
the applet window.

7.11 Design and implement an application that creates a polyline shape
dynamically using mouse clicks. Each mouse click adds a new line
segment from the previous point. Include a button below the draw-
ing area to clear the current polyline and begin another.

7.12 Design and implement an application that draws a circle using a rub-
berbanding technique. The circle size is determined by a mouse drag.
Use the original mouse click location as a fixed center point.
Compute the distance between the current location of the mouse
pointer and the center point to determine the current radius of the
circle.

7.13 Design and implement an application that serves as a mouse odome-
ter, continually displaying how far, in pixels, the mouse has moved
(while it is over the program window). Display the current odometer
value using a label. Hint: Use the mouse movement event to deter-
mine the current position, and compare it to the last position of the
mouse. Use the distance formula to see how far the mouse has trav-
eled, and add that to a running total distance.

7.14 Design and implement an applet whose background changes color
depending on where the mouse pointer is located. If the mouse
pointer is on the left half of the applet window, display red; if it is
on the right half, display green.

7.15 Design and implement a class that represents a spaceship, which can
be drawn (side view) in any particular location. Create an applet
that displays the spaceship so that it follows the movement of the
mouse. When the mouse button is pressed down, have a laser beam

444 CHAPTER 7 inheritance

shoot out of the front of the spaceship (one continuous beam, not a
moving projectile) until the mouse button is released.

answers to self-review questions
7.1 A child class is derived from a parent class using inheritance. The

methods and variables of the parent class automatically become a
part of the child class, subject to the rules of the visibility modifiers
used to declare them.

7.2 Because a new class can be derived from an existing class, the char-
acteristics of the parent class can be reused without the error-prone
process of copying and modifying code.

7.3 Each inheritance derivation should represent an is-a relationship: the
child is-a more specific version of the parent. If this relationship does
not hold, then inheritance is being used improperly.

7.4 A child class may prefer its own definition of a method in favor of
the definition provided for it by its parent. In this case, the child
overrides (redefines) the parent’s definition with its own.

7.5 The super reference can be used to call the parent’s constructor,
which cannot be invoked directly by name. It can also be used to
invoke the parent’s version of an overridden method.

7.6 All classes in Java are derived, directly or indirectly, from the Object
class. Therefore all public methods of the Object class, such as
equals and toString, are available to every object.

7.7 An abstract class is a representation of a general concept. Common
characteristics and method signatures can be defined in an abstract
class so that they are inherited by child classes derived from it.

7.8 A class member is not inherited if it has private visibility, meaning
that it cannot be referenced by name in the child class. However,
such members do exist for the child and can be referenced indirectly.

7.9 Polymorphism is the ability of a reference variable to refer to objects
of various types at different times. A method invoked through such a
reference is bound to different method definitions at different times,
depending on the type of the object referenced.

7.10 In Java, a reference variable declared using a parent class can be
used to refer to an object of the child class. If both classes contain a

answers to self-review questions 445

method with the same signature, the parent reference can be poly-
morphic.

7.11 When a child class overrides the definition of a parent’s method, two
versions of that method exist. If a polymorphic reference is used to
invoke the method, the version of the method that is invoked is
determined by the type of the object being referred to, not by the
type of the reference variable.

7.12 A new interface can be derived from an existing interface using
inheritance, just as a new class can be derived from an existing class.

7.13 An interface name can be used as the type of a reference. Such a ref-
erence variable can refer to any object of any class that implements
that interface. Because all classes implement the same interface, they
have methods with common signatures, which can be dynamically
bound.

7.14 An adapter class is a class that implements a listener interface, pro-
viding empty definitions for all of its methods. A listener class can be
created by extending the appropriate adapter class and overriding
the methods of interest.

software and allow us to handle

them appropriately. The ability

to handle exceptions is essential

to being able to perform various

I/O operations. Java supports

many ways for a program to

read information from an exter-

nal source and to write informa-

tion to an external destination.

The source or destination could

be main memory, a file, another

program, a network connection,

or other options. Several classes

in the Java standard class library

support the management of

exceptions and I/O.

◗ Examine the try-catch statement
for handling exceptions.

◗ Create a new exception.

◗ Define an I/O stream.

◗ Explore the classes used to create
streams.

◗ Discuss the standard input and
output streams.

◗ Further explore the processing of
the Keyboard class.

◗ Determine how to read and write
text files.

◗ Determine how to serialize and
deserialize objects.

chapter
objectives

This chapter addresses two related topics:
exceptions and input/output (I/O) streams.

Exceptions represent problems that can occur in

8
exceptions and i/o streams

448 CHAPTER 8 exceptions and i/o streams

8.0 exceptions
As we’ve discussed briefly in other parts of the text, problems that arise in a Java
program may generate exceptions or errors. Recall from Chapter 2 that an excep-

tion is an object that defines an unusual or erroneous situation. An
exception is thrown by a program or the runtime environment and can
be caught and handled appropriately if desired. An error is similar to
an exception except that an error generally represents an unrecoverable
situation and should not be caught.

Java has a predefined set of exceptions and errors that may occur during the
execution of a program. Appendix K contains a list of many of the errors and
exceptions defined in the Java standard class library.

We have several options when it comes to dealing with exceptions. A program
can be designed to process an exception in one of three ways. It can:

◗ not handle the exception at all,

◗ handle the exception where it occurs, or

◗ handle the exception at another point in the program.

We explore each of these approaches in the following sections.

exception messages
If a program does not handle the exception at all, it will terminate (abnormally)
and produce a message that describes what exception occurred and where it was
produced. The information associated with an exception is often helpful in track-
ing down the cause of a problem.

Let’s look at the output of an exception. The program shown in Listing 8.1
throws an ArithmeticException when an invalid arithmetic operation is
attempted. In this case, the program attempts to divide by zero.

Because there is no code in the program in Listing 8.1 to handle the exception
explicitly, the program terminates when the exception occurs, printing specific
information about the exception. Note that the last println statement in the
program never executes because the exception occurs first.

The first line of the exception output indicates which exception was thrown
and provides some information about why it was thrown. The remaining lines are
the call stack trace; they indicate where the exception occurred. In this case, there

Errors and exceptions repre-
sent unusual or invalid
processing.

ke
y

co
nc

ep
t

8.0 exceptions 449

is only one line in the call stack trace, but there may be several depend-
ing on where the exception originated. The first trace line indicates the
method, file, and line number where the exception occurred. The other
trace lines, if present, indicate the methods that were called to get to the
method that produced the exception. In this program, there is only one
method, and it produced the exception; therefore there is only one line in the
trace.

The call stack trace information is also available by calling methods of the
exception class that is being thrown. The method getMessage returns a string
explaining the reason the exception was thrown. The method printStackTrace
prints the call stack trace.

listing
8.1

//**

// Zero.java Author: Lewis/Loftus

//

// Demonstrates an uncaught exception.

//**

public class Zero

{

//---

// Deliberately divides by zero to produce an exception.

//---

public static void main (String[] args)

{

int numerator = 10;

int denominator = 0;

System.out.println (numerator / denominator);

System.out.println ("This text will not be printed.");

}

}

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:17)

output

The messages printed by a
thrown exception indicate the
nature of the problem and pro-
vide a method call stack trace.

key
concept

code449.html

450 CHAPTER 8 exceptions and i/o streams

the try statement
Let’s now examine how we catch and handle an exception when it is thrown. The
try statement identifies a block of statements that may throw an exception. A
catch clause, which follows a try block, defines how a particular kind of excep-
tion is handled. A try block can have several catch clauses associated with it.
Each catch clause is called an exception handler.

When a try statement is executed, the statements in the try block
are executed. If no exception is thrown during the execution of the try
block, processing continues with the statement following the try state-
ment (after all of the catch clauses). This situation is the normal exe-
cution flow and should occur most of the time.

Try Statement

A try statement contains a block of code followed by one or more
catch clauses. If an exception occurs in the try block, the code of the
corresponding catch clause is executed. The finally clause, if pres-
ent, is executed no matter how the try block is exited.

Example:

try

{

System.out.println (Integer.parseInt(numString));

}

catch (NumberFormatException exception)

{

System.out.println (“Caught an exception.”);

}

finally

{

System.out.println (“Done.”);

}

Blocktry catch

finally

Block

Block

()Type Indentifier

Each catch clause on a try
statement handles a particular
kind of exception that may be
thrown within the try block.

ke
y

co
nc

ep
t

8.0 exceptions 451

If an exception is thrown at any point during the execution of the try block,
control is immediately transferred to the appropriate catch handler if it is pres-
ent. That is, control transfers to the first catch clause whose exception class
corresponds to the class of the exception that was thrown. After executing the
statements in the catch clause, control transfers to the statement after the entire
try statement.

Let’s look at an example. Suppose a hypothetical company uses codes to rep-
resent its various products. A product code includes, among other information, a
character in the tenth position that represents the zone from which that product
was made, and a four-digit integer in positions 4 through 7 that represents the
district in which it will be sold. Due to some reorganization, products from zone
R are banned from being sold in districts with a designation of 2000 or higher.
The program shown in Listing 8.2 reads product codes from the user and counts
the number of banned codes entered.

listing
8.2

//**

// ProductCodes.java Author: Lewis/Loftus

//

// Demonstrates the use of a try-catch block.

//**

import cs1.Keyboard;

public class ProductCodes

{

//---

// Counts the number of product codes that are entered with a

// zone of R and and district greater than 2000.

//---

public static void main (String[] args)

{

String code;

char zone;

int district, valid = 0, banned = 0;

System.out.print ("Enter product code (XXX to quit): ");

code = Keyboard.readString();

while (!code.equals ("XXX"))

{

code451.html

452 CHAPTER 8 exceptions and i/o streams

listing
8.2 continued

try

{

zone = code.charAt(9);

district = Integer.parseInt(code.substring(3, 7));

valid++;

if (zone == 'R' && district > 2000)

banned++;

}

catch (StringIndexOutOfBoundsException exception)

{

System.out.println ("Improper code length: " + code);

}

catch (NumberFormatException exception)

{

System.out.println ("District is not numeric: " + code);

}

System.out.print ("Enter product code (XXX to quit): ");

code = Keyboard.readString();

}

System.out.println ("# of valid codes entered: " + valid);

System.out.println ("# of banned codes entered: " + banned);

}

}

Enter product code (XXX to quit): TRV2475A5R-14

Enter product code (XXX to quit): TRD1704A7R-12

Enter product code (XXX to quit): TRL2k74A5R-11

District is not numeric: TRL2k74A5R-11

Enter product code (XXX to quit): TRQ2949A6M-04

Enter product code (XXX to quit): TRV2105A2

Improper code length: TRV2105A2

Enter product code (XXX to quit): TRQ2778A7R-19

Enter product code (XXX to quit): XXX

of valid codes entered: 4

of banned codes entered: 2

output

8.0 exceptions 453

The programming statements in the try block attempt to pull out the zone and
district information, and then determine whether it represents a banned product
code. If there is any problem extracting the zone and district information, the
product code is considered to be invalid and is not processed further. For exam-
ple, a StringIndexOutOfBoundsException could be thrown by either the
charAt or substring methods. Furthermore, a NumberFormatException could
be thrown by the parseInt method if the substring does not contain a valid
integer. A particular message is printed depending on which exception is thrown.
In either case, since the exception is caught and handled, processing continues
normally.

Note that, for each code examined, the integer valid is incremented only if no
exception is thrown. If an exception is thrown, control transfers immediately to
the appropriate catch clause. Likewise, the zone and district are tested by the if
statement only if no exception is thrown.

the finally clause
A try statement can have an optional finally clause. The finally clause defines
a section of code that is executed no matter how the try block is exited. Most
often, a finally clause is used to manage resources or to guarantee that partic-
ular parts of an algorithm are executed.

If no exception is generated, the statements in the finally clause
are executed after the try block is complete. If an exception is gener-
ated in the try block, control first transfers to the appropriate catch
clause. After executing the exception-handling code, control transfers
to the finally clause and its statements are executed. A finally
clause, if present, must be listed following the catch clauses.

Note that a try block does not need to have a catch clause at all. If there are
no catch clauses, a finally clause may used by itself if that is appropriate for
the situation.

exception propagation
If an exception is not caught and handled where it occurs, control is
immediately returned to the method that invoked the method that pro-
duced the exception. We can design our software so that the exception
is caught and handled at this outer level. If it isn’t caught there, control
returns to the method that called it. This process is called propagating

The finally clause of a try
block is executed whether or
not the try block is exited
normally or because of a
thrown exception.

key
concept

If an exception is not caught
and handled where it occurs, it
is propagated to the calling
method.

key
concept

454 CHAPTER 8 exceptions and i/o streams

the exception. This propagation continues until the exception is caught and han-
dled or until it is passed out of the main method, which terminates the program
and produces an exception message. To catch an exception at an outer level, the
method that produces the exception must be invoked inside a try block that has
catch clauses to handle it.

The Propagation program shown in Listing 8.3 succinctly demonstrates the
process of exception propagation. The main method invokes method level1 in
the ExceptionScope class (see Listing 8.4), which invokes level2, which
invokes level3, which produces an exception. Method level3 does not catch
and handle the exception, so control is transferred back to level2. The level2
method does not catch and handle the exception either, so control is transferred
back to level1. Because the invocation of level2 is made inside a try block (in
method level1), the exception is caught and handled at that point.

Note that the output does not include the messages indicating that
the methods level3 and level2 are ending. These println statements
are never executed because an exception occurred and had not yet been
caught. However, after method level1 handles the exception, process-
ing continues normally from that point, printing the messages indicat-
ing that method level1 and the program are ending.

Note also that the catch clause that handles the exception uses the
getMessage and printStackTrace methods to output that information. The
stack trace shows the methods that were called when the exception occurred.

A programmer must pick the most appropriate level at which to catch and
handle an exception. There is no single best answer. It depends on the situation
and the design of the system. Sometimes the right approach will be not to catch
an exception at all and let the program terminate.

the exception class hierarchy
The classes that define various exceptions are related by inheritance, creating a
class hierarchy that is shown in part in Fig. 8.1.

The Throwable class is the parent of both the Error class and the Exception
class. Many types of exceptions are derived from the Exception class, and these
classes also have many children. Though these high-level classes are defined in
the java.lang package, many child classes that define specific exceptions are
part of several other packages. Inheritance relationships can span package
boundaries.

A programmer must carefully
consider how exceptions
should be handled, if at all,
and at what level of the
method-calling hierarchy.

ke
y

co
nc

ep
t

8.0 exceptions 455

listing
8.3

//**

// Propagation.java Author: Lewis/Loftus

//

// Demonstrates exception propagation.

//**

public class Propagation

{

//---

// Invokes the level1 method to begin the exception demonstation.

//---

static public void main (String[] args)

{

ExceptionScope demo = new ExceptionScope();

System.out.println("Program beginning.");

demo.level1();

System.out.println("Program ending.");

}

}

Program beginning.

Level 1 beginning.

Level 2 beginning.

Level 3 beginning.

The exception message is: / by zero

The call stack trace:

java.lang.ArithmeticException: / by zero

at ExceptionScope.level3(ExceptionScope.java:54)

at ExceptionScope.level2(ExceptionScope.java:41)

at ExceptionScope.level1(ExceptionScope.java:18)

at Propagation.main(Propagation.java:17)

Level 1 ending.

Program ending.

output

code455.html

456 CHAPTER 8 exceptions and i/o streams

listing
8.4

//**

// ExceptionScope.java Author: Lewis/Loftus

//

// Demonstrates exception propagation.

//**

public class ExceptionScope

{

//---

// Catches and handles the exception that is thrown in level3.

//---

public void level1()

{

System.out.println("Level 1 beginning.");

try

{

level2();

}

catch (ArithmeticException problem)

{

System.out.println ();

System.out.println ("The exception message is: " +

problem.getMessage());

System.out.println ();

System.out.println ("The call stack trace:");

problem.printStackTrace();

System.out.println ();

}

System.out.println("Level 1 ending.");

}

//---

// Serves as an intermediate level. The exception propagates

// through this method back to level1.

//---

public void level2()

{

System.out.println("Level 2 beginning.");

level3 ();

System.out.println("Level 2 ending.");

}

code456.html

We can define our own exceptions by deriving a new class from
Exception or one of its descendants. The class we choose as the parent
depends on what situation or condition the new exception represents.

The program in Listing 8.5 instantiates an exception object and
throws it. The exception is created from the OutOfRangeException
class, which is shown in Listing 8.6. Note that this exception is not part of the
Java standard class library. It was created to represent the situation in which a
value is outside a particular valid range.

After reading in an input value, the main method evaluates it to see whether it
is in the valid range. If not, the throw statement is executed. A throw statement
is used to begin exception propagation. Because the main method does not catch
and handle the exception, the program will terminate if the exception is thrown,
printing the message associated with the exception.

We create the OutOfRangeException class by extending the Exception class.
Often, a new exception is nothing more than what you see in this example: an
extension of some existing exception class that stores a particular message
describing the situation it represents. The important point is that the class is ulti-
mately a descendant of the Exception class and the Throwable class, which
gives it the ability to be thrown using a throw statement.

8.0 exceptions 457

listing
8.4 continued

//---

// Performs a calculation to produce an exception. It is not

// caught and handled at this level.

//---

public void level3 ()

{

int numerator = 10, denominator = 0;

System.out.println("Level 3 beginning.");

int result = numerator / denominator;

System.out.println("Level 3 ending.");

}

}

A new exception is defined by
deriving a new class from the
Exception class or one of its
descendants.

key
concept

458 CHAPTER 8 exceptions and i/o streams

The type of situation handled by this program, in which a value is out of range,
does not need to be represented as an exception. We’ve previously handled such
situations using conditionals or loops. Whether you handle a situation using an
exception or whether you take care of it in the normal flow of your program is
an important design decision.

figure 8.1 Part of the Error and Exception class hierarchy

Exception

Object

Throwable

Error

AWTError

VirtualMachineError

ThreadDeath

LinkageError

NullPointerException

IndexOutOfBoundsException

ArithmeticException

ClassNotFoundException

NoSuchMethodException

IllegalAccessException

RunTimeException

8.0 exceptions 459

listing
8.5

//**

// CreatingExceptions.java Author: Lewis/Loftus

//

// Demonstrates the ability to define an exception via inheritance.

//**

import cs1.Keyboard;

public class CreatingExceptions

{

//---

// Creates an exception object and possibly throws it.

//---

public static void main (String[] args) throws OutOfRangeException

{

final int MIN = 25, MAX = 40;

OutOfRangeException problem =

new OutOfRangeException ("Input value is out of range.");

System.out.print ("Enter an integer value between " + MIN +

" and " + MAX + ", inclusive: ");

int value = Keyboard.readInt();

// Determines if the exception should be thrown

if (value < MIN || value > MAX)

throw problem;

System.out.println ("End of main method."); // may never reach

}

}

Enter an integer value between 25 and 40, inclusive: 69

Exception in thread "main" OutOfRangeException:

Input value is out of range.

at CreatingExceptions.main(CreatingExceptions.java:20)

output

code459.html

checked and unchecked exceptions
There is one other issue concerning exceptions that we should explore. Some
exceptions are checked, whereas others are unchecked. A checked exception must

either be caught by a method or it must be listed in the throws clause
of any method that may throw or propagate it. A throws clause is
appended to the header of a method definition to formally acknowl-
edge that the method will throw or propagate a particular exception if
it occurs. An unchecked exception generally should not be caught and
requires no throws clause.

The only unchecked exceptions in Java are objects of type RuntimeException
or any of its descendants. All other exceptions are considered checked exceptions.
The main method of the CreatingExceptions program has a throws clause,
indicating that it may throw an OutOfRangeException. This throws clause is
required because the OutOfRangeException was derived from the Exception
class, making it a checked exception.

Errors are similar to RuntimeException and its descendants in that they
should not be caught and do not require a throws clause.

460 CHAPTER 8 exceptions and i/o streams

listing
8.6

//**

// OutOfRangeException.java Author: Lewis/Loftus

//

// Represents an exceptional condition in which a value is out of

// some particular range.

//**

public class OutOfRangeException extends Exception

{

//---

// Sets up the exception object with a particular message.

//---

OutOfRangeException (String message)

{

super (message);

}

}

The throws clause on a
method header must be
included for checked excep-
tions that are not caught and
handled in the method.

ke
y

co
nc

ep
t

code460.html

8.1 input/output streams 461

8.1 input/output streams
A stream is an ordered sequence of bytes. The term stream comes from
the analogy that as we read and write information, the data flows from
a source to a destination (or sink) as water flows down a stream. The
source of the information is like a spring filling the stream, and the des-
tination is like a cave into which the stream flows.

In a program, we treat a stream as either an input stream, from which we read
information, or as an output stream, to which we write information. That is, a
program serves either as the spring filling the stream or as the cave receiving the
stream. A program can deal with multiple input and output streams at one time.
A particular store of data, such as a file, can serve either as an input stream or as
an output stream to a program, but it cannot be both at the same time.

The java.io package of the Java standard class library provides many classes
that let us define streams with particular characteristics. Some of the classes deal
with files, others with memory, and others with strings. Some classes assume that
the data they handle consists of characters, whereas others assume the data con-
sists of raw bytes of binary information. Some classes provide the means to
manipulate the data in the stream in some way, such as buffering the information
or numbering it. By combining classes in appropriate ways, we can create objects
that represent a stream of information that has the exact characteristics we want
for a particular situation.

The sheer number of classes in the java.io package prohibits us from discuss-
ing them all in detail. Instead, our goal is to provide an overview of the classes
involved, and then explore a few specific situations that are particularly useful.

In addition to dividing the classes in the java.io package into input and out-
put streams, they can be subdivided in two other primary ways. First, we can
divide the classes by the type of information on which they operate. There are
basically two categories of classes in this regard: those that operate on character
data and those that operate on byte data. We can also divide the classes in the
java.io package by the role they play. Again we have two categories: those that
represent a particular type of source or sink for information, such as a file or net-
work connection, and those that provide the means to alter or manage the basic
data in the stream. Most of the classes in the java.io package fall into one of
the subdivisions created by these categories, as shown in Fig. 8.2.

A stream is a sequential
sequence of bytes, it can be
used as a source of input or a
destination for output.

key
concept

462 CHAPTER 8 exceptions and i/o streams

character streams versus byte streams
A character stream is designed to manage 16-bit Unicode characters. The stream
is nothing more than a lengthy series of characters, though they can be read and

written in chunks (such as one line at a time) if we set up the stream
with the proper characteristics. A byte stream, on the other hand, man-
ages 8-bit bytes of raw binary data. How the bytes are interpreted and
used once read depends on the program that reads them. Although they
can be used to read and write any data, byte streams are typically used
to read and write binary data such as sounds and images.

The classes that manage character streams and byte streams are cleanly divided
in the I/O class inheritance hierarchy. The InputStream and OutputStream
classes and all their descendants represent byte streams. The Reader and Writer
classes and all their descendants represent character streams. Figure 8.3 shows
this relationship.

The two class hierarchies share some basic similarities. For example, the
Reader and InputStream classes provide similar methods but for different types
of data. For example, they both provide a basic read method. The read method
of Reader reads one character or an array of characters; the read method of
InputStream reads one byte or an array of bytes. Such paired classes are com-
mon between the hierarchies but are not always consistent.

data streams versus processing streams
A data stream is a stream that represents a particular source or destination stream,
such as a string in memory or a file on disk. A processing stream (sometimes called

figure 8.2 Dividing the Java I/O classes into categories

Data
Streams

Processing
Streams

Character
Streams

Byte
Streams

Output Streams

Input Streams

A character stream manages
Unicode characters, whereas a
byte stream manages 8-bit
bytes.

ke
y

co
nc

ep
t

8.1 input/output streams 463

figure 8.3 The Java I/O class hierarchy

ByteArrayInputStream

FileInputStream
InputStream

Object

OutputStream

Reader

Writer

PipedInputStream

ObjectInputStream

FilterInputStream

SequenceInputStream

ByteArrayOutputStream

FileOutputStream

PipedOutputStream

ObjectOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStream

CharArrayReader

PipedReader

StringReader

BufferedReader

FilterReader

InputStreamReader

LineNumberReader

PushBackReader

FileReader

PrintStream

BufferedInputStream

DataInputStream

PushbackInputStream

CharArrayWriter

PipedWriter

StringWriter

BufferedWriter

FilterWriter

OutputStreamWriter FileWriter

PrintWriter

464 CHAPTER 8 exceptions and i/o streams

a filtering stream) performs some sort of manipulation on the data in a
stream, such as converting it from one format to another or buffering
the input to deliver it in chunks. By combining data streams with pro-
cessing streams we can create an input or output stream that behaves
exactly as we wish.

The classes that represent data streams and processing streams are
the same classes that represent character streams and byte streams. It is

just another way to categorize them. The data streams and processing streams cut
across the class hierarchies, however. That is, all four of the primary class hierar-
chies in the Java I/O classes can be further subdivided into those that represent
data streams and those that represent processing streams.

the IOException class
Many operations performed by I/O classes can potentially throw an
IOException. The IOException class is the parent of several exception classes
that represent problems when trying to perform I/O.

An IOException is a checked exception. As described earlier in this chapter
that means that either the exception must be caught, or all methods that propa-
gate it must list it in a throws clause of the method header.

Because I/O often deals with external resources, many problems can arise in
programs that attempt to perform I/O operations. For example, a file from which
we want to read might not exist; when we attempt to open the file, an exception
will be thrown because that file can’t be found. In general, we should try to design
programs to be as robust as possible when dealing with potential problems.

8.2 standard I/O
Three streams are often called the standard I/O streams. They are listed in Fig.
8.4. The System class contains three object reference variables (in, out, and err)

that represent the three standard I/O streams. These references are
declared as both public and static, which allows them to be accessed
directly through the System class.

We’ve been using the standard output stream, with calls to
System.out.prinln for instance, in examples throughout this book.

Finally we can explain the details underlying that method invocation. In Chapter

Java I/O classes can be divided
into data streams, which repre-
sent a particular source or des-
tination, or processing streams,
which perform operations on
data in an existing stream.

ke
y

co
nc

ep
t

Three variables in the System
class represent the standard
I/O streams.ke

y
co

nc
ep

t

8.2 standard I/O 465

5 we explored some of the details of the Keyboard class, which masks the use of
the standard input stream. We can now explore those issues in more detail as
well.

The standard I/O streams, by default, represent particular I/O devices.
System.in typically represents keyboard input, whereas System.out and
System.err typically represent a particular window on the monitor screen. The
System.out and System.err streams write output to the same window by
default (usually the one in which the program was executed), though they could
be set up to write to different places. The System.err stream is usually where
error messages are sent.

All three of these streams are created and open by default, and in one sense are
ready for use by any Java program. Both the System.out and System.err ref-
erence variables are declared to be of type PrintStream. The System.in refer-
ence is declared to be a generic InputStream.

PrintStream objects automatically have print and println methods defined
for them. This makes the System.out object useful without any further manipu-
lations. Note that PrintStream is technically a byte stream that converts objects
and numbers into text for easy output. It is typically used for debugging and sim-
ple examples. PrintStream does not handle advanced internationalization and
error checking; the PrintWriter class is a better choice for this.

The System.in reference is deliberately declared to be a generic InputStream
reference so that it is not restricted in its use. This means, however, that it must
usually be mapped into a stream with more useful characteristics. This is one of
the reasons we created the Keyboard class.

the Keyboard class revisited
Recall that the Keyboard class was written by the authors of this text to make
reading values from the standard input stream easier, especially when we were

figure 8.4 Standard I/O streams

System.in Standard input stream.

Standard output stream.

Standard error stream (output for error messages)

System.out

System.err

Standard I/O Stream Description

466 CHAPTER 8 exceptions and i/o streams

just getting started and had other issues to worry about. The Keyboard
class provides methods such as readInt, readFloat, and readString
to obtain a particular type of input value. In Chapter 5, we explored
some of the details that the Keyboard class took care of for us. Now
we can peel back the cover even more, revealing the underlying stan-
dard Java features used to write the Keyboard class.

The Keyboard class hides the following I/O operations:

◗ the declaration of the standard input stream in a useful form

◗ the handling of any IOException that may be thrown

◗ the parsing of an input line into separate tokens

◗ the conversion of an input value to its expected type

◗ the handling of conversion problems

Because System.in is defined as a reference to a generic InputStream object,
it has by default only the basic ability to read and write byte data. To modify it
into a more useful form, the Keyboard class performs the following declaration:

InputStreamReader isr = new InputStreamReader (System.in);

BufferedReader stdin = new BufferedReader (isr);

The first line creates an InputStreamReader object, which converts the original
byte input stream into a character input stream. The second line transforms it into
a BufferedReader, which allows us to use the readLine method to get an entire
line of character input in one operation.

In the Keyboard class, each invocation of readLine is performed inside a try
block so that an IOException, if it is thrown, can be caught and handled. The
readLine method returns a string that includes all characters included in the
input line. If that input line contains multiple values, they must be separated into
individual tokens. Recall that the StringTokenizer class performs just that kind
of service. The Keyboard class constantly keeps track of the current input line
and uses a StringTokenizer object to extract the next token when requested.

On top of all of this, each token, as it is extracted from the input line, may be
needed as a particular primitive type, such as an int. Therefore each method of
the Keyboard class performs the proper conversion. For example, the readInt
method of the Keyboard class takes the next token from the input line and calls
the parseInt method of the Integer wrapper class to convert the string to an
int. Similar processing can be seen in the file I/O examples in the next section.

The Keyboard class, though
not part of the Java standard
class library, provides an
abstraction for several I/O
operations on the standard
input stream.

ke
y

co
nc

ep
t

8.3 text files 467

8.3 text files
Another common programming requirement is to read from and write to files on
disk. Information is stored in a file as either byte or character (text) data and
should be read in the same way. This section focuses on text files.

reading text files
The FileReader class represents an input file that contains character data. Its
constructors set up the relationship between the program and the file, opening a
stream from which data can be read. Its ability to read data is limited to the read
method, which is inherited from its parent class InputStreamReader. If we want
to read something other than character arrays, we have to use another input class.

As we discussed in the previous section, the BufferedReader class
does not represent any particular data source but filters data on a given
stream by buffering it into more accessible units. In particular, the
BufferedReader class provides the readLine method, which allows
us to read an entire line of characters in one operation. Recall that the
readLine method returns a string, which must be processed if individ-
ual data values are to be extracted from it.

Let’s examine a program that reads data from a particular input file and pro-
cesses it. Suppose a text data file called inventory.dat contained the following
information:

Widget 14 3.35

Spoke 132 0.32

Wrap 58 1.92

Thing 28 4.17

Brace 25 1.75

Clip 409 0.12

Cog 142 2.08

Suppose this data represents the inventory of a warehouse. Each line contains an
item name, the number of available units, and the price of that item. Each value
on a line is separated from the other values by at least one space. The program in

The FileReader and
BufferedReader classes can
be used together to create a
convenient text file output
stream.

key
concept

The entire source code for the Keyboard class is available on the text’s Web
site for further examination.

web
bonus

Listing 8.7 reads this data file, creates an array of objects based on that data, and
prints the information.

468 CHAPTER 8 exceptions and i/o streams

listing
8.7

//**

// CheckInventory.java Author: Lewis/Loftus

//

// Demonstrates the use of a character file input stream.

//**

import java.io.*;

import java.util.StringTokenizer;

public class CheckInventory

{

//---

// Reads data about a store inventory from an input file,

// creating an array of InventoryItem objects, then prints them.

//---

public static void main (String[] args)

{

final int MAX = 100;

InventoryItem[] items = new InventoryItem[MAX];

StringTokenizer tokenizer;

String line, name, file = "inventory.dat";

int units, count = 0;

float price;

try

{

FileReader fr = new FileReader (file);

BufferedReader inFile = new BufferedReader (fr);

line = inFile.readLine();

while (line != null)

{

tokenizer = new StringTokenizer (line);

name = tokenizer.nextToken();

try

{

units = Integer.parseInt (tokenizer.nextToken());

price = Float.parseFloat (tokenizer.nextToken());

items[count++] = new InventoryItem (name, units, price);

}

code468.html

8.3 text files 469

The program uses the data it reads from the file to create several
InventoryItem objects (see Listing 8.8). The data read from the file is passed to
the InventoryItem constructor.

Certain parts of the processing in the CheckInventory program are per-
formed within try blocks to handle exceptions that may arise. The declaration of
the input file stream is accomplished at the top of the outer try block. If the file
cannot be located when the FileReader constructor is executed, a

listing
8.7 continued

catch (NumberFormatException exception)

{

System.out.println ("Error in input. Line ignored:");

System.out.println (line);

}

line = inFile.readLine();

}

inFile.close();

for (int scan = 0; scan < count; scan++)

System.out.println (items[scan]);

}

catch (FileNotFoundException exception)

{

System.out.println ("The file " + file + " was not found.");

}

catch (IOException exception)

{

System.out.println (exception);

}

}

}

Widget: 14 at 3.35 = 46.9

Spoke: 132 at 0.32 = 42.24

Wrap: 58 at 1.92 = 111.36

Thing: 28 at 4.17 = 116.76

Brace: 25 at 1.75 = 43.75

Clip: 409 at 0.12 = 49.08

Cog: 142 at 2.08 = 295.36

output

470 CHAPTER 8 exceptions and i/o streams

listing
8.8

//**

// InventoryItem.java Author: Lewis/Loftus

//

// Represents an item in the inventory.

//**

import java.text.DecimalFormat;

public class InventoryItem

{

private String name;

private int units; // number of available units of this item

private float price; // price per unit of this item

private DecimalFormat fmt;

//---

// Sets up this item with the specified information.

//---

public InventoryItem (String itemName, int numUnits, float cost)

{

name = itemName;

units = numUnits;

price = cost;

fmt = new DecimalFormat ("0.##");

}

//---

// Returns information about this item as a string.

//---

public String toString()

{

return name + ":\t" + units + " at " + price + " = " +

fmt.format ((units * price));

}

}

code470.html

8.3 text files 471

FileNotFoundException is thrown. If at any point during the pro-
cessing an IOException is thrown, it is caught and processing is neatly
terminated.

Once the input stream is set up, the program begins to read and
process one line of input at a time. The readLine method reads an entire line of
text until a line terminator character is found. When the end of the file is encoun-
tered, readLine returns a null reference, which is used as a termination condi-
tion for the loop.

Each line is separated into distinct values using a StringTokenizer object.
First the name of the item is stored, then the number of units and the unit price
are separated and converted into numeric values. A NumberFormatException
will be thrown if the string does not represent a valid numeric value, so the inner
try block catches and handles it. If a conversion error is encountered, the input
line is ignored but processing continues.

Note that BufferedReader is serving the same purpose in this program as it
does in the Keyboard class—to buffer input and provide the readLine method—
even though the actual source of the information is quite different in each case.
This situation illustrates why the designers of the java.io package separated the
responsibilities as they did. The Java I/O classes can be combined in many differ-
ent ways to provide exactly the kind of interaction and character manipulation
needed for a particular situation.

writing text files
Writing output to a text file requires simply that we use the appropriate classes
to create the output stream, then call the appropriate methods to write the data.
As with standard I/O, file output seems to be a little more straightforward than
file input.

The FileWriter class represents a text output file, but, like FileReader, it
has minimal method support for manipulating data. The PrintWriter class pro-
vides print and println methods similar to the standard I/O PrintStream
class.

Suppose we want to test a program we are writing, but don’t have the real data
available. We could write a program that generates a test data file that contains
random values. The program shown in Listing 8.9 generates a file that contains
random integer values within a particular range. The one line of standard text
output for the TestData program, confirming that the data file has been written,
is also shown.

The readLine method returns
null when the end of a file is
encountered.

key
concept

472 CHAPTER 8 exceptions and i/o streams

listing
8.9

//**

// TestData.java Author: Lewis/Loftus

//

// Demonstrates the use of a character file output stream.

//**

import java.util.Random;

import java.io.*;

public class TestData

{

//---

// Creates a file of test data that consists of ten lines each

// containing ten integer values in the range 10 to 99.

//---

public static void main (String[] args) throws IOException

{

final int MAX = 10;

int value;

String file = "test.dat";

Random rand = new Random();

FileWriter fw = new FileWriter (file);

BufferedWriter bw = new BufferedWriter (fw);

PrintWriter outFile = new PrintWriter (bw);

for (int line=1; line <= MAX; line++)

{

for (int num=1; num <= MAX; num++)

{

value = rand.nextInt (90) + 10;

outFile.print (value + " ");

}

outFile.println ();

}

code472.html

8.3 text files 473

Although we do not need to do so for the program to work, we have added a
layer in the file stream configuration to include a BufferedWriter. This addition
simply gives the output stream buffering capabilities, which makes the processing
more efficient. While buffering is not crucial in this situation, it is usually a good
idea when writing text files.

Note that in the TestData program, we have eliminated explicit exception
handling. That is, if something goes wrong, we simply allow the program to ter-
minate instead of specifically catching and handling the problem. Because all
IOExceptions are checked exceptions, we must include the throws clause on the
method header to indicate that they may be thrown. For each program, we must
carefully consider how best to handle the exceptions that may be thrown. This
requirement is especially important when dealing with I/O, which is fraught with
potential problems that cannot always be foreseen.

The TestData program uses nested for loops to compute a random
value and print it to the file. After all values are printed, the file is
closed. Output files must be closed explicitly to ensure that the data is
retained. In general, it is good practice to close all file streams explic-
itly when they are no longer needed.

The data that is contained in the file test.dat after the TestData program is
run might look like this:

85 90 93 15 82 79 52 71 70 98

74 57 41 66 22 16 67 65 24 84

86 61 91 79 18 81 64 41 68 81

98 47 28 40 69 10 85 82 64 41

23 61 27 10 59 89 88 26 24 76

Output file streams should be
explicitly closed or they may
not correctly retain the data
written to them.

key
concept

listing
8.9 continued

outFile.close();

System.out.println ("Output file has been created: " + file);

}

}

Output file has been created: test.dat

output

33 89 73 36 54 91 42 73 95 58

19 41 18 14 63 80 96 30 17 28

24 37 40 64 94 23 98 10 78 50

89 28 64 54 59 23 61 15 80 88

51 28 44 48 73 21 41 52 35 38

8.4 object serialization
When a program terminates, the data it used is destroyed unless an effort is made
to store the data externally. We’ve seen how we can read and write primitive data
to and from a file. But what happens when we want to store an object, an array
of objects, or some other complex structure? We could write code that stores all
the pieces of an object separately and reconstruct the object when that data is
read back in. However, the more complex the information, the more difficult and
tedious this process becomes.

Persistence is the concept that an object can exist separate from the
executing program that creates it. Java contains a mechanism called
object serialization for creating persistent objects. When an object is
serialized, it is transformed into a sequence of bytes; this sequence is
raw binary representation of the object. Later, this representation can
be restored to the original object. Once serialized, the object can be
stored in a file for later use.

In Java, object serialization is accomplished with the help of an interface and
two classes. Any object we want to serialize must implement the Serializable
interface. This interface contains no methods; it serves instead as a flag to the
compiler that objects of this type might be serialized. To serialize an object, we
invoke the writeObject method of an ObjectOutputStream. To deserialize the
object, we invoke the readObject method of an ObjectInputStream.

ObjectOutputStream and ObjectInputStream are processing streams; they
must be wrapped around an OutputStream or InputStream of some kind,
respectively. Therefore the actual data streams to which the serialized object is
written can represent a file, network communication, or some other type of
stream.

Let’s look at an example. The program shown in Listing 8.10 creates several
CountryInfo objects and prints them to standard output. It also serializes the
objects as it writes them to a file called countries.dat.

474 CHAPTER 8 exceptions and i/o streams

Object serialization represents
an object as a sequence of
bytes that can be stored in a
file or transferred to another
computer.

ke
y

co
nc

ep
t

8.4 object serialization 475

listing
8.10

//**

// WriteCountryInfo.java Author: Lewis/Loftus

//

// Demonstrates object serialization.

//**

import java.io.*;

public class WriteCountryInfo

{

//---

// Creates several objects, prints them to standard output, and

/// serializes them to a file.

//---

public static void main (String[] args) throws IOException

{

FileOutputStream file = new FileOutputStream ("countries.dat");

ObjectOutputStream outStream = new ObjectOutputStream (file);

CountryInfo[] countries = new CountryInfo[5];

countries[0] = new CountryInfo ("United States of America",

"USA", "Washington, D.C.", 9629091L, 278058900L);

countries[1] = new CountryInfo ("Russia", "RUS", "Moscow",

17075200L, 145470200L);

countries[2] = new CountryInfo ("Italy", "ITA", "Rome",

301230L, 57679800L);

countries[3] = new CountryInfo ("Sweden", "SWE", "Stockholm",

449964L, 8875100L);

countries[4] = new CountryInfo ("Poland", "POL", "Warsaw",

312685L, 38633900L);

int scan;

// Print the objects

for (scan = 0; scan < countries.length; scan++)

System.out.println (countries[scan]);

// Serialize the objects to a file

for (scan = 0; scan < countries.length; scan++)

outStream.writeObject (countries[scan]);

}

}

code475.html

476 CHAPTER 8 exceptions and i/o streams

The CountryInfo class is shown in Listing 8.11. Note that it implements the
Serializable interface but otherwise has no special features that relate to its
persistence.

listing
8.10 continued

Name: United States of America

Abbreviation: USA

Capitol: Washington, D.C.

Area: 9629091 square kilometers

Population: 278058900

^^^

Name: Russia

Abbreviation: RUS

Capitol: Moscow

Area: 17075200 square kilometers

Population: 145470200

^^^

Name: Italy

Abbreviation: ITA

Capitol: Rome

Area: 301230 square kilometers

Population: 57679800

^^^

Name: Sweden

Abbreviation: SWE

Capitol: Stockholm

Area: 449964 square kilometers

Population: 8875100

^^^

Name: Poland

Abbreviation: POL

Capitol: Warsaw

Area: 312685 square kilometers

Population: 38633900

^^^

output

8.4 object serialization 477

listing
8.11

//**

// CountryInfo.java Author: Lewis/Loftus

//

// Represents a country's demographic information.

//**

import java.io.Serializable;

public class CountryInfo implements Serializable

{

private String name, abbreviation, capitol;

private long area, population;

//---

// Sets up this object by storing the specified information.

//---

public CountryInfo (String cName, String cAbbreviation,

String cCapitol, long cArea, long cPopulation)

{

name = cName;

abbreviation = cAbbreviation;

capitol = cCapitol;

area = cArea; // measured in square kilometers

population = cPopulation;

}

//---

// Returns the information in this object as a string.

//---

public String toString()

{

String result = "Name: " + name + "\n";

result += "Abbreviation: " + abbreviation + "\n";

result += "Capitol: " + capitol + "\n";

result += "Area: " + area + " square kilometers\n";

result += "Population: " + population + "\n";

result += "^^^";

return result;

}

}

code477.html

478 CHAPTER 8 exceptions and i/o streams

The act of serialization automatically takes into account any additional refer-
enced objects. That is, it automatically follows all references contained in the
object being serialized and serializes them. Thus, if a Car object contains a refer-
ence to an Engine object, for instance, the Engine object is automatically serial-
ized as part of the act of serializing the car. For this to work, the Engine class
must also implement the Serializable interface. This processing continues as
needed for any level of aggregate objects. If an Engine object, for instance, con-
tains references to other objects, they are serialized as well (and so on).

Many classes of the Java standard class library implement the Serializable
interface so that they can be serialized as needed. The String class, for example,
implements Serializable so that any class containing references to String
objects can be serialized without complications. This situation occurs in the
CountryInfo class.

Now let’s examine a program that reverses this process. That is, now that the
CountryInfo objects have been serialized and written out to a file, let’s deserial-
ize them. The program shown in Listing 8.12 creates the appropriate input stream
and reads the objects. It then prints them. Note that the output is the same as that
of the WriteCountryInfo program.

The ArrayList class also implements the Serializable interface, so we can
store an entire list of objects in one operation. So if we had stored the
CountryInfo objects in an ArrayList (instead of a regular array) in the
WriteCountryInfo program, we could have written the entire set of objects out
in one operation. Likewise, the ReadCountryInfo program could have then read
the entire ArrayList of CountryInfo objects from the file in one operation.
Keep in mind that the objects stored in the ArrayList must also implement the
Serializable interface for this to work.

the transient modifier
Sometimes we may prefer to exclude particular information when we serialize an
object. For example, we may want to exclude a password so that it is not part of
the information that is stored or transferred over the network. The danger is that,
even though we declare the password with private visibility, once it is serialized,
it could be read and accessed by some unfriendly source. Another reason we may
want to exclude particular information from the serialization process is if it is
simply not needed or can easily be reproduced when the object is deserialized.
That way, the byte stream representing the serialized object does not contain
unnecessary information that will increase its size.

8.4 object serialization 479

listing
8.12

//**

// ReadCountryInfo.java Author: Lewis/Loftus

//

// Demonstrates object deserialization.

//**

import java.io.*;

public class ReadCountryInfo

{

//---

// Reads objects from a serialized file and prints them.

//---

public static void main (String[] args) throws Exception

{

FileInputStream file = new FileInputStream ("countries.dat");

ObjectInputStream inStream = new ObjectInputStream (file);

CountryInfo[] countries = new CountryInfo[5];

int scan;

// Deserialize the objects

for (scan = 0; scan < countries.length; scan++)

countries[scan] = (CountryInfo) inStream.readObject();

// Print the objects

for (scan = 0; scan < countries.length; scan++)

System.out.println (countries[scan]);

}

}

Name: United States of America

Abbreviation: USA

Capitol: Washington, D.C.

Area: 9629091 square kilometers

Population: 278058900

^^^

Name: Russia

Abbreviation: RUS

Capitol: Moscow

Area: 17075200 square kilometers

Population: 145470200

^^^

output

code479.html

The reserved word transient can be used to modify the declaration of a vari-
able so that it will not be represented as part of the byte stream when the object
containing it is serialized. For example, suppose an object contains the following
declaration:

private transient int password;

That variable, when the object in which it is contained is serialized, will not be
included in the representation.

8.5 files and GUIs
Programs that use graphical user interfaces (GUIs) often must deal with external
files in one way or another. This section explores several of these issues, and pres-
ents some additional GUI components and events as well.

480 CHAPTER 8 exceptions and i/o streams

listing
8.12 continued

Name: Italy

Abbreviation: ITA

Capitol: Rome

Area: 301230 square kilometers

Population: 57679800

^^^

Name: Sweden

Abbreviation: SWE

Capitol: Stockholm

Area: 449964 square kilometers

Population: 8875100

^^^

Name: Poland

Abbreviation: POL

Capitol: Warsaw

Area: 312685 square kilometers

Population: 38633900

^^^

8.5 files and GUIs 481

file choosers
Dialog boxes were introduced in Chapter 5. We used the JOptionPane class to
create several specialized dialog boxes to present information, accept input, and
confirm actions.

The JFileChooser class represents another specialized dialog box, a file
chooser, which allows the user to select a file from a hard disk or other storage
medium. You have probably run many programs that allow you to open a file
using a similar dialog box.

The program shown in Listing 8.13 uses a JFileChooser dialog box to select
a file. This program also demonstrates the use of another GUI component, a text
area, which is similar to a text field but can display multiple lines of text at one
time. Once the user has selected a file using the file chooser dialog box, the text
contained in that file is displayed in a text area.

The file chooser dialog box is displayed when the
showOpenDialog method is invoked. It automatically pres-
ents the list of files contained in a particular directory. The
user can use the controls on the dialog box to navigate to
other directories, change the way the files are viewed, and
specify which types of files are displayed.

The showOpenDialog method returns an integer representing the status of the
operation, which can be checked against constants defined in the JFileChooser
class. In this program, if a file was not selected (perhaps by pressing the Cancel
button), a default message is displayed in the text area. If the user chose a file, it
is opened and its contents are read. Note that this program assumes the selected
file contains text, and that no exceptions are caught. If the user selects an inap-
propriate file, the program will terminate when the exception is thrown.

A text area component is defined by the JTextArea class. In this program, we
pass two parameters to its constructor, specifying the size of the text area in terms
of the number of characters (rows and columns) it should display. The text it is
to display is set using the setText method. A text area
component, like a text field, can be set so that it is either
editable or noneditable. The user can change the contents
of an editable text area by clicking on the text area and typ-
ing with the mouse. If the text area is noneditable, it is used
to display text only. By default, a JTextArea component is editable.

A JFileChooser component makes it easy to allow users to specify a specific
file to use. Another specialized dialog box—one that allows the user to choose a
color—is discussed in the next section.

A file chooser allows the user
to browse a disk or other stor-
age device in order to select a
file.

key
concept

A text area component displays
multiple rows of text.

key
concept

482 CHAPTER 8 exceptions and i/o streams

listing
8.13

//**

// DisplayFile.java Author: Lewis/Loftus

//

// Demonstrates the use of a file chooser and a text area.

//**

import java.io.*;

import javax.swing.*;

public class DisplayFile

{

//---

// Opens a file chooser dialog, reads the selected file and

// loads it into a text area.

//---

public static void main (String[] args) throws IOException

{

JFrame frame = new JFrame ("Display File");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JTextArea ta = new JTextArea (20, 30);

JFileChooser chooser = new JFileChooser();

int status = chooser.showOpenDialog (null);

if (status != JFileChooser.APPROVE_OPTION)

ta.setText ("No File Chosen");

else

{

File file = chooser.getSelectedFile();

FileReader fr = new FileReader (file);

BufferedReader inFile = new BufferedReader (fr);

String info = "";

String line = inFile.readLine();

while (line != null)

{

info += line + "\n";

line = inFile.readLine();

}

8.5 files and GUIs 483

color choosers
In many situations we may want to give the user of a program the ability to
choose a color. We could accomplish this in various ways. We could, for instance,
provide a list of colors using a set of radio buttons. However, with the wide vari-
ety of colors available, it’s nice to have an easier and more flexible technique to
accomplish this common task.

The JColorChooser class represents a component that
allows the user to specify a color. It can be used to display
a dialog box that lets the user click on a color of choice
from a palette presented for that purpose. The user could
also specify a color using RGB values or other color representation techniques.

listing
8.13 continued

ta.setText (info);

}

frame.getContentPane().add (ta);

frame.pack();

frame.show();

}

}

display

A color chooser allows the user
to select a color from a palette
or using RGB values.

key
concept

484 CHAPTER 8 exceptions and i/o streams

The program shown in Listing 8.14 uses a color chooser dialog box to specify
the color of a panel that is displayed in a separate frame.

listing
8.14

//**

// DisplayColor.java Author: Lewis/Loftus

//

// Demonstrates the use of a color chooser.

//**

import javax.swing.*;

import java.awt.*;

public class DisplayColor

{

//---

// Presents a frame with a colored panel, then allows the user

// to change the color multiple times using a color chooser.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Display Color");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JPanel colorPanel = new JPanel();

colorPanel.setBackground (Color.white);

colorPanel.setPreferredSize (new Dimension (300, 100));

frame.getContentPane().add (colorPanel);

frame.pack();

frame.show();

Color shade = Color.white;

int again;

do

{

shade = JColorChooser.showDialog (frame, "Pick a Color!",

shade);

colorPanel.setBackground (shade);

8.5 files and GUIs 485

listing
8.14 continued

again = JOptionPane.showConfirmDialog (null,

"Change color again?");

}

while (again == JOptionPane.YES_OPTION);

}

}

display

486 CHAPTER 8 exceptions and i/o streams

After choosing a color, the new color is displayed in the primary frame and
another dialog box (this one created using JOptionPane as discussed in Chapter
5) is used to determine if the user wants to change the color again. If so, another
color chooser dialog box is displayed. This cycle can continue as long as the user
desires.

Invoking the static showDialog method of the JColorChooser class causes
the color chooser dialog box to appear. The parameters to that method specify
the parent component for the dialog box, the title that appears in the dialog box
frame, and the initial color showing in the color chooser. By using the variable
shade as the third parameter, the color showing in the color chooser will always
be the current color of the panel.

image icons
As we’ve seen in previous examples, a label, defined by the JLabel class, is used
to provide information to the user or describe other components in an interface.
A JLabel can also contain an image. That is, a label can be composed of text, an
image, or both.

An ImageIcon object is used to represent an image that is used in a label. The
ImageIcon constructor takes the name of the image file and loads it into the
object. ImageIcon objects can be made using either JPEG or GIF images.

The alignment of the text and image within the label can be set explicitly, using
either the JLabel constructor or specific methods. Similarly, we can set the posi-
tion of the text relative to the image.

The program shown in Listing 8.15 displays several labels. Each label shows
the text and image in different orientations.

The labels are set up and displayed using the LabelPanel class shown in
Listing 8.16. Its constructor loads the image used in the labels, creates three label
objects, and then sets their characteristics.

The third parameter passed to the JLabel constructor defines the horizontal
positioning of the label within the space allowed for the label. The
SwingConstants interface contains several constants used by various Swing
components, making it easier to refer to them.

The orientation of the label’s text and image is explicitly set using the
setHorizontalTextPosition and setVerticalTextPosition methods. As
shown in the case of the first label, the default horizontal position for text is on
the right (image on the left), and the default vertical position for text is centered
relative to the image.

8.5 files and GUIs 487

listing
8.15

//**

// LabelDemo.java Author: Lewis/Loftus

//

// Demonstrates the use of image icons in labels.

//**

import javax.swing.*;

public class LabelDemo

{

//---

// Creates and displays the primary application frame.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Label Demo");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

frame.getContentPane().add(new LabelPanel());

frame.pack();

frame.show();

}

}

display

488 CHAPTER 8 exceptions and i/o streams

listing
8.16

//**

// LabelPanel.java Author: Lewis/Loftus

//

// Represents the primary display for the LabelDemo program.

//**

import java.awt.*;

import javax.swing.*;

public class LabelPanel extends JPanel

{

private ImageIcon icon;

private JLabel label1, label2, label3;

//---

// Displays three labels with different text/icon orientations.

//---

public LabelPanel ()

{

icon = new ImageIcon ("devil.gif");

label1 = new JLabel ("Devil Left", icon, SwingConstants.LEFT);

label2 = new JLabel ("Devil Right", icon, SwingConstants.LEFT);

label2.setHorizontalTextPosition (SwingConstants.LEFT);

label2.setVerticalTextPosition (SwingConstants.BOTTOM);

label3 = new JLabel ("Devil Above", icon, SwingConstants.LEFT);

label3.setHorizontalTextPosition (SwingConstants.CENTER);

label3.setVerticalTextPosition (SwingConstants.BOTTOM);

add (label1);

add (label2);

add (label3);

setBackground (Color.cyan);

setPreferredSize (new Dimension (200, 250));

}

}

8.5 files and GUIs 489

Don’t confuse the horizontal positioning of the label in its allotted space with
the setting of the orientation between the text and the image. The third parame-
ter of the constructor determines the first, and the explicit method calls determine
the second. In this program, the layout manager of the program overrides the hor-
izontal positioning of the labels anyway, centering them in each row of the panel.
Layout managers are discussed in detail in Chapter 9.

Images can also be used in JButton objects. That is, a
button can contain text, an image, or both, just as a label
can. The orientations between the text and image in a but-
ton can also be set explicitly if desired.

key events
A key event is generated when a keyboard key is pressed.
Key events allow a program to respond immediately to the
user while he or she is typing or pressing other keyboard
keys such as the arrow keys. There is no need to wait for
the Enter key to be pressed or some other component to be
activated.

The Direction program shown in Listing 8.17 responds to key events. An
image of an arrow is displayed and the image moves across the screen as the
arrow keys are pressed. This program is implemented as an applet.

The DirectionPanel class, shown in Listing 8.18, represents the panel on
which the arrow image is displayed. The program actually loads four separate
images of arrows pointing in the four primary directions (up, down, right, and
left). The image that is displayed corresponds to the arrow key that was most
recently pressed. For example, if the up arrow is pressed, the image with the
arrow pointing up is displayed. If an arrow key is continually pressed, the appro-
priate image “moves” in the appropriate direction until the boundary of the
applet window is encountered.

The arrow images are managed as ImageIcon objects. In this example, the
image is drawn using the paintIcon method each time the panel is repainted.
The paintIcon method takes four parameters: a component to serve as an image
observer, the graphics context on which the image will be drawn, and the (x, y)
coordinates where the image is drawn. An image observer is a component that
serves to manage image loading; in this case we use the panel as the image
observer.

An image icon can be added to
other components such as a
label or a button.

key
concept

Key events allow a program to
immediately respond to the
user typing keyboard keys.

key
concept

490 CHAPTER 8 exceptions and i/o streams

listing
8.17

//**

// Direction.java Author: Lewis/Loftus

//

// Demonstrates the use of key events.

//**

import javax.swing.*;

public class Direction extends JApplet

{

//---

// Adds the display panel to the applet.

//---

public void init()

{

getContentPane().add (new DirectionPanel(this));

}

}

display

8.5 files and GUIs 491

listing
8.18

//**

// DirectionPanel.java Author: Lewis/Loftus

//

// Represents the primary display panel for the Direction program.

//**

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class DirectionPanel extends JPanel

{

private final int WIDTH = 300, HEIGHT = 200;

private final int JUMP = 10; // increment for image movement

private final int IMAGE_SIZE = 31;

private ImageIcon up, down, right, left, currentImage;

private int x, y;

//---

// Sets up this panel and loads the images.

//---

public DirectionPanel (JApplet applet)

{

applet.addKeyListener (new DirectionListener());

x = WIDTH / 2;

y = HEIGHT / 2;

up = new ImageIcon ("arrowUp.gif");

down = new ImageIcon ("arrowDown.gif");

left = new ImageIcon ("arrowLeft.gif");

right = new ImageIcon ("arrowRight.gif");

currentImage = right;

setBackground (Color.black);

setPreferredSize (new Dimension(WIDTH, HEIGHT));

}

492 CHAPTER 8 exceptions and i/o streams

listing
8.18 continued

//---

// Draws the image in the current location.

//---

public void paintComponent (Graphics page)

{

super.paintComponent (page);

currentImage.paintIcon (this, page, x, y);

}

//***

// Represents the listener for keyboard activity.

//***

private class DirectionListener implements KeyListener

{

//--

// Responds to the user pressing arrow keys by adjusting the

// image location accordingly.

//--

public void keyPressed (KeyEvent event)

{

switch (event.getKeyCode())

{

case KeyEvent.VK_UP:

currentImage = up;

if (y > 0)

y -= JUMP;

break;

case KeyEvent.VK_DOWN:

currentImage = down;

if (y < HEIGHT-IMAGE_SIZE)

y += JUMP;

break;

case KeyEvent.VK_LEFT:

currentImage = left;

if (x > 0)

x -= JUMP;

break;

case KeyEvent.VK_RIGHT:

currentImage = right;

if (x < WIDTH-IMAGE_SIZE)

x += JUMP;

break;

}

8.5 files and GUIs 493

The private inner class called DirectionListener is set up to respond to key
events. It implements the KeyListener interface, which defines three methods
that we can use to respond to keyboard activity. Figure 8.5 lists these methods.

Specifically, the Direction program responds to key pressed events. Because
the listener class must implement all methods defined in the interface, we provide
empty methods for the other events.

The KeyEvent object passed to the keyPressed method of the listener can be
used to determine which key was pressed. In the example, we call the getKey-
Code method of the event object to get a numeric code that represents the key that
was pressed. We use a switch statement to determine which key was pressed and

listing
8.18 continued

repaint();

}

//--

// Provide empty definitions for unused event methods.

//--

public void keyTyped (KeyEvent event) {}

public void keyReleased (KeyEvent event) {}

}

}

figure 8.5 The methods of the KeyListener interface

void keyPressed (KeyEvent event)

Called when a key is pressed.

void keyReleased (KeyEvent event)

Called when a key is released.

void keyTyped (KeyEvent event)

Called when a pressed key or key combination produces
a key character.

to respond accordingly. The KeyEvent class contains constants that correspond
to the numeric code that is returned from the getKeyCode method. If any key
other than an arrow key is pressed it is ignored.

Key events fire whenever a key is pressed, but most systems enable the concept
of key repetition. That is, when a key is pressed and held down, its as if that key
is being pressed repeatedly and quickly. Key events are generated in the same way.
In the Direction program, the user can hold down an arrow key and watch the
image move across the screen quickly.

The component that generates key events is the one that currently has the key-
board focus. Usually the keyboard focus is held by the primary “active” compo-
nent. A component usually gets the keyboard focus when the user clicks on it with
the mouse. When the Direction program is first executed, the user may have to
click on the applet window with the mouse before it will respond to the arrow keys.

Getting the keyboard focus can be a tricky thing because the manner in which
it is handled is system dependent. Note that in the Direction program, the lis-
tener is added to the applet itself, not the panel.

8.6 animations
An animation is a series of images or drawings that give the appearance of
movement on the screen. A cartoon is animated by drawing several images such
that, when shown in progression at an appropriate speed, they fool the human
eye into thinking there is one image in continuous motion.

We can create animations in a Java program in a similar way. For example, we
can make it seem that a single image is moving across the screen. We created this
effect somewhat with the Direction program described in the previous section
of this chpater, but in that case the speed of the “movement” was determined by
the user pressing the arrow keys.

In a true animation, the program controls the speed at which the scene
changes. To create the illusion of movement, the program draws an image in one
location, waits long enough for the human eye to see it, then redraws it in a
slightly different location. To create the necessary pause during our animation, we
can use the Timer class.

the Timer class
A timer object, created from the Timer class of the javax.swing package, can be
thought of as a GUI component. However, unlike other components, it does not

494 CHAPTER 8 exceptions and i/o streams

8.6 animations 495

have a visual representation that appears on the screen. Instead, as the name
implies, it helps us manage an activity over time.

A timer object generates an action event at regular intervals. To perform an
animation, we set up a timer to generate an action event periodically, then update
the animation graphics in the action listener. The methods of the Timer class are
shown in Fig. 8.6.

The Rebound applet, shown in Listing 8.19, displays the
image of a smiling face that seems to glide across the applet
window at an angle, bouncing off of the window edges.

The timer is created in the init method of the applet.
The first parameter to the Timer constructor is the delay in
milliseconds. Usually, the second parameter to the constructor is the listener that
handles the action events of the timer. In this example, we defer the creation of
that listener and pass the Timer constructor a null reference instead. The timer
object is passed to the constructor of the ReboundPanel class, shown in Listing
8.20.

The methods start and stop are implemented in the applet to start and stop
the timer, respectively. This causes the animation to pause or resume as needed.
It is appropriate to implement the stop method of an applet if the applet per-
forms continuous processing, such as an animation. Recall from Chapter 4 that

A Timer object generates an
action event at regular inter-
vals and can be used to control
an animation.

key
concept

figure 8.6 Some methods of the Timer class

Timer (int delay, ActionListener listener)

Constructor: Creates a timer that generates an action event at
regular intervals, specified by the delay. The event will be handled
by the specified listener.

void addActionListener (ActionListener listener)

Adds an action listener to the timer.

boolean isRunning ()

Returns true if the timer is running.

void setDelay (int delay)

Sets the delay of the timer.

void start ()

Starts the timer, causing it to generate action events.

void stop ()

Stops the timer, causing it to stop generating action events.

496 CHAPTER 8 exceptions and i/o streams

listing
8.19

//**

// Rebound.java Author: Lewis/Loftus

//

// Demonstrates an animation and the use of the Timer class.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Rebound extends JApplet

{

private final int DELAY = 20;

private Timer timer;

//---

// Sets up the applet, including the timer for the animation.

//---

public void init()

{

timer = new Timer (DELAY, null);

getContentPane().add (new ReboundPanel(timer));

}

//---

// Starts the animation when the applet is started.

//---

public void start ()

{

timer.start();

}

//---

// Stops the animation when the applet is stopped.

//---

public void stop ()

{

timer.stop();

}

}

8.6 animations 497

listing
8.20

//**

// ReboundPanel.java Author: Lewis/Loftus

//

// Represents the primary panel for the Rebound applet.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ReboundPanel extends JPanel

{

private final int WIDTH = 300, HEIGHT = 100;

private final int IMAGE_SIZE = 35;

private ImageIcon image;

private Timer timer;

private int x, y, moveX, moveY;

listing
8.19 continued

display

498 CHAPTER 8 exceptions and i/o streams

listing
8.20 continued

//---

// Sets up the applet, including the timer for the animation.

//---

public ReboundPanel (Timer countdown)

{

timer = countdown;

timer.addActionListener (new ReboundListener());

image = new ImageIcon ("happyFace.gif");

x = 0;

y = 40;

moveX = moveY = 3;

setBackground (Color.black);

setPreferredSize (new Dimension(WIDTH, HEIGHT));

}

//---

// Draws the image in the current location.

//---

public void paintComponent (Graphics page)

{

super.paintComponent (page);

image.paintIcon (this, page, x, y);

}

//***

// Represents the action listener for the timer.

//***

private class ReboundListener implements ActionListener

{

//--

// Updates the position of the image and possibly the direction

// of movement whenever the timer fires an action event.

//--

public void actionPerformed (ActionEvent event)

{

x += moveX;

y += moveY;

8.6 animations 499

the stop method of an applet is called automatically when the user leaves the
browser page of the applet. Therefore the animation is automatically paused
when the user can’t see it. This is considered to be the polite way to implement
an applet, so that the user’s machine isn’t wasting CPU time on unproductive
activity. The start method will resume the animation where it left off when the
applet again becomes active.

In the constructor of the ReboundPanel class, the action listener is created and
added to the timer. The constructor also sets up the initial position for the image
and the number of pixels it will move, in both the vertical and horizontal direc-
tions, each time the image is redrawn.

The actionPerformed method of the listener updates the current x and y
coordinate values, then checks to see if those values cause the image to “run into”
the edge of the panel. If so, the movement is adjusted so that the image will make
future moves in the opposite direction horizontally, vertically, or both. Note that
this calculation takes the image size into account.

The speed of the animation in the Rebound applet is a function of two factors:
the pause between the action events and the distance the image is shifted each
time. In this example, the timer is set to generate an action event every 20 mil-
liseconds, and the image is shifted 3 pixels each time it is updated. You can exper-
iment with these values to change the speed of the animation. The goal should be
to create the illusion of movement that is pleasing to the eye.

listing
8.20 continued

if (x <= 0 || x >= WIDTH-IMAGE_SIZE)

moveX = moveX * -1;

if (y <= 0 || y >= HEIGHT-IMAGE_SIZE)

moveY = moveY * -1;

repaint();

}

}

}

500 CHAPTER 8 exceptions and i/o streams

◗ Errors and exceptions represent unusual or invalid processing.

◗ The messages printed by a thrown exception indicate the nature of the
problem and provide a method call stack trace.

◗ Each catch clause on a try statement handles a particular kind of excep-
tion that may be thrown within the try block.

◗ The finally clause of a try block is executed whether the try block is
exited normally or because of a thrown exception.

◗ If an exception is not caught and handled where it occurs, it is propagated
to the calling method.

◗ A programmer must carefully consider how exceptions should be handled,
if at all, and at what level of the method-calling hierarchy.

◗ A new exception is defined by deriving a new class from the Exception
class or one of its descendants.

◗ The throws clause on a method header must be included for checked
exceptions that are not caught and handled in the method.

◗ A stream is a sequential sequence of bytes; it can be used as a source of
input or a destination for output.

◗ A character stream manages Unicode characters, whereas a byte stream
manages 8-bit bytes.

◗ Java I/O classes can be divided into data streams, which represent a par-
ticular source or destination, or processing streams, which perform opera-
tions on data in an existing stream.

◗ Three variables in the System class represent the standard I/O streams.

◗ The Keyboard class, though not part of the Java standard class library,
provides an abstraction for several I/O operations on the standard input
stream.

◗ The FileReader and BufferedReader classes can be used together to
create a convenient text file output stream.

◗ The readLine method returns null when the end of a file is encountered.

◗ Output file streams should be explicitly closed or they may not correctly
retain the data written to them.

summary of
key concepts

self-review questions 501

◗ Object serialization represents an object as a sequence of bytes that can be
stored in a file or transferred to another computer.

◗ A file chooser allows the user to browse a disk or other storage device in
order to select a file.

◗ A text area component displays multiple rows of text.

◗ A color chooser allows the user to select a color from a palette or using
RGB values.

◗ An image icon can be added to other components such as a label or a
button.

◗ Key events allow a program to immediately respond to the user typing
keyboard keys.

◗ A Timer object generates an action event at regular intervals and can be
used to control an animation.

self-review questions
8.1 In what ways might a thrown exception be handled?

8.2 What is a catch phrase?

8.3 What happens if an exception is not caught?

8.4 What is a stream?

8.5 What is the difference between a character stream and a byte
stream?

8.6 What are the standard I/O streams?

8.7 Who wrote the Keyboard class? Why?

8.8 What types of processing does the Keyboard class hide?

8.9 How is reading and writing files different from reading and writing
text using standard I/O?

8.10 How can we detect the end of an input file?

8.11 How is object persistence accomplished in Java?

8.12 What is a file chooser?

8.13 What are two ways an image can be displayed on a Java panel?

8.14 What does a Timer object do?

502 CHAPTER 8 exceptions and i/o streams

exercises
8.1 Describe the general purpose of each of the following Java I/O

classes. Classify each as character stream or byte stream and as data
stream or processing stream.

◗ BufferedReader

◗ FileInputStream

◗ ObjectOutputStream

◗ FileReader

8.2 Carefully explain the processing of the readFloat method of the
Keyboard class.

8.3 Create a UML class diagram for the ProductCodes program.

8.4 Create a UML class diagram for the CheckInventory program.

8.5 Create a UML class diagram for the WriteCountryInfo program.

8.6 Create a UML class diagram for the Direction program.

8.7 What would happen if the try statement were removed from the
level1 method of the ExceptionScope class in the Propagation
program?

8.8 What would happen if the try statement described in the previous
exercise were moved to the level2 method?

8.9 What would happen if the implements clause were removed from
the header of the CountryInfo class?

programming projects
8.1 Design and implement a program that creates an exception class

called StringTooLongException, designed to be thrown when a
string is discovered that has too many characters in it. In the main
driver of the program, read strings from the user until the user enters
“DONE”. If a string is entered that has too many characters (say
20), throw the exception. Allow the thrown exception to terminate
the program.

8.2 Modify the solution to Programming Project 8.1 such that it catches
and handles the exception if it is thrown. Handle the exception by
printing an appropriate message, and then continue processing more
strings.

project502a.html
project502b.html

programming projects 503

8.3 Modify the ProductCodes program such that it reads the data from
a file. Eliminate the interactive prompt. Write the output to an out-
put file, except for the messages about the error conditions that are
detected (regarding banned codes), which should be printed to the
screen.

8.4 Design and implement a program to process golf scores. The scores
of four golfers are stored in a text file. Each line represents one hole,
and the file contains 18 lines. Each line contains five values: par for
the hole followed by the number of strokes each golfer used on that
hole. Determine the winner and produce a table showing how well
each golfer did (compared to par).

8.5 Design and implement a program to produce a random, but reason-
able, test file for the golf program described in Programming
Project 8.4.

8.6 Design and implement a program that compares two text input files,
line by line, for equality. Print any lines that are not equivalent.

8.7 Design and implement a program that counts the number of punctu-
ation marks in a text input file. Produce a table that shows how
many times each symbol occurred.

8.8 Design and implement a program that helps a hospital analyze the
flow of patients through the emergency room. A text input file con-
tains integers that represent the number of patients that entered the
emergency room during each hour of each day for four weeks. Read
the information and store it in a three dimensional array. Then ana-
lyze it to compare the total number of patients per week, per day,
and per hour. Display the results of the analysis.

8.9 Modify the WriteCountryInfo program such that it uses an
ArrayList object to store the CountryInfo objects. Serialize the
entire list in one operation. Modify the ReadCountryInfo program
accordingly.

8.10 Design and implement a program that creates an array of objects
created from the Rational class from Chapter 4, then serializes the
objects and stores them in a file. Create another program that reads
the objects and exercises some of their methods.

8.11 Modify the DisplayFile program to add a button labeled Save
above the text area. When the button is pushed, write the contents
back out to the file.

project503b.html

504 CHAPTER 8 exceptions and i/o streams

8.12 Modify the LabelDemo program so that it displays a fourth label,
with the text of the label centered above the image.

8.13 Modify the Direction program from this chapter so that, in addi-
tion to responding to the arrow keys, it also responds to four other
keys that move the image in diagonal directions. When the ‘t’ key
is pressed, move the image up and to the left. Likewise, use ‘u’ to
move up and right, ‘g’ to move down and left, and ‘j’ to move
down and right. Do not move the image if it has reached a window
boundary.

8.14 Modify the Rebound applet from this chapter such that when the
mouse button is clicked the animation stops, and when it is clicked
again the animation resumes.

8.15 Modify the StickFigure class from Chapter 4 to include methods
setX and setY to set the x and y coordinate of the figure. Use the
Timer class to create an applet animation that lets a stick figure
glide across the floor from left to right. When the figure reaches the
right edge of the window, have it reappear on the left side again.
Implement the start and stop methods for polite browsing.

8.16 Design and implement an application that displays an animation of a
car (side view) moving across the screen from left to right. Create a
Car class that represents the car (or use one that was created for a
programming project in Chapter 6).

8.17 Design and implement an application that displays an animation of a
horizontal line segment moving across the screen, eventually passing
across a vertical line. As the vertical line is passed, the horizontal
line should change color. The change of color should occur while the
horizontal line crosses the vertical one; therefore, while crossing, the
horizontal line will be two different colors.

8.18 Design and implement an application that plays a game called
Catch-the-Creature. Use an image to represent the creature. Have the
creature appear at a random location for a random duration, then
disappear and reappear somewhere else. The goal is to “catch” the
creature by pressing the mouse button while the mouse pointer is on
the creature image. Create a separate class to represent the creature,
and include in it a method that determines if the location of the
mouse click corresponds to the current location of the creature.
Display a count of the number of times the creature is caught.

answers to self-review questions 505

For additional programming projects, click the CodeMate icon below:

8.19

answers to self-review questions
8.1 A thrown exception can be handled in one of three ways: it can be

ignored, which will cause a program to terminate, it can be handled
where it occurs using a try statement, or it can be caught and han-
dled higher in the method calling hierarchy.

8.2 A catch phrase of a try statement defines the code that will handle
a particular type of exception.

8.3 If an exception is not caught immediately when thrown, it begins to
propagate up through the methods that were called to get to the
point where it was generated. The exception can be caught and han-
dled at any point during that propagation. If it propagates out of the
main method, the program terminates.

8.4 A stream is a sequential series of bytes that serves as a source of
input or a destination for output.

8.5 A character stream manages Unicode character data, whereas a byte
stream manages 8-bit bytes.

8.6 The standard I/O streams in Java are System.in, the standard input
stream; System.out, the standard output stream; and System.err,
the standard error stream. Usually, standard input comes from the
keyboard and standard output and error go to a default window on
the monitor screen.

8.7 The authors of this text wrote the Keyboard class to facilitate read-
ing input from the keyboard.

8.8 The Keyboard class hides many details of standard input such as
stream declaration, error handling, parsing input, and value conver-
sions.

8.9 All Java I/O operations are similar in that the stream is set up, the
data is read or written, and the stream is closed. The primary differ-
ence between standard I/O and file I/O are the classes used to create
the streams.

project505.html

506 CHAPTER 8 exceptions and i/o streams

8.10 The readLine method returns a null reference if an attempt is
made to read past the end of the input file.

8.11 Object persistence is the process of keeping an object viable outside
of the program that created it. Persistence is accomplished in Java by
serializing the object into a sequence of bytes using special process-
ing stream classes. Once serialized, the object can be stored in a file,
sent across the network, and so on.

8.12 A file chooser is a GUI component that allows the user to navigate a
disk or other storage structure and select a file. The program using
the file chooser can then use the file as needed.

8.13 An image, represented as an ImageIcon object, can be drawn on a
panel in a specific location using the paintIcon method. Or it can
be displayed as part of another GUI component such as a label or
button.

8.14 An object created from the Timer class produces an action event
at regular intervals. It can be used to control the speed of an
animation.

of the development of graphical

user interfaces (GUIs) in Java. In

particular, it examines several of

the layout managers provided by

the Java standard class library. It

discusses techniques for organiz-

ing GUI containers into compo-

nent hierarchies. It also explores

some of the special features

available with some components

to tailor their use appropriately.

Finally, this chapter explores

several new GUI components

and events.

◗ Review the GUI concepts estab-
lished in previous chapters.

◗ Discuss GUI design guidelines.

◗ Explore the functionality of a lay-
out manager and explore some
layout managers in detail.

◗ Examine the use of nested contain-
ers to organize components.

◗ Explore the use of borders, tool
tips, mnemonics, and other special
component features.

◗ Explore new GUI components and
events.

chapter
objectives

This chapter extends the material that is covered in
the graphics track sections of preceding chapters

and provides a comprehensive exploration

9
graphical user interfaces

508 CHAPTER 9 graphical user interfaces

9.0 preliminaries
This chapter assumes a familiarity with the material on GUIs covered in the
graphics track sections of Chapters 5 through 8. That gradual introduction now
allows us to explore Java GUIs in a more comprehensive fashion. The previous
chapters established a fundamental vocabulary regarding GUIs and explored
many of the basic concepts involved in their construction. Let’s review briefly the
GUI issues covered in those chapters. You may want to revisit some of this mate-
rial before continuing.

GUI review
Chapter 5 described the three basic elements that compose any Java GUI: com-
ponents, events, and listeners. A programmer sets up these objects to interact in
precise ways. Components generate events, usually because of a user action, and
listeners handle the events when they occur. The components examined in
Chapter 5 were push buttons (JButton), labels (JLabel), and text fields
(JTextField). Push buttons and text fields generate action events
(ActionEvent). Listeners are often constructed using listener interfaces such as
ActionListener. Containers are special components that hold and organize
other components, and include applets (JApplet), frames (JFrame), and panels
(JPanel).

Chapter 6 introduced two new categories of button components: check boxes
and radio buttons. Both are toggle buttons, meaning that at any time they are
either set (on) or not set (off). A radio button (JRadioButton) is used in con-
junction with other radio buttons to provide a set of mutually exclusive options.
A set of radio buttons is defined by a ButtonGroup object. Only one radio but-
ton in the set can be on at any time. When one is selected, the currently set option
is automatically turned off. A check box (JCheckBox) provides an independent
option that can be selected or not without any effect on other options. If used
among other check boxes, any combination of selections is valid. Both check
boxes and radio buttons generate action events. In addition, a check box gener-
ates an item event (ItemEvent), which lets the listener determine whether the
button was selected or deselected by the most recent mouse click.

Chapter 7 examined inheritance, which allowed for the exploration of the
component class hierarchy. Inheritance further provides a second way to create
listener objects: by deriving the listener from the appropriate adapter class instead
of implementing the corresponding listener interface. Chapter 7 also introduced

9.0 preliminaries 509

mouse events and mouse motion events, which are generated by all components.
Objects of the MouseEvent class are used to represent both categories of events,
but they have separate listener interfaces and adapter classes. A mouse event is
generated when the mouse button is clicked or when the mouse moves into or out
of a component’s drawing area. Mouse motion events are generated as the mouse
position is changed (moved or dragged) over a component.

Chapter 8 introduced some additional components, including a text area
(JTextArea) that provides a viewing and editing area larger than a text field. It
also explored the use of special dialog boxes that let the user select a particular
file (JFileChooser) and color (JColorChooser). The use of images and the
ImageIcon class were also explored, including their use in conjunction with other
components such as labels and buttons. Chapter 8 also examined key events
(KeyEvent), which are generated when the user presses a keyboard key.

GUI design
As we focus on the details that allow us to create GUIs, we may sometimes lose
sight of the big picture. As we continue to explore GUI construction, we should
keep in mind that our goal is to solve a problem. Specifically, we want to create
software that is useful. Knowing the details of components, events, and other lan-
guage elements gives us the tools to put GUIs together, but we must guide that
knowledge with fundamental ideas of good GUI design:

◗ Know the user.

◗ Prevent user errors.

◗ Optimize user abilities.

◗ Be consistent.

The software designer must understand the user’s needs and poten-
tial activities in order to develop an interface that will serve that user
well. Keep in mind that, to the user, the interface is the software. It is
the only way the user interacts with the system. As such, the interface
must satisfy the user’s needs.

Whenever possible, we should design interfaces so that the user can
make as few mistakes as possible. In many situations, we have the flexibility to
choose one of several components to accomplish a specific task. We should always
try to choose components that will prevent inappropriate actions and avoid
invalid input. For example, if an input value must be one of a set of particular

The design of any GUI should
adhere to basic guidelines
regarding consistency and
usability.

key
concept

values, we should use components that allow the user to make only a valid choice.
That is, constraining the user to a few valid choices with, for instance, a set of
radio buttons is better than allowing the user to type arbitrary and possibly invalid
data into a text field. We cover additional components appropriate for specific sit-
uations in this chapter.

Not all users are alike. Some are more adept at using a particular GUI or GUI
components in general than others. We shouldn’t design with only the lowest
common denominator in mind. For example, we should provide shortcuts when-
ever reasonable. That is, in addition to a normal series of actions that will allow
a user to accomplish a task, we should also provide redundant ways to accom-
plish the same task. Sometimes these additional mechanisms are less intuitive, but
they may be faster for the experienced user.

Finally, consistency is important when dealing with large systems or multiple
systems in a common environment. Users become familiar with a particular
organization or color scheme; these should not be changed arbitrarily.

9.1 layout managers
In addition to the components, events, and listeners that comprise the backbone
of a GUI, the most important activity in GUI design is the use of layout managers.

A layout manager is an object that governs how components are
arranged in a container. It determines the size and position of each com-
ponent and may take many factors into account to do so. Every con-
tainer has a default layout manager, although we can replace it if we
prefer another one.

A container’s layout manager is consulted whenever a change to the
visual appearance of its contents might be needed. When the size of a
container is adjusted, for example, the layout manager is consulted to
determine how all of the components in the container should appear in
the resized container. Every time a component is added to a container,
the layout manager determines how the addition affects all of the exist-
ing components.

The table in Fig. 9.1 describes several of the predefined layout managers pro-
vided by the Java standard class library.

510 CHAPTER 9 graphical user interfaces

The layout manager of a con-
tainer determines how compo-
nents are visually presented.ke

y
co

nc
ep

t

When changes occur, the com-
ponents in a container reorgan-
ize themselves according to
the layout manager’s policy.

ke
y

co
nc

ep
t

9.1 layout managers 511

Every layout manager has its own particular properties and rules governing the
layout of components. For some layout managers, the order in which you add the
components affects their positioning, whereas others provide more specific con-
trol. Some layout managers take a component’s preferred size or alignment into
account, whereas others don’t. To develop good GUIs in Java, it is important to
become familiar with features and characteristics of various layout managers.

We can use the setLayout method of a container to change its layout man-
ager. We’ve done this a few times in examples. For example, the following code
sets the layout manager of a JPanel, which has a flow layout by default, so that
it uses a border layout instead:

JPanel panel = new JPanel();

panel.setLayout (new BorderLayout());

Let’s explore some of these layout managers in more detail. We’ll
focus on the most popular layout managers at this point: flow, border,
box, and grid. The class presented in Listing 9.1 contains the main
method of an application that demonstrates the use and effects of these
layout managers.

figure 9.1 Some predefined Java layout managers

Border Layout Organizes components into five areas (North, South, East, West and
Center).

Organizes components into one area such that only one is visible at any time.

Organizes components into a single row or column.

Organizes components from left to right, starting new rows as necessary.

Organizes components into a grid of rows and columns.

Organizes components into a grid of cells, allowing components to span
more than one cell.

Box Layout

Card Layout

Flow Layout

Grid Layout

GridBag Layout

Layout Manager Description

The layout manager for each
container can be explicitly set.

key
concept

512 CHAPTER 9 graphical user interfaces

The LayoutDemo program introduces the use of a tabbed pane, a container
that allows the user to select (by clicking on a tab) which of several panes are cur-

rently visible. A tabbed pane is defined by the JTabbedPane class. The
addTab method creates a tab, specifying the name that appears on the
tab and the component to be displayed on that pane when it achieves
focus by being “brought to the front” and made visible to the user.

listing
9.1

//**

// LayoutDemo.java Authors: Lewis/Loftus

//

// Demonstrates the use of flow, border, grid, and box layouts.

//**

import javax.swing.*;

public class LayoutDemo

{

//---

// Sets up a frame containing a tabbed pane. The panel on each

// tab demonstrates a different layout manager.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Layout Manager Demo");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JTabbedPane tp = new JTabbedPane();

tp.addTab ("Intro", new IntroPanel());

tp.addTab ("Flow", new FlowPanel());

tp.addTab ("Border", new BorderPanel());

tp.addTab ("Grid", new GridPanel());

tp.addTab ("Box", new BoxPanel());

frame.getContentPane().add(tp);

frame.pack();

frame.show();

}

}

A tabbed pane presents a set
of cards from which the user
can choose.ke

y
co

nc
ep

t

9.1 layout managers 513

Interestingly, there is an overlap in the functionality provided by tabbed panes
and the card layout manager. Similar to the tabbed pane, a card layout allows sev-
eral layers to be defined, and only one of those layers is displayed at any given
point. However, a container managed by a card layout can be adjusted only under
program control, whereas tabbed panes allow the user to indicate directly which
tab should be displayed.

In this example, each tab of the tabbed pane contains a panel that is controlled
by a different layout manager. The first tab simply contains a panel with an intro-
ductory message, as shown in Listing 9.2. As we explore each layout manager in
more detail, we examine the class that defines the corresponding panel of this
program and discuss its visual effect.

flow layout
Flow layout is one of the easiest layout managers to use. The JPanel class uses
flow layout by default. Flow layout puts as many components as possible on a
row, at their preferred size. When a component cannot fit on a row, it is put on
the next row. As many rows as needed are added to fit all components that have
been added to the container. Figure 9.2 depicts a container governed by a flow
layout manager.

The class in Listing 9.3 represents the panel that demonstrates the flow layout
in the LayoutDemo program. It explicitly sets the layout to be a flow layout
(though in this case that is unnecessary because JPanel defaults to flow layout).
The buttons are then created and added to the panel.

The size of each button is made large enough to accommodate the size of the
label that is put on it. As we mentioned earlier, flow layout puts as many of these
buttons as possible on one row within the panel, and then starts putting compo-
nents on another row. When the size of the frame is widened (by dragging the
lower-right corner with the mouse, for example), the panel grows as
well, and more buttons can fit on a row. When the frame is resized, the
layout manager is consulted and the components are reorganized auto-
matically. Note that on each row the components are centered within
the window by default.

In a flow layout, the width of
the container determines how
many components fit on a row.

key
concept

514 CHAPTER 9 graphical user interfaces

listing
9.2

//**

// IntroPanel.java Authors: Lewis/Loftus

//

// Represents the introduction panel for the LayoutDemo program.

//**

import java.awt.*;

import javax.swing.*;

public class IntroPanel extends JPanel

{

//---

// Sets up this panel with two labels.

//---

public IntroPanel()

{

setBackground (Color.green);

JLabel l1 = new JLabel ("Layout Manger Demonstration");

JLabel l2 = new JLabel ("Choose a tab to see an example of " +

"a layout manager.");

add (l1);

add (l2);

}

}

display

9.1 layout managers 515

figure 9.2 Flow layout puts as many components as possible on a row

Component
1

Component
2

Component
4

Component
3

listing
9.3

//**

// FlowPanel.java Authors: Lewis/Loftus

//

// Represents the panel in the LayoutDemo program that demonstrates

// the flow layout manager.

//**

import java.awt.*;

import javax.swing.*;

public class FlowPanel extends JPanel

{

//---

// Sets up this panel with some buttons to show how flow layout

// affects their position.

//---

public FlowPanel ()

{

setLayout (new FlowLayout());

setBackground (Color.green);

516 CHAPTER 9 graphical user interfaces

listing
9.3 continued

JButton b1 = new JButton ("BUTTON 1");

JButton b2 = new JButton ("BUTTON 2");

JButton b3 = new JButton ("BUTTON 3");

JButton b4 = new JButton ("BUTTON 4");

JButton b5 = new JButton ("BUTTON 5");

add (b1);

add (b2);

add (b3);

add (b4);

add (b5);

}

}

display

9.1 layout managers 517

The constructor of the FlowLayout class is overloaded to allow the program-
mer to tailor the characteristics of the layout manager. Within each row, compo-
nents are either centered, left aligned, or right aligned. The alignment defaults to
center. The horizontal and vertical gap size between components also can be spec-
ified when the layout manager is created. The FlowLayout class also has meth-
ods to set the alignment and gap sizes after the layout manager is created.

border layout
A border layout has five areas to which components can be added: North, South,
East, West, and Center. The areas have a particular positional relationship to each
other, as shown in Fig. 9.3.

The four outer areas become as big as needed in order to accommodate the
component they contain. If no components are added to the North, South, East,
or West areas, these areas do not take up any room in the overall layout. The
Center area expands to fill any available space.

A particular container might use only a few areas, depending on the
functionality of the system. For example, a program might use only the
Center, South, and West areas. This versatility makes border layout a
very useful layout manager.

The add method for a container governed by a border layout takes
as its first parameter the component to be added. The second parameter indicates
the area to which it is added. The area is specified using constants defined in the
BorderLayout class. Listing 9.4 shows the panel used by the LayoutDemo pro-
gram to demonstrate the border layout.

figure 9.3 Border layout organizes components in five areas

North

Center EastWest

South

Not all areas of a border layout
must be used; the areas that
contain components fill in the
unused space.

key
concept

518 CHAPTER 9 graphical user interfaces

listing
9.4

//**

// BorderPanel.java Authors: Lewis/Loftus

//

// Represents the panel in the LayoutDemo program that demonstrates

// the border layout manager.

//**

import java.awt.*;

import javax.swing.*;

public class BorderPanel extends JPanel

{

//---

// Sets up this panel with a button in each area of a border

// layout to show how it affects their position, shape, and size.

//---

public BorderPanel()

{

setLayout (new BorderLayout());

setBackground (Color.green);

JButton b1 = new JButton ("BUTTON 1");

JButton b2 = new JButton ("BUTTON 2");

JButton b3 = new JButton ("BUTTON 3");

JButton b4 = new JButton ("BUTTON 4");

JButton b5 = new JButton ("BUTTON 5");

add (b1, BorderLayout.CENTER);

add (b2, BorderLayout.NORTH);

add (b3, BorderLayout.SOUTH);

add (b4, BorderLayout.EAST);

add (b5, BorderLayout.WEST);

}

}

9.1 layout managers 519

listing
9.4 continued

display

520 CHAPTER 9 graphical user interfaces

In the BorderPanel class constructor, the layout manager of the panel is
explicitly set to be border layout. The buttons are then created and added to spe-
cific panel areas. By default, each button is made is wide enough to accommodate
its label and tall enough to fill the area to which it has been assigned. As the frame
(and the panel) is resized, the size of each button adjusts as needed, with the but-
ton in the Center area filling any unused space.

Each area in a border layout displays only one component. That is, only one
component is added to each area of a given border layout. A common error is to
add two components to a particular area of a border layout, in which case the
first component added is replaced by the second, and only the second is seen
when the container is displayed. To add multiple components to an area within a
border layout, we first add the components to another container, such as a
JPanel, then add the panel to the area.

Note that although the panel used to display the buttons has a green back-
ground, no green is visible in the display for Listing 9.4. By default there are no
horizontal or vertical gaps between the areas of a border layout. These gaps can
be set with an overloaded constructor or with explicit methods of the
BorderLayout class. If the gaps are increased, the underlying panel will show
through.

grid layout
A grid layout presents a container’s components in a rectangular grid of rows and
columns. One component is placed in each grid cell, and all cells are the same
size. Figure 9.4 shows the general organization of a grid layout.

figure 9.4 Grid layout creates a rectangular grid of equal-sized cells

Component
1

Component
2

Component
3

Component
4

Component
5

Component
6

Component
7

Component
8

Component
9

Component
10

Component
11

Component
12

9.1 layout managers 521

The number of rows and columns in a grid layout is established using param-
eters to the constructor when the layout manager is created. The class in Listing
9.5 shows the panel used by the LayoutDemo program to demonstrate a grid lay-
out. It specifies that the panel should be managed using a grid of two rows and
three columns.

listing
9.5

//**

// GridPanel.java Authors: Lewis/Loftus

//

// Represents the panel in the LayoutDemo program that demonstrates

// the grid layout manager.

//**

import java.awt.*;

import javax.swing.*;

public class GridPanel extends JPanel

{

//---

// Sets up this panel with some buttons to show how grid

// layout affects their position, shape, and size.

//---

public GridPanel()

{

setLayout (new GridLayout (2, 3));

setBackground (Color.green);

JButton b1 = new JButton ("BUTTON 1");

JButton b2 = new JButton ("BUTTON 2");

JButton b3 = new JButton ("BUTTON 3");

JButton b4 = new JButton ("BUTTON 4");

JButton b5 = new JButton ("BUTTON 5");

add (b1);

add (b2);

add (b3);

add (b4);

add (b5);

}

}

522 CHAPTER 9 graphical user interfaces

As buttons are added to the container, they fill the grid (by default)
from left-to-right and top-to-bottom. There is no way to explicitly
assign a component to a particular location in the grid other than the
order in which they are added to the container.

The size of each cell is determined by the container’s overall size. When the
container is resized, all of the cells change size proportionally to fill the container.

listing
9.5 continued

display

The cells of a grid layout are
filled in order as components
are added to the container.ke

y
co

nc
ep

t

9.1 layout managers 523

If the value used to specify either the number of rows or the number of
columns is zero, the grid expands as needed in that dimension to accommodate
the number of components added to the container. The values for the number of
rows and columns cannot both be zero.

By default, there are no horizontal and vertical gaps between the grid cells. The
gap sizes can be specified using an overloaded constructor or with the appropri-
ate GridLayout methods.

box layout
A box layout organizes components either vertically or horizontally, in one row
or one column, as shown in Fig. 9.5. It is easy to use, yet when combined with
other box layouts, it can produce complex GUI designs similar to those that can
be accomplished with a GridBagLayout, which in general is far more difficult to
master.

When a BoxLayout object is created, we specify that it will follow either the
X axis (horizontal) or the Y axis (vertical), using constants defined in the
BoxLayout class. Unlike other layout managers, the constructor of a BoxLayout
takes as its first parameter the component that it will govern. Therefore a new
BoxLayout object must be created for each component. Listing 9.6 shows the
panel used by the LayoutDemo program to demonstrate the box layout.

figure 9.5 Box layout organizes components either
vertically or horizontally

Component
1

Comp
2

Comp 3

Component
1

Comp
2 Comp 3

524 CHAPTER 9 graphical user interfaces

listing
9.6

//**

// BoxPanel.java Authors: Lewis/Loftus

//

// Represents the panel in the LayoutDemo program that demonstrates

// the box layout manager.

//**

import java.awt.*;

import javax.swing.*;

public class BoxPanel extends JPanel

{

//---

// Sets up this panel with some buttons to show how a vertical

// box layout (and invisible components) affects their position.

//---

public BoxPanel()

{

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

setBackground (Color.green);

JButton b1 = new JButton ("BUTTON 1");

JButton b2 = new JButton ("BUTTON 2");

JButton b3 = new JButton ("BUTTON 3");

JButton b4 = new JButton ("BUTTON 4");

JButton b5 = new JButton ("BUTTON 5");

add (b1);

add (Box.createRigidArea (new Dimension (0, 10)));

add (b2);

add (Box.createVerticalGlue());

add (b3);

add (b4);

add (Box.createRigidArea (new Dimension (0, 20)));

add (b5);

}

}

9.1 layout managers 525

Components in containers governed by a box layout are organized (top-to-
bottom or left-to-right) in the order in which they are added to the container.

There are no gaps between the components in a box layout. Unlike previous
layout managers we’ve explored, a box layout does not have a specific vertical or
horizontal gap that can be specified for the entire container. Instead, we
can add invisible components to the container that take up space
between other components. The Box class, which is also part of the
Java standard class library, contains static methods that can be used to
create these invisible components.

listing
9.6 continued

display

A box layout can use invisible
components to provide space
between components.

key
concept

526 CHAPTER 9 graphical user interfaces

The two types of invisible components used in the BoxPanel class are rigid
areas, which have a fixed size, and glue, which specifies where excess space in a
container should go. A rigid area is created using the createRigidArea method
of the Box class, and takes a Dimension object as a parameter to define the size
of the invisible area. Glue is created using the createHorizontalGlue or
createVerticalGlue methods, as appropriate.

Note that in our example, the space between buttons separated by a rigid area
remains constant even when the container is resized. Glue, on the other hand,
expands or contracts as needed to fill the space.

A box layout—more than most of the other layout managers—respects the
alignments and the minimum, maximum, and preferred sizes of the components
it governs. Therefore setting the characteristics of the components that go into the
container is another way to tailor the visual effect.

9.2 containment hierarchies
The way components are grouped into containers, and the way those containers
are nested within each other, establishes the containment hierarchy for a GUI.
There is generally one primary container, called a top-level container, such as a
frame or applet. The top-level container of a program often contains one or more
other containers, such as panels. These panels may contain other panels to organ-
ize the other components as desired.

Each container can have its own layout manager. The final appear-
ance of a GUI is a function of the layout managers chosen for each of
the containers and the design of the containment hierarchy. Many com-
binations are possible, and there is rarely a single best option. As
always, we should be guided by the desired system goals and general
GUI design guidelines.

Figure 9.6 shows a GUI application that has been annotated to describe its
containment hierarchy. Several components used in this program have been dis-
cussed previously in this text; others are discussed later in this chapter.

Note that in many cases, the use of some containers is not obvious just by
looking at the GUI. We also use invisible components to provide specific spacing
between components. These elements are all part of the containment hierarchy,
even though they are not visible to the user.

A particular program’s containment hierarchy can be represented as a tree
structure, such as the one shown in Fig. 9.7. The root of the tree is the top-level

A GUIs appearance is a func-
tion of the containment hierar-
chy and the layout managers
of each of the containers.

ke
y

co
nc

ep
t

9.2 containment hierarchies 527

figure 9.6 The containment hierarchy of a GUI

figure 9.7 The containment hierarchy tree

JFrame

JPanel
Entire Interface
(Border Layout)

JCheckBox
(quantity : 6)

JLabel

JTextField

JPanel
Center - Hobbies

(Vertical Box Layout)

JPanel
West - Name and Gender

(Vertical Box Layout)

JLabel

JLabel

JPanel
North - Title and Directions

(Vertical Box Layout)

JLabel

JLabel

JComboBox

JSlider

JPanel
East - Age and Salary
(Vertical Box Layout)

JLabel

JTextField

JPanel
First Name

(Horizontal Box Layout)

JLabel

JTextField

JPanel
Last Name

(Horizontal Box Layout)

JLabel

JTextField

JPanel
Middle Initial

(Horizontal Box Layout)

JRadioButton

JRadioButton

JPanel
Gender

(Vertical Box Layout)

JButton

JButton

JPanel
South - Clear and Submit

(Vertical Box Layout)

528 CHAPTER 9 graphical user interfaces

container. Each level of the tree shows the containers and components held in the
containers of the level above.

When changes are made that might affect the visual layout of the components
in a program, the layout managers of each container are consulted in turn. The
changes in one may affect another. These changes ripple through the containment
hierarchy as needed.

9.3 special features
Many Swing components have special features that enhance and facilitate their
use. These features generally go beyond the basic purpose of the component.
Figure 9.8 describes several such features.

Let’s discuss the first three of these features and examine a program that uses
them. We will then turn our attention to the use of borders.

Any Swing component can be assigned a tool tip, which is a short line of text
that will appear when the cursor is rested momentarily on top of the component.
Tool tips are usually used to inform the user about the component, such as the
purpose of a particular button. A tool tip can be assigned using the
setToolTipText method of a Swing component. For example:

JButton button = new JButton (“Compute”);

button.setToolTipText (“Calculates the area under the curve.”);

A mnemonic is a character that allows the user to push a button or
make a menu choice using the keyboard in addition to the mouse. For
example, when a mnemonic has been defined for a button, the user can

figure 9.8 Special features available with many Java GUI components

Tool tip Causes a line of text to appear when the mouse cursor stops over
a component.

Allows an action such as a button push to occur in response to a
keyboard key combination.

Surrounds a component with a border. Several border styles are available.

Allows a component to be enabled and disabled as appropriate. When
disabled, the component does not respond to user interaction.

Mnemonic

Enabled/Disabled

Border

Special Feature Description

Using the special features of
various components often
improves a GUI’s functionality.ke

y
co

nc
ep

t

9.3 special features 529

hold down the ALT key and press the mnemonic character to activate the button.
Using the mnemonic is no different from using the mouse to press the button.

A mnemonic character should be chosen from the label on a button or menu
item. Once the mnemonic has been established using the setMnemonic method,
the character in the label will appear underlined to indicate that it can be used as
a shortcut. If a letter is chosen that is not in the label, nothing will be underlined
and the user won’t know how to use the shortcut. The following is an example
of setting a mnemonic:

JButton button = new JButton (“Calculate”);

button.setMnemonic (‘C’);

Some components can be disabled if they should not be used. A disabled com-
ponent will appear “grayed out,” and nothing will happen if the user attempts to
interact with it. To disable and enable components, we invoke the setEnabled
method of the component, passing it a boolean value to indicate whether the
component should be disabled (false) or enabled (true). For example:

JButton button = new JButton (“Do It”);

button.setEnabled (false);

Disabling components is a good idea when users should not be allowed to use
the functionality of a component. The grayed appearance of the disabled compo-
nent is an indication that using the component is inappropriate (and, in fact,
impossible) at the current time.

Let’s look at an example that uses tool tips, mnemonics, and disabled compo-
nents. The program in Listing 9.7 presents the image of a light bulb and provides
a button to turn the light bulb on and a button to turn the light bulb off.

There are actually two images of the light bulb: one showing it turned on and
one showing it turned off. These images are brought in as ImageIcon objects.
The setIcon method of the label that displays the image is used to set the appro-
priate image, depending on the current status. This processing is controlled in the
LightBulbPanel class shown in Listing 9.8.

The LightBulbControls class shown in Listing 9.9 is a panel that contains
the on and off buttons. Both of these buttons have tool tips assigned to them, and
both use mnemonics. Also, when one of the buttons is enabled, the other is dis-
abled, and vice versa. When the light bulb is on, there is no reason for the On but-
ton to be enabled. Likewise, when the light bulb is off, there is no reason for the
Off button to be enabled.

530 CHAPTER 9 graphical user interfaces

listing
9.7

//**

// LightBulb.java Author: Lewis/Loftus

//

// Demonstrates some special component features such as disabled

// buttons, mnemonics, tool tips, and borders.

//**

import javax.swing.*;

import java.awt.*;

public class LightBulb

{

//---

// Sets up a frame that displays a light bulb image that can be

// turned on and off.

//---

public static void main (String[] args)

{

JFrame lightBulbFrame = new JFrame ("Light Bulb");

lightBulbFrame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

LightBulbPanel bulb = new LightBulbPanel();

LightBulbControls controls = new LightBulbControls (bulb);

JPanel panel = new JPanel();

panel.setBackground (Color.black);

panel.setLayout (new BoxLayout(panel, BoxLayout.Y_AXIS));

panel.add (Box.createRigidArea (new Dimension (0, 20)));

panel.add (bulb);

panel.add (Box.createRigidArea (new Dimension (0, 10)));

panel.add (controls);

panel.add (Box.createRigidArea (new Dimension (0, 10)));

lightBulbFrame.getContentPane().add(panel);

lightBulbFrame.pack();

lightBulbFrame.show();

}

}

9.3 special features 531

listing
9.7 continued

display

listing
9.8

//**

// LightBulbPanel.java Author: Lewis/Loftus

//

// Represents the image for the LightBulb program.

//**

import javax.swing.*;

import java.awt.*;

532 CHAPTER 9 graphical user interfaces

listing
9.8 continued

public class LightBulbPanel extends JPanel

{

private boolean on;

private ImageIcon lightOn, lightOff;

private JLabel imageLabel;

//---

// Sets up the images and the initial state of the panel.

//---

public LightBulbPanel()

{

lightOn = new ImageIcon ("lightBulbOn.gif");

lightOff = new ImageIcon ("lightBulbOff.gif");

setBackground (Color.black);

on = true;

imageLabel = new JLabel (lightOff);

add (imageLabel);

}

//---

// Paints the panel using the appropriate image.

//---

public void paintComponent (Graphics page)

{

super.paintComponent(page);

if (on)

imageLabel.setIcon (lightOn);

else

imageLabel.setIcon (lightOff);

}

//---

// Sets the status of the light bulb.

//---

public void setOn (boolean lightBulbOn)

{

on = lightBulbOn;

}

}

9.3 special features 533

listing
9.9

//**

// LightBulbControls.java Author: Lewis/Loftus

//

// Represents the control panel for the LightBulb program.

//**

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LightBulbControls extends JPanel

{

private LightBulbPanel bulb;

private JButton onButton, offButton;

//---

// Sets up the lightbulb control panel.

//---

public LightBulbControls (LightBulbPanel bulbPanel)

{

bulb = bulbPanel;

onButton = new JButton ("On");

onButton.setEnabled (false);

onButton.setMnemonic ('n');

onButton.setToolTipText ("Turn it on!");

onButton.addActionListener (new OnListener());

offButton = new JButton ("Off");

offButton.setEnabled (true);

offButton.setMnemonic ('f');

offButton.setToolTipText ("Turn it off!");

offButton.addActionListener (new OffListener());

setBackground (Color.black);

add (onButton);

add (offButton);

}

534 CHAPTER 9 graphical user interfaces

Each button has its own listener class. The actionPerformed method of each
sets the bulb’s status, toggles the enabled state of both buttons, and causes the
panel with the image to repaint itself.

listing
9.9 continued

//***

// Represents the listener for the On button.

//***

private class OnListener implements ActionListener

{

//--

// Turns the bulb on and repaints the bulb panel.

//--

public void actionPerformed (ActionEvent event)

{

bulb.setOn (true);

onButton.setEnabled (false);

offButton.setEnabled (true);

bulb.repaint();

}

}

//***

// Represents the listener for the Off button.

//***

private class OffListener implements ActionListener

{

//--

// Turns the bulb off and repaints the bulb panel.

//--

public void actionPerformed (ActionEvent event)

{

bulb.setOn (false);

onButton.setEnabled (true);

offButton.setEnabled (false);

bulb.repaint();

}

}

}

9.3 special features 535

Note that the mnemonic characters used for each button are underlined in the
display. When you run the program, note that the tool tip displayed when the
mouse cursor rests over a button automatically includes an indication of the
mnemonic that can be used for that button.

borders
Java also provides the ability to put a border around any Swing com-
ponent. A border is not a component itself but defines how the edge of
any component should be drawn. A border provides visual cues as to
how GUI components are organized, and can be used to give titles to
components. Figure 9.9 lists the predefined borders in the Java stan-
dard class library.

The BorderFactory class is useful for creating borders for components. It has
many methods for creating specific types of borders. A border is applied to a
component using the component’s setBorder method.

The program in Listing 9.10 demonstrates several types of borders. It simply
creates several panels, sets a different border for each, and then displays them in
a larger panel using a grid layout.

Various borders can be applied
to Swing components to group
objects and to enhance the
visual effect.

key
concept

figure 9.9 Component borders

Empty Border Puts buffering space around the edge of a component, but otherwise
has no visual effect.

Creates the effect of an etched groove around a component.

A simple line surrounding the component.

Creates the effect of a component raised above the surface or
sunken below it.

Includes a text title on or around the border.

Allows the size of each edge to be specified. Uses either a soild color
or an image.

A combination of two borders.

Line Border

Etched Border

Bevel Border

Titled Border

Matte Border

Compound Border

Border Description

536 CHAPTER 9 graphical user interfaces

listing
9.10

//**

// BorderDemo.java Authors: Lewis/Loftus

//

// Demonstrates the various types of borders.

//**

import java.awt.*;

import javax.swing.*;

import javax.swing.border.*;

public class BorderDemo

{

//---

// Creates several bordered panels and displays them in a frame.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Border Demo");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JPanel panel = new JPanel();

panel.setLayout (new GridLayout (0, 2, 5, 10));

panel.setBorder (BorderFactory.createEmptyBorder (5, 5, 5, 5));

JPanel p1 = new JPanel();

p1.setBorder (BorderFactory.createLineBorder (Color.red, 3));

p1.add (new JLabel ("Line Border"));

panel.add (p1);

JPanel p2 = new JPanel();

p2.setBorder (BorderFactory.createEtchedBorder ());

p2.add (new JLabel ("Etched Border"));

panel.add (p2);

JPanel p3 = new JPanel();

p3.setBorder (BorderFactory.createRaisedBevelBorder ());

p3.add (new JLabel ("Raised Bevel Border"));

panel.add (p3);

9.3 special features 537

listing
9.10 continued

JPanel p4 = new JPanel();

p4.setBorder (BorderFactory.createLoweredBevelBorder ());

p4.add (new JLabel ("Lowered Bevel Border"));

panel.add (p4);

JPanel p5 = new JPanel();

p5.setBorder (BorderFactory.createTitledBorder ("Title"));

p5.add (new JLabel ("Titled Border"));

panel.add (p5);

JPanel p6 = new JPanel();

TitledBorder tb = BorderFactory.createTitledBorder ("Title");

tb.setTitleJustification (TitledBorder.RIGHT);

p6.setBorder (tb);

p6.add (new JLabel ("Titled Border (right)"));

panel.add (p6);

JPanel p7 = new JPanel();

Border b1 = BorderFactory.createLineBorder (Color.blue, 2);

Border b2 = BorderFactory.createEtchedBorder ();

p7.setBorder (BorderFactory.createCompoundBorder (b1, b2));

p7.add (new JLabel ("Compound Border"));

panel.add (p7);

JPanel p8 = new JPanel();

Border mb = BorderFactory.createMatteBorder (1, 5, 1, 1,

Color.yellow);

p8.setBorder (mb);

p8.add (new JLabel ("Matte Border"));

panel.add (p8);

frame.getContentPane().add (panel);

frame.pack();

frame.show();

}

}

538 CHAPTER 9 graphical user interfaces

Let’s look at each type of border created in this program. An empty border is
applied to the larger panel that holds all of the others to create a buffer of space
around the outer edge of the frame. The sizes of the top, left, bottom, and right
edges of the empty border is specified in pixels. The line border is created using
a particular color and specifies the line thickness in pixels (3 in this case). The line
thickness defaults to 1 pixel if left unspecified. The etched border created in this
program uses default colors for the highlight and shadow of the etching, but both
could be explicitly set if desired.

A bevel border can be either raised or lowered. The default coloring is used in
this program, although the coloring of each aspect of the bevel can be tailored as
desired, including the outer highlight, inner highlight, outer shadow, and inner
shadow. Each of these aspects could be a different color if desired.

listing
9.10 continued

display

A titled border places a title on or around the border. The default position for
the title is on the border at the top left edge. Using the setTitleJustification
method of the TitledBorder class, this position can be set to many other places
above, below, on, or to the left, right, or center of the border. (Two titled borders
were used in Fig. 9.6 also.)

A compound border is a combination of two or more borders. The example in
this program creates a compound border using a line border and an etched bor-
der. The createCompoundBorder method accepts two borders as parameters and
makes the first parameter the outer border and the second parameter the inner
border. Combinations of three or more borders are created by first creating a
compound border using two borders, then making another compound border
using it and yet another one.

A matte border specifies the sizes, in pixels, of the top, left, bottom, and right
edges of the border. Those edges can be composed of a single color, as they are in
this example, or an image icon can be used.

Borders should be used carefully. They can be helpful in drawing attention to
appropriate parts of your GUI and can conceptually group related items
together. However, if used inappropriately, they can also detract from the ele-
gance of the presentation. Borders should enhance the interface, not complicate
or compete with it.

9.4 additional components
At various points in this text, we’ve examined specific containers and compo-
nents, discussing the events they generate and how they can help us present use-
ful GUIs. Let’s explore a few more.

scroll pane
Sometimes we need to deal with images or information too large to fit in a rea-
sonable area. A scroll pane is often helpful in these situations. A scroll pane is a
container that offers a limited view of a component, and provides ver-
tical or horizontal scroll bars to change that view. At any point, only
part of the underlying component can be seen, but the scrollbars allow
the user to navigate to any part of the component. Scrollbars are use-
ful when space within a GUI is limited or when the component being
viewed is large or can change in size dynamically.

9.4 additional components 539

A scroll pane is useful if you
want to view large objects or
large amounts of data.

key
concept

540 CHAPTER 9 graphical user interfaces

The program in Listing 9.11 presents a frame that contains a single scroll pane.
The scroll pane is used to view an image of a fairly large transit map for
Philadelphia and the surrounding areas. The image is put into a label. The label
is added to the scroll pane using the JScrollPane constructor.

listing
9.11

//**

// TransitMap.java Authors: Lewis/Loftus

//

// Demonstrates the use a scroll pane.

//**

import java.awt.*;

import javax.swing.*;

public class TransitMap

{

//---

// Presents a frame containing a scroll pane used to view a large

// image of a Philadelphia subway system map. (SEPTA stands for

// the SouthEast Pennsylvania Transit Authority)

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("SEPTA Transit Map");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

ImageIcon image = new ImageIcon ("septa.jpg");

JLabel imageLabel = new JLabel (image);

JScrollPane sp = new JScrollPane (imageLabel);

sp.setPreferredSize (new Dimension (450, 400));

frame.getContentPane().add (sp);

frame.pack();

frame.show();

}

}

9.4 additional components 541

A scroll pane can have a vertical scrollbar on the right of the container as well
as a horizontal scrollbar at the bottom of the container. For each of these, the pro-
grammer can specify that the scrollbars are always used, never used, or used as

listing
9.11 continued

display

542 CHAPTER 9 graphical user interfaces

needed to view the underlying component. By default, both the vertical and hor-
izontal scrollbars are used as needed. The TransitMap program relies on these
defaults, and both scrollbars are used because the image is too large in both
height and width.

To move a scrollbar, the user can click on and drag the box (called the knob)
in the scrollbar that indicates its current location (in that dimension: up/down or
right/left). Alternatively, the user can click in the bar to the right or left of the
knob, or on the arrows at either end of the scrollbar, to adjust the location. The
programmer can determine how much each of these actions changes the viewing
area.

Note that no event listeners need to be set up to use a scroll pane in this man-
ner. A scroll pane responds automatically to the adjustments of its scrollbars.

split panes
A split pane is a container that displays two components separated by a move-
able divider bar. Depending on how the split pane is set up, the two components
are displayed either side by side or one on top of the other, as shown in Fig. 9.10.
In Java, we create a split pane using the JSplitPane class.

The orientation of a split pane is set using constants in the
JSplitPane class, and can be set when the container is created or
explicitly later on. The constant HORIZONTAL_SPLIT specifies that the
components be displayed side by side. In contrast, VERTICAL_SPLIT
specifies that the components be displayed one on top of the other.

figure 9.10 The configurations of a split pane

Left
Component

Right
Component

Moveable
Divider Bar

Top Component

Bottom Component

A split pane displays two com-
ponents separated by a mov-
able divider bar. The compo-
nents can be displayed either
horizontally or vertically.

ke
y

co
nc

ep
t

9.4 additional components 543

The location of the divider bar determines how much visible area is devoted to
each component in the split pane. The divider bar can be dragged across the con-
tainer area using the mouse. As it moves, the visible space is increased for one
component and decreased for the other. The total space allotted for both compo-
nents changes only if the size of the entire split pane changes.

A JSplitPane respects the minimum size set for the components it displays.
Therefore the divider bar may not allow a section to be reduced in size beyond a
particular point. To adjust this aspect, the minimum sizes of the components dis-
played can be changed.

The divider bar of a JSplitPane object can be set so that it can be expanded,
one direction or the other, with one click of the mouse. By default, the divider bar
does not have this feature and can only be moved by dragging it. If this feature is
turned on, the divider bar appears with two small arrows pointing in opposite
directions. Clicking either of these arrows causes the divider bar to move fully in
that direction, maximizing the space allotted to one of the components. This fea-
ture is set using the setOneTouchExpandable method, which takes a boolean
parameter. The size of the divider bar and the initial location of the divider bar
can be set explicitly as well.

Another feature that can be set on a JSplitPane is whether or not the com-
ponents are continuously adjusted and repainted as the divider bar is being
moved. If this feature is not set, the components’ layout managers will only be
consulted after the divider bar stops moving. This feature is off by default, and
can be turned on when the JSplitPane object is created or using the
setContinuousLayout method.

Split panes can be nested by putting a split pane into one or both sides of
another split pane. For example, we could divide a container into three sections
by putting a split pane into the top component of another split pane. There would
then be two divider bars, one that separates the total area into two main sections,
and another that separates one of those sections into two others. How much vis-
ible area is shown in each would depend on where the divider bars are placed.

The next section contains an example that uses a split pane.

lists
The Swing JList class represents a list of items from which the user can choose.
In general, all of the options in a list are visible. When the user selects an item
using the mouse, it is highlighted. When a new item is selected, the previously
selected item is automatically unhighlighted.

544 CHAPTER 9 graphical user interfaces

The contents of a JList can be specified using an array of objects passed into
the constructor. Methods of the JList class are used to manage the list in vari-
ous ways, including retrieving the currently selected item.

The program shown in Listing 9.12 uses a list in the left side of a split pane to
present a set of image file names to the user. When one of the file names is
selected, the corresponding image is displayed in the right side of the split pane.

listing
9.12

//**

// PickImage.java Authors: Lewis/Loftus

//

// Demonstrates the use a split pane and a list.

//**

import java.awt.*;

import javax.swing.*;

public class PickImage

{

//---

// Creates and displays a frame containing a split pane. The

// user selects an image name from the list to be displayed.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Pick Image");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JLabel imageLabel = new JLabel();

JPanel imagePanel = new JPanel();

imagePanel.add (imageLabel);

imagePanel.setBackground (Color.white);

ListPanel imageList = new ListPanel (imageLabel);

JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,

imageList, imagePanel);

9.4 additional components 545

The split pane is created in the main method and added to the frame to be dis-
played. The split pane is oriented, using the HORIZONTAL_SPLIT constant, such
that the panel containing the list and the label containing the image to be dis-
played are side by side. The call to the setOneTouchExpandable method causes
the divider bar of the split pane to display the arrows that permit the user to
expand the panes one way or the other with one click of the mouse.

The ListPanel class shown in Listing 9.13 defines the panel that contains the
list of file names. The list contents are set up as an array of String objects, which
are passed into the JList constructor.

listing
9.12 continued

sp.setOneTouchExpandable (true);

frame.getContentPane().add (sp);

frame.pack();

frame.show();

}

}

display

546 CHAPTER 9 graphical user interfaces

listing
9.13

//**

// ListPanel.java Authors: Lewis/Loftus

//

// Represents the list of images for the PickImage program.

//**

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

public class ListPanel extends JPanel

{

private JLabel label;

private JList list;

//---

// Loads the list of image names into the list.

//---

public ListPanel (JLabel imageLabel)

{

label = imageLabel;

String[] fileNames = { "circuit.gif",

"duke.gif",

"hammock.gif",

"justin.jpg",

"kayla.jpg",

"tiger.jpg",

"toucan.gif",

"worldmap.gif" };

list = new JList (fileNames);

list.addListSelectionListener (new ListListener());

list.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);

add (list);

setBackground (Color.white);

}

9.4 additional components 547

A JList object generates a list selection event whenever the current selection
of the list changes. The ListSelectionListener interface contains one method
called valueChanged. In this program, the private inner class called
ListListener defines the listener for the list of file names.

The valueChanged method of the listener calls the isSelectionEmpty
method of the JList object to determine if there is any value currently selected.
If not, the icon of the label is set to null. If so, the file name is obtained using the
getSelectedValue method. Then the corresponding image icon is created and
displayed in the label.

A JList object can be set so that multiple items can be selected at the same
time. The list selection mode can be one of three options, as shown in the table
in Fig. 9.11.

The list selection mode is defined by a ListSelectionModel object.
By default, a list allows multiple interval selection. A call to the
setSelectionMode method, using a constant defined in the
ListSelectionModel class, will explicitly set the list selection mode.

listing
9.13 continued

//***

// Represents the listener for the list of images.

//***

private class ListListener implements ListSelectionListener

{

public void valueChanged (ListSelectionEvent event)

{

if (list.isSelectionEmpty())

label.setIcon (null);

else

{

String fileName = (String)list.getSelectedValue();

ImageIcon image = new ImageIcon (fileName);

label.setIcon (image);

}

}

}

}

A list can be set up to allow
multiple selections.

key
concept

548 CHAPTER 9 graphical user interfaces

In the PickImage program, we set the list selection mode to single selection
because only one image can be displayed at a time. However, even if multiple
selections were allowed in this program, the getSelectedValue method returns
the first item selected, so that would be the image displayed. A similar method
called getSelectedValues returns an array of objects representing the items
selected when multiple selections are permitted.

Instead of an array of String objects, the JList constructor could be passed
an array of ImageIcon objects instead. In that case, the images would be dis-
played in the list.

combo boxes
A combo box allows the user to select one of several options. When the
user presses a combo box using the mouse, a list of options is displayed
from which the user can choose. The current choice is displayed in the
combo box. A combo box is defined by the JComboBox class.

Note the similarities and differences between a combo box and a
JList object (described in the previous section). Both allow the user to select an
item from a set of choices. However, the choices on a list are always displayed,
with the current choice highlighted, whereas a combo box presents its options
only when the user presses it with the mouse. The only item displayed all the time
in a combo box is the current selection.

A combo box can be either editable or uneditable. By default, a combo box is
uneditable. Changing the value of an uneditable combo box can be accomplished
only by selecting an item from the list. If the combo box is editable, however, the
user can change the value by either selecting an item from the list or by typing a
particular value into the combo box area.

figure 9.11 List selection modes

Single Selection Only one item can be selected at a time.

Any combination of items can be selected.

Multiple, contiguous items can be selected at a time. Single Interval Selection

Multiple Interval Selection

List Selection Mode Description

A combo box provides a list of
options from which to choose
and displays the current
selection.

ke
y

co
nc

ep
t

9.4 additional components 549

The options in a combo box list can be established in one of two ways. We can
create an array of strings and pass it into the constructor of the JComboBox class.
Alternatively, we can use the addItem method to add an item to the combo box
after it has been created. Like a JList, a JComboBox can also display ImageIcon
objects as options as well.

The JukeBox program shown in Listing 9.14 demonstrates the use of a combo
box. The user chooses a song to play using the combo box, and then presses the
Play button to begin playing the song. The Stop button can be pressed at any
time to stop the song. Selecting a new song while one is playing also stops the cur-
rent song.

The JukeBoxControls class shown in Listing 9.15 is a panel that contains the
components that make up the jukebox GUI. The constructor of the class also
loads the audio clips that will be played. An audio clip is obtained first by creat-
ing a URL object that corresponds to the wav or au file that defines the clip. The
first two parameters to the URL constructor should be “file” and “localhost”
respectively, if the audio clip is stored on the same machine on which the program
is executing. Creating URL objects can potentially throw an exception; therefore
they are created in a try block. However, this program assumes the audio clips
will be loaded successfully and therefore does nothing if an exception is thrown.

Once created, the URL objects are used to create AudioClip objects using the
static newAudioClip method of the JApplet class. The audio clips are stored in
an array. The first entry in the array, at index 0, is set to null. This entry corre-
sponds to the initial combo box option, which simply encourages the user to
make a selection.

The list of songs that are displayed in the combo box is defined in an array of
strings. The first entry of the array will appear in the combo box by default and
is often used to direct the user. We must take care that the rest of the program
does not try to use that option as a valid song.

The play and stop buttons are displayed with both a text label and an image
icon. They are also given mnemonics so that the jukebox can be controlled par-
tially from the keyboard.

A combo box generates an action event whenever the user makes a selection
from it. The JukeBox program uses one action listener class for the combo box
and another for both of the push buttons. They could be combined if desired.

The actionPerformed method of the ComboListener class is executed when
a selection is made from the combo box. The current audio selection that is play-
ing, if any, is stopped. The current clip is then updated to reflect the new selec-
tion. Note that the audio clip is not immediately played at that point. The user
must press the play button to hear the new selection.

550 CHAPTER 9 graphical user interfaces

listing
9.14

//**

// JukeBox.java Author: Lewis/Loftus

//

// Demonstrates the use of a combo box.

//**

import javax.swing.*;

public class JukeBox

{

//---

// Creates and displays the controls for the juke box.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("Java Juke Box");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

JukeBoxControls controlPanel = new JukeBoxControls();

frame.getContentPane().add(controlPanel);

frame.pack();

frame.show();

}

}

display

9.4 additional components 551

listing
9.15

//**

// JukeBoxControls.java Author: Lewis/Loftus

//

// Represents the control panel for the juke box.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.applet.AudioClip;

import java.net.URL;

public class JukeBoxControls extends JPanel

{

private JComboBox musicCombo;

private JButton stopButton, playButton;

private AudioClip[] music;

private AudioClip current;

//---

// Sets up the GUI for the juke box.

//---

public JukeBoxControls()

{

URL url1, url2, url3, url4, url5, url6;

url1 = url2 = url3 = url4 = url5 = url6 = null;

// Obtain and store the audio clips to play

try

{

url1 = new URL ("file", "localhost", "westernBeat.wav");

url2 = new URL ("file", "localhost", "classical.wav");

url3 = new URL ("file", "localhost", "jeopardy.au");

url4 = new URL ("file", "localhost", "newAgeRythm.wav");

url5 = new URL ("file", "localhost", "eightiesJam.wav");

url6 = new URL ("file", "localhost", "hitchcock.wav");

}

catch (Exception exception) {}

music = new AudioClip[7];

music[0] = null; // Corresponds to "Make a Selection..."

music[1] = JApplet.newAudioClip (url1);

music[2] = JApplet.newAudioClip (url2);

music[3] = JApplet.newAudioClip (url3);

552 CHAPTER 9 graphical user interfaces

listing
9.15 continued

music[4] = JApplet.newAudioClip (url4);

music[5] = JApplet.newAudioClip (url5);

music[6] = JApplet.newAudioClip (url6);

JLabel titleLabel = new JLabel ("Java Juke Box");

titleLabel.setAlignmentX (Component.CENTER_ALIGNMENT);

// Create the list of strings for the combo box options

String[] musicNames = {"Make A Selection...", "Western Beat",

"Classical Melody", "Jeopardy Theme", "New Age Rythm",

"Eighties Jam", "Alfred Hitchcock's Theme"};

musicCombo = new JComboBox (musicNames);

musicCombo.setAlignmentX (Component.CENTER_ALIGNMENT);

// Set up the buttons

playButton = new JButton ("Play", new ImageIcon ("play.gif"));

playButton.setBackground (Color.white);

playButton.setMnemonic ('p');

stopButton = new JButton ("Stop", new ImageIcon ("stop.gif"));

stopButton.setBackground (Color.white);

stopButton.setMnemonic ('s');

JPanel buttons = new JPanel();

buttons.setLayout (new BoxLayout (buttons, BoxLayout.X_AXIS));

buttons.add (playButton);

buttons.add (Box.createRigidArea (new Dimension(5,0)));

buttons.add (stopButton);

buttons.setBackground (Color.cyan);

// Set up this panel

setPreferredSize (new Dimension (300, 100));

setBackground (Color.cyan);

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

add (Box.createRigidArea (new Dimension(0,5)));

add (titleLabel);

add (Box.createRigidArea (new Dimension(0,5)));

add (musicCombo);

add (Box.createRigidArea (new Dimension(0,5)));

add (buttons);

add (Box.createRigidArea (new Dimension(0,5)));

musicCombo.addActionListener (new ComboListener());

stopButton.addActionListener (new ButtonListener());

9.4 additional components 553

listing
9.15 continued

playButton.addActionListener (new ButtonListener());

current = null;

}

//***

// Represents the action listener for the combo box.

//***

private class ComboListener implements ActionListener

{

//--

// Stops playing the current selection (if any) and resets

// the current selection to the one chosen.

//--

public void actionPerformed (ActionEvent event)

{

if (current != null)

current.stop();

current = music[musicCombo.getSelectedIndex()];

}

}

//***

// Represents the action listener for both control buttons.

//***

private class ButtonListener implements ActionListener

{

//--

// Stops the current selection (if any) in either case. If

// the play button was pressed, start playing it again.

//--

public void actionPerformed (ActionEvent event)

{

if (current != null)

current.stop();

if (event.getSource() == playButton)

if (current != null)

current.play();

}

}

}

554 CHAPTER 9 graphical user interfaces

The actionPerformed method of the ButtonListener class is executed
when either of the buttons is pushed. The current audio selection that is playing,
if any, is stopped. If it was the stop button that was pressed, the task is complete.
If the play button was pressed, the current audio selection is played again from
the beginning.

sliders
A slider is a component that allows the user to specify a numeric value
within a bounded range. A slider can be presented either vertically or
horizontally and can have optional tick marks and labels indicating the
range of values.

A program called ViewColors is shown in Listing 9.16. It presents three slid-
ers that control the RGB components of a color. The color specified by the val-
ues of the sliders is shown in a square that is displayed to the right of the sliders.

A slider lets the user specify a
numeric value within a
bounded range.ke

y
co

nc
ep

t

listing
9.16

//**

// ViewColors.java Authors: Lewis/Loftus

//

// Demonstrates the use slider components.

//**

import java.awt.*;

import javax.swing.*;

public class ViewColors

{

//---

// Presents up a frame with a control panel and a panel that

// changes color as the sliders are adjusted.

//---

public static void main (String[] args)

{

JFrame frame = new JFrame ("View Colors");

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

9.4 additional components 555

The panel called colorPanel defined in the main method is used to display
(by setting its background color) the color specified by the sliders. Initially, the
settings of the sliders are all zero, which correspond to the initial color displayed
(black).

listing
9.16 continued

JPanel colorPanel = new JPanel();

colorPanel.setPreferredSize (new Dimension (100, 100));

colorPanel.setBackground (new Color (0, 0, 0));

Container cp = frame.getContentPane();

cp.setLayout (new FlowLayout());

cp.add (new ViewSliderPanel(colorPanel));

cp.add (colorPanel);

frame.pack();

frame.show();

}

}

display

556 CHAPTER 9 graphical user interfaces

The ViewSliderPanel class shown in Listing 9.17 is a panel used to display
the three sliders. Each is created from the JSlider class, which accepts four
parameters. The first determines the orientation of the slider using one of two
JSlider constants (HORIZONTAL or VERTICAL). The second and third parameters
specify the maximum and minimum values of the slider, which are set to 0 and
255 for each of the sliders in the example. The last parameter of the JSlider
constructor specifies the slider’s initial value. In our example, the initial value of
each slider is zero, which puts the slider knob to the far left when the program
initially executes.

listing
9.17

//**

// ViewSliderPanel.java Authors: Lewis/Loftus

//

// Represents the slider control panel for the ViewColors program.

//**

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

public class ViewSliderPanel extends JPanel

{

private JPanel colorPanel;

private JSlider rSlider, gSlider, bSlider;

private JLabel rLabel, gLabel, bLabel;

//---

// Sets up the sliders and their labels, aligning them along

// their left edge using a box layout.

//---

public ViewSliderPanel (JPanel panel)

{

colorPanel = panel;

9.4 additional components 557

listing
9.17 continued

rSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);

rSlider.setMajorTickSpacing (50);

rSlider.setMinorTickSpacing (10);

rSlider.setPaintTicks (true);

rSlider.setPaintLabels (true);

rSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

gSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);

gSlider.setMajorTickSpacing (50);

gSlider.setMinorTickSpacing (10);

gSlider.setPaintTicks (true);

gSlider.setPaintLabels (true);

gSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

bSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);

bSlider.setMajorTickSpacing (50);

bSlider.setMinorTickSpacing (10);

bSlider.setPaintTicks (true);

bSlider.setPaintLabels (true);

bSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

SliderListener listener = new SliderListener();

rSlider.addChangeListener (listener);

gSlider.addChangeListener (listener);

bSlider.addChangeListener (listener);

rLabel = new JLabel ("Red: 0");

rLabel.setAlignmentX (Component.LEFT_ALIGNMENT);

gLabel = new JLabel ("Green: 0");

gLabel.setAlignmentX (Component.LEFT_ALIGNMENT);

bLabel = new JLabel ("Blue: 0");

bLabel.setAlignmentX (Component.LEFT_ALIGNMENT);

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

add (rLabel);

add (rSlider);

add (Box.createRigidArea (new Dimension (0, 20)));

add (gLabel);

add (gSlider);

add (Box.createRigidArea (new Dimension (0, 20)));

add (bLabel);

add (bSlider);

}

558 CHAPTER 9 graphical user interfaces

The JSlider class has several methods that allow the programmer to tailor
the look of a slider. Major tick marks can be set at specific intervals using the
setMajorTickSpacing method. Intermediate minor tick marks can be set using
the setMinorTickSpacing method. Neither is displayed, however, unless the
setPaintTicks method, with a parameter of true, is invoked as well. Labels
indicating the value of the major tick marks are displayed if indicated by a call to
the setPaintLabels method.

Note that in this example, the major tick spacing is set to 50. Starting at zero,
each increment of 50 is labeled. The last label is therefore 250, even though the
slider value can reach 255.

listing
9.17 continued

//***

// Represents the listener for all three sliders.

//***

private class SliderListener implements ChangeListener

{

//--

// Gets the value of each slider, then updates the labels and

// the color panel.

//--

public void stateChanged (ChangeEvent event)

{

int red, green, blue;

red = rSlider.getValue();

green = gSlider.getValue();

blue = bSlider.getValue();

rLabel.setText ("Red: " + red);

gLabel.setText ("Green: " + green);

bLabel.setText ("Blue: " + blue);

colorPanel.setBackground (new Color (red, green, blue));

}

}

}

9.5 events revisited 559

A slider produces a change event, indicating that the position of the slider and
the value it represents has changed. The ChangeListener interface contains a
single method called stateChanged. In the ViewColors program, the same lis-
tener object is used for all three sliders. In the stateChanged method, which is
called whenever any of the sliders is adjusted, the value of each slider is obtained,
the labels of all three are updated, and the background color of the display panel
is revised. It is actually necessary to update only one of the labels (the one whose
corresponding slider changed). However, the effort to determine which slider was
adjusted is not warranted. It’s easier—and probably more efficient—to update all
three labels each time. Another alternative is to have a unique listener for each
slider, though that extra coding effort is not needed either.

A slider is often a good choice when a large range of values is possible but
strictly bounded on both ends. Compared to alternatives such as a text field, slid-
ers convey more information to the user and eliminate input errors.

9.5 events revisited
Throughout the graphics track sections of previous chapters, and continuing into
this chapter, we’ve discussed various events that components might generate. At
this point it is worth taking a moment to put the event/component relationship
into context.

The events listed in Fig. 9.12 are generated by every Swing compo-
nent. That is, we can set up a listener for any of these events on any
component.

Some events are generated only by certain components. The table in
Fig. 9.13 maps the components to the events that they can generate. Keep in mind

figure 9.12 Events that are generated by every Swing component

Component Event Changing a component's size, position, or visibility.

Pressing, releasing, and clicking keyboard keys.

Moving or dragging a mouse over a component.

Clicking the mouse button and moving the mouse into and out of
a component's drawing area.

Gaining or losing the keyboard focus. Focus Event

Key Event

Mouse Event

Mouse Motion Event

Event Represents

Some events are generated by
every Swing component; others
are generated only by a few.

key
concept

560 CHAPTER 9 graphical user interfaces

that these events are in addition to the ones that all components generate. If a
component does not generate a particular kind of event, a listener for that event
cannot be added to that component.

We have discussed some of the events in Figs. 9.10 and 9.11 at appropriate
points in this text; we have left others for your independent exploration. Applying
the basic concept of component/event/listener interaction is often just a matter of
knowing which components generate which events under which circumstances.

figure 9.13 Specific events generated by specific components

JButton

JCheckBox

JColorChooser

JComboBox

JDialog

JEditorPane

JFileChooser

JFrame

JInternalFrame

JList

JMenu

JMenuItem

JOptionPane

JPasswordField

JPopupMenu

JProgessBar

JRadioButton

JSlider

JTabbedPane

JTable

JTextArea

JTextField

JTextPane

JToggleButton

JTree

ActionComponent Caret Item Window OtherList
Selection

Change Document

Event

9.6 more about GUIs 561

Of course, many events occur in a GUI that have no bearing on the current
program. For example, every time a mouse is moved across a component, many
mouse motion events are generated. However, this doesn’t mean we must listen
for them. A GUI is defined in part by the events to which we choose to respond.

9.6 more about GUIs
Even though we’ve used several graphics track sections from earlier chapters to
discuss GUIs, and have devoted this entire chapter to GUIs as well, we’ve still
only scratched the surface of Java GUI possibilities. The constraints of space limit
us, though additional GUI topics and examples can be found on the text’s Web
site.

Let’s briefly describe, but not explore, a few other Java GUI containers that are
not covered in depth in this text:

◗ A tool bar is a container that groups several components into a row or col-
umn. A tool bar usually contains buttons that correspond to tasks that can
also be accomplished in other ways. Tool bars can be dragged away from
the container in which they initially exist into their own window.

◗ An internal frame is a container that operates like a regular frame but only
within another window. An internal frame can be moved around within the
window and overlapped with other internal frames. Internal frames can be
used to create the feel of a GUI desktop in which components can be
arranged as the user chooses.

◗ A layered pane is a container that takes into account a third dimension,
depth, for organizing the components it contains. When a component is
added to a layered pane, its depth is specified. If components overlap, the
depth value of each component determines which is on top.

The text’s Web site contains additional examples and explanations of Java GUI
topics.

562 CHAPTER 9 graphical user interfaces

You may also be interested in a few other regular GUI components provided
by the Swing API:

◗ A progress bar can be used to indicate the progress of a particular activity.
The user does not generally interact with a progress bar other than to view
it to determine how far along a task, such as the loading of images, has
progressed.

◗ A table is a Java GUI component that displays data in a table format. A
Java table can be completely tailored to provide a precise organization and
presentation. It can allow the user to edit the data as well. A Java table
does not actually contain or store the data; it simply presents it to the user
in an organized manner.

◗ A tree is a component that presents a hierarchical view of data. Like a
table, it doesn’t actually store the data; it provides an organized view that
allows the user to traverse the data from a high-level root node down
through the various branches.

◗ Another area for which Java provides rich support is text processing. We’ve
made use of basic text components such as text fields and text areas, but
that’s only the beginning. The Java standard class library, and particularly
the Swing API, has a huge number of classes that support the display, edit-
ing, and manipulation of text.

As with all topics introduced in this book, we encourage you to explore these
issues in more detail. The world of Java GUIs, in particular, has many opportu-
nities still to discover.

summary of key concepts 563

◗ The design of any GUI should adhere to basic guidelines regarding consis-
tency and usability.

◗ The layout manager of a container determines how components are visu-
ally presented.

◗ When changes occur, the components in a container reorganize themselves
according to the layout manager’s policy.

◗ The layout manager for each container can be explicitly set.

◗ A tabbed pane presents a set of cards from which the user can choose.

◗ In a flow layout, the width of the container determines how many compo-
nents fit on a row.

◗ Not all areas of a border layout must be used; the areas that contain com-
ponents fill in the unused space.

◗ The cells of a grid layout are filled in order as components are added to
the container.

◗ A box layout can use invisible components to provide space between com-
ponents.

◗ A GUI’s appearance is a function of the containment hierarchy and the
layout managers of each of the containers.

◗ Using the special features of various components often improves a GUI’s
functionality.

◗ Various borders can be applied to Swing components to group objects and
to enhance the visual effect.

◗ A scroll pane is useful if you want to view large objects or large amounts
of data.

◗ A split pane displays two components separated by a movable divider bar.
The components can be displayed either horizontally or vertically.

◗ A list can be set up to allow multiple selections.

◗ A combo box provides a list of options from which to choose and displays
the current selection.

◗ A slider lets the user specify a numeric value within a bounded range.

◗ Some events are generated by every Swing component; others are gener-
ated only by a few.

summary of
key concepts

564 CHAPTER 9 graphical user interfaces

self-review questions
9.1 What general guidelines for GUI design are presented in this

chapter?

9.2 When is a layout manager consulted?

9.3 How does the flow layout manager behave?

9.4 Describe the areas of a border layout.

9.5 What effect does a glue component in a box layout have?

9.6 What is the containment hierarchy for a GUI?

9.7 What is a tool tip?

9.8 What is a mnemonic and how is it used?

9.9 Why might you want to disable a component?

9.10 What is the role of the BorderFactory class?

9.11 Describe the use of scrollbars on a scroll pane.

9.12 What is a combo box?

9.13 Why is a slider a better choice than a text field in some cases?

9.14 Can we add any kind of listener to any component? Explain.

exercises
9.1 Draw the containment hierarchy tree for the LayoutDemo program.

9.2 Draw the containment hierarchy tree for the LightBulb program.

9.3 Draw the containment hierarchy tree for the PickImage program.

9.4 Draw the containment hierarchy tree for the JukeBox program.

9.5 Draw the containment hierarchy tree for the ViewColors program.

9.6 What visual effect would result by changing the horizontal and verti-
cal gaps on the border layout used in the LayoutDemo program?
Make the change to test your answer.

9.7 Write the lines of code that will define a compound border using
three borders. Use a line border on the inner edge, an etched border
on the outer edge, and a raised bevel border in between.

9.8 What effect would removing the call to setSelectionMode in the
ListPanel class have? Make the change to test your answer.

programming projects 565

programming projects
9.1 Modify the IntroPanel class of the LayoutDemo program so that it

uses a box layout manager. Use invisible components to put space
before and between the two labels on the panel.

9.2 Modify the QuoteOptions program from Chapter 6 to change its
visual appearance. Present the radio buttons in a vertical column
with a surrounding border to the left of the quote label.

9.3 Modify the JukeBox program such that it plays a song immediately
after it has been selected using the combo box.

9.4 Modify the StyleOptions program from Chapter 6 so that it uses a
split pane. Orient the split pane such that the label is on the top and
the style check boxes are in the bottom. Add tool tips to the check
boxes to explain their purpose.

9.5 Modify the PickImage program so that it presents several additional
image options. Display the list within a scroll pane with a vertical
scroll bar that is always displayed. Display the image in a scroll pane
that uses both horizontal and vertical scroll bars, but only when
necessary.

9.6 Design and implement a program that displays a numeric keypad
that might appear on a phone. Above the keypad buttons, show a
label that displays the numbers as they are picked. To the right of
the keypad buttons, include another button to clear the display. Use
a border layout to manage the overall presentation, and a grid lay-
out to manage the keypad buttons. Put a border around the keypad
buttons to group them visually, and a border around the display.
Include a tool tip for the clear button, and mnemonics for all but-
tons in the program.

9.7 Design and implement a program that combines the functionality of
the StyleOptions and QuoteOptions programs from Chapter 6.
That is, the new program should present the appropriate quote
(using radio buttons) whose style can be changed (using check-
boxes). Also include a slider that regulates the size of the quotation
font. Design the containment hierarchy carefully and use layout
managers as appropriate to create a nice interface.

9.8 Design and implement an application that works as a stopwatch.
Include a display that shows the time (in seconds) as it increments.
Include buttons that allow the user to start and stop the time, and

566 CHAPTER 9 graphical user interfaces

reset the display to zero. Arrange the components to present a nice
interface. Include mnemonics for the buttons. Hint: use the Timer
class (described in Chapter 8) to control the timing of the stopwatch.

9.9 Design and implement an application that draws the graph of the
equation ax2 + bx + c, where the values of a, b, and c are set using
three sliders.

9.10 Design and implement an application that performs flashcard testing
of simple mathematical problems. Allow the user to pick the cate-
gory. Repetitively display a problem and get the user’s answer.
Indicate whether the user’s answer is right or wrong for each prob-
lem, and display an ongoing score.

9.11 Design and implement an application that helps a pizza restaurant
take orders. Use a tabbed pane for different categories of food
(pizza, beverages, special items). Collect information about quantity
and size. Display the cost of the order as information is gathered.
Use appropriate components for collecting the various kinds of
information. Structure the interface carefully using the containment
hierarchy and layout managers.

answers to self-review questions
9.1 The general guidelines for GUI design include: know the needs and

characteristics of the user, prevent user errors when possible, opti-
mize user abilities by providing shortcuts and other redundant means
to accomplish a task, and be consistent in GUI layout and coloring
schemes.

9.2 A layout manager is consulted whenever the visual appearance of its
components might be affected, such as when the container is resized
or when a new component is added to the container.

9.3 Flow layout attempts to put as many components on a row as possi-
ble. Multiple rows are created as needed.

9.4 Border layout is divided into five areas: North, South, East, West,
and Center. The North and South areas are at the top and bottom of
the container, respectively, and span the entire width of the con-
tainer. Sandwiched between them, from left to right, are the West,
Center, and East areas. Any unused area takes up no space, and the
others fill in as needed.

answers to self-review questions 567

9.5 A glue component in a box layout dictates where any extra space in
the layout should go. It expands as necessary, but takes up no space
if there is no extra space to distribute.

9.6 The containment hierarchy for a GUI is the set of nested containers
and the other components they contain. The containment hierarchy
can be described as a tree.

9.7 A tool tip is a small amount of text that can be set up to appear
when the cursor comes to rest on a component. It usually gives
information about that component.

9.8 A mnemonic is a character that can be used to activate a control
such as a button as if the user had used to mouse to do so. The user
activates a mnemonic by holding down the ALT key and pressing the
appropriate character.

9.9 A component should be disabled if it is not a viable option for the
user at a given time. Not only does this prevent user error, it helps
clarify what the current valid actions are.

9.10 The BorderFactory class contains several methods used to create
borders that can be applied to components.

9.11 A scroll pane can have a vertical scrollbar on the right side and/or a
horizontal scrollbar along the bottom. The programmer can deter-
mine, in either case, whether the scrollbar should always appear,
never appear, or appear as needed to be able to view the underlying
component.

9.12 A combo box is a component that allows the user to choose from a
set of options in a pull-down list. An editable combo box also allows
the user to enter a specific value.

9.13 If in a specific situation user input should be a numeric value from a
bounded range, a slider is probably a better choice than a text field.
A slider prevents an improper value from being entered and conveys
the valid range to the user.

9.14 No, we cannot add any listener to any component. Each component
generates a certain set of events, and only listeners of those types can
be added to the component.

characterize any software devel-

opment effort: requirements,

design, implementation, and

testing. In subsequent chapters,

we’ve learned to design and

implement classes and objects

with various characteristics,

including those that support sys-

tems with graphical user inter-

faces (GUIs). To successfully

develop large systems, however,

we must refine these develop-

ment activities into a well-

defined process that can be

applied repeatedly and consis-

tently. This chapter explores

models for developing software

and defines an evolutionary

approach that specifically takes

object-oriented issues into

account. This approach is illus-

trated using an extended exam-

ple that synthesizes many of the

programming concepts explored

thus far in the text.

◗ Explore several different software
development models.

◗ Explain the life cycle of a software
system and its implications for
software development.

◗ Contrast linear and iterative devel-
opment approaches.

◗ Discuss prototypes and their vari-
ous uses.

◗ Consider the goals and techniques
of testing.

◗ Define an evolutionary approach
to object-oriented design and
implementation.

◗ Demonstrate evolutionary develop-
ment using a nontrivial example.

chapter
objectives

The quality of software is only as good as the
process used to create it. In Chapter 3, we

introduced four basic phases that should

10
software engineering

570 CHAPTER 10 software engineering

10.0 software development models
A program goes through many phases from its initial conception to its ultimate
demise. This sequence is often called the life cycle of a program. Too often pro-
grammers focus so much on the particular issues involved in getting a program to
run that they ignore other important characteristics. Developing high-quality soft-
ware requires an appreciation for many issues, and those issues must be consid-
ered in the day-to-day activities of a programmer. We explore these issues as we
discuss the software life cycle and software development models in this chapter.

software life cycle
All programs go through three fundamental stages: development (with its four
basic phases), followed by use, and maintenance. Figure 10.1 shows the life cycle
of a program. Initially, the idea for a program is conceived by a software devel-
oper or by a user who has a particular need. The new program is created in the
development stage. At some point the new program is considered to be complete
and is turned over to users. The version of the program that is made available to
users is often called an initial release of the program.

Almost certainly, users discover problems with the program. Often they also
have suggestions for new features that they would like to see added to the pro-
gram in order to make it more useful. These defects and ideas for new features
are conveyed back to the developer, and the program undergoes maintenance.

Software maintenance is the process of modifying a program in order to
enhance it or eliminate deficiencies. Unlike hardware, software does not degrade
over time. Thus, the goal of software maintenance is to produce an improved
program rather than a program that is “almost like new.” The changes are made
to a copy of the program, so that the user can still use the current release while

figure 10.1 The life cycle of a program

Conception

Development
Release

Use

Maintenance

Defect reports and
feature requests

Release

Retirement

10.0 software development models 571

the program is being maintained. When the changes are serious or
numerous enough, a new version of the program is released for use. A
program might be maintained many times over, resulting in several
releases.

For a variety of reasons, a developer may decide that it is no longer
worth the effort to maintain an existing program and therefore releases no fur-
ther versions of it. A program eventually reaches the end of its useful life. Users
abandon it or seek another solution. This eventual demise is sometimes referred
to as the program’s retirement from active use.

The duration of a program’s life cycle varies greatly depending on the purpose
of the program, how useful the program is, and how well it is constructed. The
time taken for the development portion of a program can vary from a few weeks
to several years. Likewise, a program may be used and maintained for many
years.

One important aspect of software development is the relationship between
development effort and maintenance effort. Figure 10.2 shows a typical ratio of
development effort to maintenance effort. This may seem contrary to intuition
because it seems that the initial development of a program is where the real work
is done, but this isn’t actually the case. Much more effort is expended overall to
enhance and fix an existing system than to develop it.

For various reasons, maintenance is often more difficult than the
original development effort. For instance, the original developers are
rarely the same people as the ones who maintain it. A significant
amount of time often elapses between the initial development and the
maintenance tasks, and often the responsibilities of personnel change.
Therefore, maintainers often do not understand the software as well as

Maintaining software is the
process of modifying a pro-
gram in order to enhance it or
to eliminate deficiencies.

key
concept

Often the maintainers of a pro-
gram are not the program’s
original developers; thus main-
tainers must be able to under-
stand a program that they
didn’t design.

key
concept

figure 10.2 A typical ratio of development effort to maintenance effort

Use and
maintenance

Development

572 CHAPTER 10 software engineering

the original developers did. The effort involved in a maintenance task, such as fix-
ing a defect, depends on the maintainer’s ability to understand the program,
determine the cause of the problem, and correct it.

The ability to read and understand a program depends on how clearly the
requirements are established, and how well it is designed, implemented, and doc-
umented. It depends on how classes are organized and how objects are used. It
depends on how elegantly methods accomplish their goals and how closely cod-
ing guidelines are followed. In short, the ability to read and understand a pro-
gram depends on the effort put into the initial development process.

When requirements are not clearly established and when designs are
not carefully thought out, software can be unnecessarily complex and
difficult to understand. The more complex a program is, the easier it is
to introduce errors during development, and the more difficult it is to
remove these errors when they are found. The earlier the problems are
discovered, the easier and less costly they are to correct.

Designing a solution without establishing clear requirements is as unreason-
able as creating a blueprint for a house without first determining what purposes
the house must serve. While the blueprint may qualify as a design for a house, the
design may be entirely unsuitable for a particular family. Writing a program with-
out establishing a careful design first is as absurd as building the house without
creating a blueprint. The builder may actually create some kind of structure, even
one that looks good on a superficial examination. However, it is possible that the
structure will fail to meet the safety requirements of the local building code, or it
will not stand up to the local weather nearly as well as a house that has been care-
fully designed. It is almost certain that the resulting structure will not satisfy a
particular family’s requirements. Likewise, a program that is created in an ad hoc
fashion, with little or no attention to requirements or design, is likely to contain
many defects and will not perform well when used.

The relationship between development effort and maintenance effort is not lin-
ear. Small changes in the development effort can greatly reduce the effort neces-
sary during maintenance. The bars in Fig. 10.3 show the relationship between the
development effort and the maintenance effort. The bottom bar shows that if a
small increase in effort is expended during development, significantly higher sav-
ings in maintenance effort can be realized. The effort put into the development
stage is an investment that will reduce the overall effort required throughout the
life cycle of the program. Thus, a good programmer keeps long-term effects in
mind while performing near-term activities.

In some ways, this issue centers on maturity. An experienced software devel-
oper realizes the long-term advantages of certain development activities. This sit-

The earlier a problem is discov-
ered during the software devel-
opment process, the easier and
less costly it is to correct.

ke
y

co
nc

ep
t

10.0 software development models 573

uation is analogous in many ways to the maturity differences between a child and
an adult. For instance, consider the task of brushing your teeth. To many chil-
dren, brushing teeth may be seen as a chore with no obvious advantages. To an
adult, brushing teeth is simply part of a daily routine, necessary for a lifetime of
healthy teeth. Similarly, the mature software developer realizes that even small,
unobtrusive activities can have a dramatic effect over the life of the program, even
if the results are not immediately apparent.

Always keep in mind that a working program is not necessarily a
good program. The goal of writing software is not to minimize the
amount of time it takes to develop a program, but to minimize the
overall amount of effort required to create and maintain a useful pro-
gram for the long term. With this goal in mind, the development
process should be well defined and rigorously followed.

software development models
A software development model is an organized strategy for executing the steps
necessary to create high-quality software. All development models incorporate, in
various ways, the basic development activities of establishing requirements, cre-
ating a design, implementing the design, and testing the implementation. We dis-
cussed these basic activities in Chapter 3.

Too often, however, programmers follow the build-and-fix approach depicted
in Fig. 10.4. In this approach, a programmer creates an initial version of a pro-
gram, and then continually modifies it until it has reached some level of accept-
ance. Often, testing activities are not systematic or carefully planned, and there-
fore problems often go undiscovered. In a build-and-fix approach, the program-
mer is reacting to problems as opposed to participating in an effort to create a
quality product in the first place.

In the build-and-fix approach, although some problems might be eliminated
during development, the overall quality of the product is never really addressed.

figure 10.3 The relationship between development effort
and maintenance effort

Development Maintenance

MaintenanceDevelopment

A working program is not nec-
essarily a good program. Our
goal should be to minimize the
efforts required to create and
maintain a program for the
long term.

key
concept

574 CHAPTER 10 software engineering

Defects that still exist in the software will be difficult to isolate and correct.
Enhancements to the program will be challenging because the system was not
designed well.

A program produced using the build-and-fix approach is a product
of ad hoc, reckless activities. It is reactive rather than proactive.
Therefore, the build-and-fix approach is not really a development
model at all.

One of the first true development process models, called the water-
fall model, was introduced in the early 1970s. It is depicted in Fig. 10.5. The
waterfall model is linear, with one stage followed directly by the next. In fact, the
model gets its name from the implication that development flows in one direction
from stage to stage until the final release is created. This model does not allow
for an earlier stage to be revisited after a new stage is begun any more than water
can be made to flow up a waterfall.

Although the waterfall model formalizes the stages of development, it ulti-
mately is not realistic because it doesn’t acknowledge the fact that developers
sometimes need to revisit previous stages. It would be nice if all program require-

figure 10.4 The build-and-fix approach

Write
program

Modify
program Release

A program produced using the
build-and-fix approach is a
product of ad hoc, reckless
activities.

ke
y

co
nc

ep
t

figure 10.5 The waterfall model

Establish
requirements

Create
design

Implement
code

Test
system Release

10.0 software development models 575

ments were completely specified and analyzed before design activities
started. Likewise, it would be nice to have all design decisions made
before implementation begins. Unfortunately, it almost never works
out that way. No matter how carefully the requirements are established
or how carefully the design is created, it is impossible to consider every
eventuality, and there will always come a time when the developer real-
izes that an earlier decision was in error.

iterative development
A realistic model must take into account that development activities are
somewhat overlapping. We need a flexible development model with
interacting activities. However, we must be careful not to allow such
flexibility to degenerate into a build-and-fix approach. We must still
focus rigorous attention on each stage, ensuring the quality of the over-
all product.

An iterative development process is one that allows a software developer to
cycle through the different development activities. Earlier stages can be formally
revisited, allowing proper changes to be made. Figure 10.6 shows an initial ver-
sion of an iterative development process.

The process in Fig. 10.6 is essentially the waterfall model leveled out to permit
backtracking. That is, when new information is uncovered that changes the
requirements or design, we have a way to formally go back and modify the
affected stages. The appropriate documents are updated to reflect these new deci-
sions.

The danger of backtracking is that the developer might rely on it too much.
This model is not intended to reduce the amount of effort that goes into devel-
oping the initial requirements before starting on the design. Likewise, the design

The waterfall model does not
recognize the inherently itera-
tive nature of development
activities.

key
concept

Added flexibility in the devel-
opment process must not be
allowed to degenerate into a
build-and-fix approach.

key
concept

figure 10.6 An iterative development process

Establish
requirements

Create
design

Implement
code

Test
system Release

of a program should still be well established before beginning implementation.
Backtracking activity should primarily be used to correct problems uncovered in
later stages.

Any realistic development model will include the prospect of revisiting previ-
ous activities in some iterative manner. It will also include formal test strategies
and prototyping, as we discuss in the next sections.

10.1 testing
The term testing can be applied in many ways to software development. Testing
certainly includes its traditional definition: the act of running a completed pro-
gram with various inputs to discover problems. But it also includes any evalua-
tion that is performed by human or machine to assess the quality of the develop-
ing system. These evaluations should occur long before a single line of code is
written.

Before moving on to the next stage of the development process, the results of
the current stage should be evaluated. For instance, before moving on to creating
a design, the requirements should be carefully evaluated to ensure that they are
complete, consistent, and unambiguous. Prior to implementation, the design
should be evaluated to make sure that each requirement is adequately addressed.

walkthroughs
One technique used to evaluate design or code is called a walkthrough,
which is a meeting in which several people carefully review a design
document or section of code. Presenting out design or code to others
causes us to think more carefully about it and permits others to share
their suggestions with us. The participants discuss its merits and prob-
lems, and create a list of issues that must be addressed. The goal of a
walkthrough is to identify problems, not to solve them, which usually
takes much more time.

A design walkthrough should determine whether the requirements are
addressed. It should also assess the way the system is decomposed into classes and
objects. A code walkthrough should determine how faithfully the design satisfies
the requirements and how faithfully the implementation represents the design. It
should identify any specific problems that would cause the design or the imple-
mentation to fail in its responsibilities.

A design or code walkthrough
is a meeting in which several
people review and critique
a software design or
implementation.

576 CHAPTER 10 software engineering
ke

y
co

nc
ep

t

10.1 testing 577

defect testing
As we mentioned in Chapter 3, the goal of testing is to find errors. This can gen-
erally be referred to as defect testing. With that goal in mind, a good test is one
that uncovers any deficiencies in a program. This might seem strange
because we ultimately don’t want to have problems in our system. But
keep in mind that errors almost certainly exist. Our testing efforts
should make every attempt to find them. We want to increase the reli-
ability of our program by finding and fixing the errors that exist, rather
than letting users discover them.

It is possible to prove that a program is correct, but that technique is enor-
mously complex for large systems, and errors can be made in the proof itself.
Therefore, we generally rely on testing to determine the quality of a program. We
run specific tests in an attempt to find problems. As more tests are run and fewer
errors are found, our confidence in a program increases.

A test case is a set of inputs, user actions, or other initial conditions, and the
expected output. A test case should be appropriately documented so that it can
be repeated later as needed. Developers often create a complete test suite, which
is a set of test cases that cover various aspects of the system.

Because programs operate on a large number of possible inputs, it is
not feasible to create test cases for all possible input or user actions.
Nor is it usually necessary to test every single situation. Two specific
test cases may be so similar that they actually do not test unique aspects
of the program. To do both would be a wasted effort. We’d rather exe-
cute a test case that stresses the program in some new way. Therefore,
we want to choose our test cases carefully. To that end, let’s examine
two approaches to defect testing: black-box testing and white-box testing.

As the name implies, black-box testing treats the thing being tested as a black
box. That is, test cases are developed without regard to the internal workings.
Black-box tests are based on inputs and outputs. An entire program can be tested
using a black-box technique, in which case the inputs are the user-provided infor-
mation and user actions such as button pushes. A test case is successful only if the
input produces the expected output. A single class can also be tested using a
black-box technique, which focuses on the system interface (its public methods)
of the class. Certain parameters are passed in, producing certain results. Black-
box test cases are often derived directly from the requirements of the system or
from the stated purpose of a method.

Because programs operate on a
large number of possible
inputs, it is not feasible to cre-
ate test cases for all possible
input or user actions.

key
concept

The goal of testing is to find
errors; therefore a good test is
one that uncovers the deficien-
cies in a program.

key
concept

578 CHAPTER 10 software engineering

The input data for a black-box test case are often selected by defining equiva-
lence categories. An equivalence category is a collection of inputs that are

expected to produce similar outputs. Generally, if a method will work
for one value in the equivalence category, we have every reason to
believe it will work for the others. For example, the input to a method
that computes the square root of an integer can be divided into two
equivalence categories: nonnegative integers and negative integers. If it
works appropriately for one nonnegative value, it will likely work for
all nonnegative values. Likewise, if it works appropriately for one neg-

ative value, it will likely work for all negative values.

Equivalence categories have defined boundaries. Because all values of an
equivalence category essentially test the same features of a program, only one test
case inside the equivalence boundary is needed. However, because programming
often produces “off by one” errors, the values on and around the boundary
should be tested exhaustively. For an integer boundary, a good test suite would
include at least the exact value of the boundary, the boundary minus 1, and the
boundary plus 1. Test cases that use these cases, plus at least one from within the
general field of the category should be defined.

Let’s look at an example. Consider a method whose purpose is to validate that
a particular integer value is in the range 0 and 99, inclusive. There are three
equivalence categories in this case: values below 0, values in the range of 0 to 99,
and values above 99. Black-box testing dictates that we use test values that sur-
round and fall on the boundaries, as well as some general values from the equiv-
alence categories. Therefore, a set of black-box test cases for this situation might
be: –500, –1, 0, 1, 50, 98, 99, 100, and 500.

White-box testing, also known as glass-box testing, exercises the internal
structure and implementation of a method. A white-box test case is based on the
logic of the code. The goal is to ensure that every path through a program is exe-
cuted at least once. A white-box test maps the possible paths through the code
and ensures that the test cases cause every path to be executed. This type of test-
ing is often called statement coverage.

Paths through code are controlled by various control flow statements that use
conditional expressions, such as if statements. In order to have every path
through the program executed at least once, the input data values for the test
cases need to control the values for the conditional expressions. The input data
of one or more test cases should cause the condition of an if statement to eval-
uate to true in at least one case and to false in at least one case. Covering both
true and false values in an if statement guarantees that both the paths through
the if statement will be executed. Similar situations can be created for loops and
other constructs.

Test cases can be organized
into equivalence categories to
get the most value out of
the limited number of tests
conducted.

ke
y

co
nc

ep
t

10.2 prototypes 579

In both black-box and white-box testing, the expected output for each test
should be established prior to running the test. It’s too easy to be persuaded that
the results of a test are appropriate if you haven’t first carefully determined what
the results should be.

10.2 prototypes
A prototype is a program or a representation of a program that is cre-
ated to explore particular characteristics of the proposed or evolving
system. Sometimes a programmer simply doesn’t know how to accom-
plish a particular task, whether a certain requirement is feasible, or
whether the user interface is acceptable to the client. Prototypes can be
used to explore all of these issues instead of proceeding on an assump-
tion that may later prove unwise.

For example, a programmer might have no experience using a particular set of
classes provided by a library. Before committing to its use, the programmer may
produce a small program that exercises the classes in order to establish that they
are a viable choice for use, providing the functionality needed in an acceptable
manner. If the classes prove unreasonable, the design could then take into account
that new classes must be developed from scratch.

Another prototype might be created to show a simplified version of the user
interface. The developer and the client can then discuss the interaction between
the user and the program to determine whether it is acceptable. Keep in mind that
this prototype need not be a program. A set of diagrams that show the layout of
buttons and other components may be enough to explore the issues involved.

Another prototype might be created to test the feasibility of a specific require-
ment. For example, suppose the requirements state that the program should per-
form a certain task and print the results within one second. A prototype that
explores this issue would focus exclusively on the ability to satisfy that require-
ment. If it can be accomplished, the design can proceed with confidence; if not,
the feasibility of the requirements can be questioned. It is better to question
requirements early because any changes might have a significant impact on the
entire system.

A prototype often calls attention to problems that a list of requirements might
obscure or miss altogether. A prototype can be used to reject certain design or
implementation decisions before they become a problem, and it can clarify the
user’s intentions. It is not uncommon for a client to make a statement such as: “I
know that’s what I said I wanted, but that’s not what I meant.”

A prototype can be used to
explore the feasibility of a deci-
sion instead of proceeding on
an assumption that may later
prove unwise.

key
concept

throw-away vs. evolutionary prototypes
Often, a prototype is a “quick-and-dirty” test of an idea or concept. As such, a
prototype is created with little regard to software engineering principles, and not
intended to be a part of the final system. This type of prototype is sometimes
called a throw-away prototype because once it has been written and has served
its purpose, it is discarded.

A throw-away prototype takes relatively little effort to develop because good
design and coding techniques are not a priority. Nevertheless, it provides an
invaluable service by helping the developer avoid improper and costly decisions.

The problem with a throw-away prototype is that programmers sometimes feel
like they’re wasting the effort it took to create it and want to incorporate the
prototype into their final system. Sometimes they are pressured to do so by man-
agers or clients who don’t know any better. The solution to this problem is to
realize that the prototype has served its purpose and that its inclusion at this point
will likely cause more problems than it solves. We should take what we learn
from a throw-away prototype and incorporate that knowledge into a sound
design.

An evolutionary prototype, on the other hand, is carefully designed. It takes
longer to develop than a throw-away version but can be incorporated into the
final product with confidence. An evolutionary prototype serves two purposes: it
allows specific aspects of a program to be explored, and if that exploration proves
fruitful, it can be made part of an evolving software system. This concept is the
underlying basis of evolutionary development, which has become one of the most
popular and successful development models. We discuss evolutionary develop-
ment in detail next.

10.3 evolutionary development
Let’s examine a realistic development model that specifically takes object-
oriented issues into account. Figure 10.7 depicts this object-oriented software
development process. A key part of this model is the refinement cycle. Each

refinement focuses on fleshing out one aspect of the overall system.
Part or all of a refinement can also be devoted to addressing problems
that were established during the testing of a previous refinement. The
system evolves rather than being created in one large effort. Therefore,
not only is this process iterative, it is evolutionary.

580 CHAPTER 10 software engineering

A refinement focuses on a sin-
gle aspect of a program, such
as the user interface or a par-
ticular algorithm.

ke
y

co
nc

ep
t

The refinement cycle is performed many times until all parts of a program are
completed, tested, and integrated. At this point the entire system is tested and the
software is released to the user. Usually, the iterations continue until the program
is considered to be “good enough” for release. What “good enough” means is dif-
ferent for every situation and depends in part on the client’s expectations.

In this development model, design activity is divided into multiple
steps. An architectural design (also called a high-level design) estab-
lishes the general structure and responsibilities of system elements; it is
done at the beginning of the software development process. The
refinement stages include various design issues, including identifying
the classes and objects needed in the refinement as well as the relation-
ships between them. The refinement cycle also includes a detailed
design stage, which focuses on specific issues such as the methods and
algorithms used in a particular class.

Because the design activities are divided into subtasks, the interactions between
design and implementation are more controlled and focused. Because each refine-
ment concentrates on one aspect of a program, such as designing the user inter-
face, the design steps in the refinement are focused on only that aspect. This
reduces the overall level of complexity the design needs to address during each
refinement.

10.3 evolutionary development 581

An architectural design estab-
lishes the general structure of
a system, whereas a detailed
design focuses on specific
methods and algorithms.

key
concept

figure 10.7 An object-oriented software development process

Establish
requirements

Architectural
design Release

Refinement
cycle

Implementation

Unit and
integration

test

Identify
classes &
objects

Identify
relationships

Detailed
design

System
test

Establish
refinement

scope

582 CHAPTER 10 software engineering

By following these smaller design efforts with their implementation, the conse-
quences of design decisions are detected at a more appropriate time, soon after
the design of that refinement is completed but before the entire design is com-
pleted. In this way, the information uncovered during implementation can affect
changes in the design of the current refinement and all future refinements. Also,
by defining refinements that are independent of each other, several refinements
can be done in parallel by different implementation teams.

Object-oriented programming is particularly well suited for this
approach since it supports many types of abstraction. These abstraction
techniques make it possible for the design and implementation to work
hand-in-hand. By using techniques such as encapsulation to isolate
what has not yet been specified by a refinement, an implementation for
a refinement can be completed and tested.

Let’s examine the details of each step in the refinement cycle.

establish refinement scope
The refinement scope is the set of objectives to be addressed in a particular refine-
ment. The scope can be very broad, addressing a large portion of a program, or
it might be focused on a particular detail of the program. Typical refinements
might include the following:

◗ Create part of the user interface for the program.

◗ Develop a particular functional feature of the program.

◗ Test the feasibility of a particular program requirement.

◗ Establish a specific algorithm to be used in the program.

◗ Develop utility classes to provide general support for the program.

◗ Add non-essential but helpful features to the program.

The scope of a particular refinement is a tradeoff between the
resources available to write the program and the complexity of the pro-
gram. If there are many programmers that will be writing and design-
ing the parts of a particular program, the scope of one refinement for
this team of programmers can be larger than if there is only one pro-
grammer. The task of each member of the team is defined to assure that
the goals of the refinement cycle will be achieved. In any case, the goals

of each refinement must be well defined.

Refinements allow a programmer to focus on specific issues without having to
embrace the complexities of the entire system at once. Careful separation of

Object-oriented programming
is particularly well suited for
the refinement process because
it supports many types of
abstraction, such as modularity
and encapsulation.

ke
y

co
nc

ep
t

The scope of a refinement is a
tradeoff between the resources
available to write the program
and the complexity of the
program.

ke
y

co
nc

ep
t

refinement responsibilities can significantly facilitate the overall development
effort. After the scope of the refinement has been established and documented,
the design process can begin.

identifying classes and objects
At this stage, we must first determine which requirements relate to the current
refinement and then associate them with the part of the software that will fulfill
that requirement. To do this, we must expand the architectural design of the sys-
tem in ways that address the goals of the particular refinement. We must deter-
mine what classes and objects we need to fulfill the refinement goals and assign
functional responsibilities to each.

It is usually easier to brainstorm about some of the objects we need and gen-
eralize to determine the classes from which they will be instantiated. Keep in mind
that although an object tends to be a noun (a person, place, or thing), it does not
have to represent something tangible. An error and a midterm score are perfectly
good objects, even though we can’t touch them.

Candidates for objects can come in a variety of categories. The following list
shows some categories you should consider when attempting to identify objects
in which you are interested. Examples of each category are shown in parentheses.

◗ physical things (ball, book, car)

◗ people (student, clerk, author)

◗ places (room, school, airport)

◗ containers of things (cash register, bookcase, transaction list)

◗ occurrences (sale, meeting, accident)

◗ information stores (catalog, ledger, event log)

Some of these categories overlap, which is fine. We’re not trying to categorize
the objects at this point; we’re trying to use categories to uncover the need to
represent the object. Any means that we can use to discover them is helpful.

Another technique for identifying objects is to review the require-
ments document and highlight the noun phrases. Each of these phrases
could indicate an object or class that we may want to represent.
Likewise, the verb phrases in the document might indicate a service
that an object should provide. Don’t hesitate to write down anything
that may be a candidate object. It is better to identify more objects than
we need than to forget a crucial one. We can always discard it later.

10.3 evolutionary development 583

One way to identify objects is
to consider various object cate-
gories; another is to examine
the noun phrases of the
requirements document.

key
concept

584 CHAPTER 10 software engineering

Once we have the objects identified, we need to consider the classes used to
define them. Often, the classes for some objects will be obvious. In other cases,
thought needs to be put into the best way to represent them. For example, we
may initially assume that a Student class is sufficient to represent the students in
our system, only to discover after some thought that we’d be better off with two
separate classes to distinguish graduate students from undergraduate students.

identifying relationships
Once a basic set of classes and objects is identified, we need to identify the way
in which each class relates to the others. As we’ve discussed at various points in
the book, there are three primary relationships to consider:

◗ general association (uses)

◗ aggregation (has-a)

◗ inheritance (is-a)

General relationships between classes and objects are called associations, as we
discussed in Chapter 4. Associated objects often use each other for the services
they provide. That is, one will likely invoke one or more methods of another. For
example, a Driver object might invoke the accelerate method of the Car class.

We also discussed the aggregation relationship in Chapter 4. Aggregation is
sometimes referred to as composition because some objects contain references to
other objects, and therefore one object can be thought of as part of another.
Sometimes the cardinality of the relationship should be noted, indicating the
numeric relationship between the objects. For example, a Car could have between
one and four Passenger objects associated with it.

We discussed the inheritance relationship in detail in Chapter 7. Sometimes a
proper inheritance relationship is difficult to see. In particular, we should specif-
ically think about the common characteristics of objects. This may lead to the cre-
ation of a new class whose sole purpose is to serve as the parent of the others,
gathering common data and methods in one place. For example, a Vehicle class
may serve well as the parent of the Car class and the Boat class, even though we
have no intention of instantiating any objects of class Vehicle.

All of these relationships can be described using UML class diagrams. We’ve
used class diagrams in other chapters. UML diagrams are even more important
when developing large software systems in which it is crucial to carefully deter-
mine and capture the design of a program.

10.3 evolutionary development 585

detailed design
Once we understand how the program will work with respect to classes and
objects, we need to flesh out the details. We need to identify all of the methods of
a class. These include all the methods necessary to satisfy the assumptions of any
previous refinement phases. Though we are primarily concerned with public
methods, we can also identify methods that will be used to support the others.

We must determine the data that each class and object will contain, and the
manner in which that data will be modified. That includes the manner in which
the data will be given an initial value and any methods that will change the value.
It is not imperative that every piece of data be painstakingly identified at this
stage, but the key elements should be.

Finally, the algorithms of any methods that perform unusual or crucial tasks
should be carefully thought out and documented. Pseudocode is often a good
choice for capturing these design decisions.

implementation
The implementation should be a concrete representation of the design. If we’ve
done a good job with previous steps, the implementation of the classes should
come together nicely. As we mentioned in Chapter 3, implementation should be
the least creative part of the process. Any important decisions should have been
made earlier. Of course, this isn’t always the case, and some problems will arise.
Care should be taken to follow all coding guidelines and to produce readable,
clear source code.

If serious obstacles are discovered during implementation, the impact on the
overall system should be considered. The appropriate decision at this point may
be to resolve the issue in a future refinement.

Often during a refinement, a program will need to use a class, method, or
object that is not part of the current refinement. Because we need to test the cur-
rent refinement, we often use a stub object or method as a placeholder. A stub
provides enough information for the rest of the refinement code to work. It is
replaced in a future refinement with a fully implemented version.

For example, perhaps the system design includes a method that will display a
dialog box and then accept and validate some user input. The current refinement
calls the method, but it has not yet been created. For testing purposes, it can be
temporarily replaced with a stub method that simply returns a particular integer
value.

We should try to avoid defining our refinements so that such dependencies
exist. However, other more important issues sometimes require that we deal with
these situations.

unit and integration testing
Until now we’ve primarily concentrated on testing an entire program. For smaller
programs, that may be sufficient. As our programs grow, however, it is important
to focus on specific pieces and the nuances involved in making those pieces inter-
act.

Once the classes for a particular refinement are written, they must be tested.
Initially, the individual pieces that were created should be tested separately. A test
that specifically targets one particular piece of a system, such as a class or
method, is called a unit test.

Eventually, the classes of the refinement are integrated together and the entire
refinement is integrated with previous refinements. Integrating one piece of code
with another will often uncover errors, even if the code seemed to work correctly
on its own. Separate testing efforts should be made to specifically explore the
interaction among the integrated elements. Such a test is called an integration test.
Full system testing is really just the ultimate integration test.

10.4 the PaintBox project
Let’s examine a larger software development project than any other described in
this text. As we explore this program, we will walk through most of the steps
described in the evolutionary development model that are described in previous
sections of this chapter.

Our example program allows the user to create drawings with various shapes
and colors. This type of project encompasses a variety of issues that are com-
monly found in large-scale software development and provides a good basis for
exploring our development model. We call this example the PaintBox project.

586 CHAPTER 10 software engineering

10.4 the PaintBox project 587

PaintBox requirements
Suppose the client provides the following set of initial requirements. The program
will:

◗ Present a graphical user interface that is primarily mouse driven for all user
actions.

◗ Allow the user to draw lines, ovals, circles, rectangles, and squares.

◗ Allow the user to change the drawing color.

◗ Display the current drawing color.

◗ Allow the user to fill a shape, except for a line, with a color.

◗ Allow the user to select a shape in order to move it, modify its color, or
reshape it.

◗ Allow the user to cut, copy, and paste individual shapes in a drawing.

◗ Allow the user to save a drawing in a file and load a previously stored
drawing from a file for further editing.

◗ Allow the user to begin a new drawing at any time.

After examining these general requirements, we might sit down with the client
and discuss some of the details to ensure that there are no misunderstandings. We
might create a new requirements document that gets much more specific about
the issues involved.

During these interactions with the client, we might create a sketch, such as the
one shown in Fig. 10.8, of a user interface for the system. This sketch serves as a
basic prototype of the interface, and gives us something to refer to in our discus-
sions with the client. For other systems there may be many such sketches for each
screen of the program.

The interface sketch shows a main drawing area where the user will create a
drawing. The top edge contains a set of buttons used to select various tools, such
as the oval tool to draw an oval or circle, the color tool to change the current
drawing color, and a select tool to select a previously drawn shape in order to
modify or move it. Two menu headings are shown along the top edge. The File
menu contains operations to begin a new drawing, save a drawing, and exit the
program. The Edit menu contains editing operations such as cut, copy, and paste.

588 CHAPTER 10 software engineering

As a result of the discussions with the client, several additional requirements
issues are established:

◗ There is no need to have separate user interactions for a circle or square
because they are subsets of ovals and rectangles, respectively.

◗ The user should also be able to create polyline shapes.

◗ The buttons used to select drawing tools should have icons instead of
words.

◗ The system should make a distinction between the stroke color (the outline)
and the fill color (the interior) of a shape. Therefore, each shape will have a
separate stroke and fill color. Lines and polylines will have only a stroke
color because they cannot be filled.

◗ An option to save a drawing under a particular name should be provided
(the traditional “save as” operation).

figure 10.8 A sketch of the user interface for the PaintBox program

Select

File Edit

Line Oval Rect Color

Drawing
Area

10.4 the PaintBox project 589

◗ Traditional keyboard shortcuts for operations such as cut, copy, and paste
should be included.

◗ The system should perform checks to ensure that the user does not lose
unsaved changes to a drawing.

◗ The system should present an initial “splash screen” to introduce the pro-
gram when it is executed.

These issues must be integrated into the formal description of the requirements
document for the project. Several discussions with the client, with additional
screen sketches, may be necessary before we have an accurate and solid set of pro-
gram requirements. If we proceed to design and implementation too quickly, we
run the risk of degenerating our process into the build-and-fix approach.

PaintBox architectural design
After we have clarified the requirements with the client, we can begin to think
about some of the elements of the architectural design of the system. For exam-
ple, many of the classes needed for the user interface can come from the Java
standard class library in the Swing package.

It also seems reasonable that a separate class could be used to represent each
shape type. Further, each individually drawn shape should be an instantiation of
the appropriate shape class. For example, we could define an Oval class to rep-
resent an oval, a Line class to represent a line, and so on. Each class should be
responsible for keeping track of the information it needs to define it, and it should
provide methods to draw itself.

A drawing may be composed of many shapes, so we need a way to keep track
of all of them. An ArrayList might be a good choice for this. As each new shape
is drawn, we can add the object that represents it to the list. The list will also
inherently define the order in which shapes are drawn. Since some shapes will be
drawn on top of others, the list will also keep track of the order in which shapes
are “stacked.”

The process of defining an architectural design could take a while. The key is
to make the most important and fundamental decisions that will affect the entire
system without skipping ahead to decisions that are better left to individual
refinements of the system.

PaintBox refinements
After some consideration, we might decide that the evolution of the PaintBox
project could be broken down into the following refinement steps:

◗ Establish the basic user interface.

◗ Allow the user to draw basic shapes using different stroke colors.

◗ Allow the user to cut, copy, and paste shapes.

◗ Allow the user to select, move, and fill shapes.

◗ Allow the user to modify the dimensions of shapes.

◗ Allow the user to save and reload drawings.

◗ Include final touches such as the splash screen.

Note, first of all, that these refinements focus on breaking down the function-
ality of the system. Additional refinements may be necessary as we get into the
iterative process. For instance, we may decide that we need a refinement to
address problems that were discovered in previous refinements.

The listed refinements could have been broken down further. For example, one
refinement could have been devoted to the ability to draw one particular type of
shape. The level of refinement, just like many other decisions when developing a
software system, is a judgment call. The developer must decide what is best in any
particular situation.

The order in which we tackle the refinements is also important. The user inter-
face refinement seems to be a logical first step because all other activity relies on
it. We may decide that the ability to save and reload a drawing would be nice to
have early for testing purposes. We might also note that being able to select an
object is fundamental to operations such as move and cut/copy/paste. After fur-
ther analysis, we end up with the set of refinements shown in Fig. 10.9.

PaintBox refinement #1
Most of the classes used for the interface come from predefined libraries. We use
Swing technology whenever reasonable. For example, we can use a JPanel for
the overall interface space, as well as separate JPanel objects to organize the but-
ton tools and the drawing area. The JButton class will serve well for the buttons.
Classes such as JMenuBar and JMenuItem will serve to implement the menus.

590 CHAPTER 10 software engineering

10.4 the PaintBox project 591

Figure 10.10 shows a class diagram that represents the classes important to the
first refinement of the PaintBox project. Note that it does not include all classes
that might be needed, nor does it address anything other than the needs of this
one refinement. We’ll create additional diagrams that augment our understanding
of the system design as further refinements are developed.

figure 10.9 Functional refinements for the PaintBox project

Present the basic graphical user interface, including the main frame, buttons,
menus, menu items, and the drawing area. The select and shape buttons
work together as a radio button set (only one can be chosen at a time). No
functionality for these interface elements is included at this time. Exiting the
program is provided only by the frame's window close button.

Add support for drawing the four basic shapes: lines, ovals, rectangles, and
polylines. The chosen shape button determines what shape is drawn. The
stroke color button can be used to set the stroke color for the next shape
drawn. The color button causes a separate dialog box to appear to allow
color selection.

Add support for saving and loading drawings. This includes the functionality
of the open, save, and save as File menu items. When the open, new, or
exit File menu options are chosen, check to see if the current drawing has
been modified since last saved, and if so prompt to see if the user wants
to save the drawing.

Provide the ability to select and move shapes on the drawing surface.
Simple graphic selection blocks should be presented on the shape's outline
to indicate the currently selected shape. Once selected, the mouse can be
used to drag the shape to another location on the drawing surface.

Add the functionality for the cut, copy and paste Edit menu items. Once
selected, a shape can be cut or copied. Once a shape has been cut or copied,
it can be pasted (perhaps multiple times) onto the drawing surface at a fixed
offset to the original position. Edit menu items that are not valid at any
given time are disabled. For example, unless a shape is selected, the cut
and copy menu items cannot be chosen.

Add support for filling and reshaping a shape. Once a shape has been selected,
the fill color button can be used to determine its fill color. A menu item
on the Edit menu can be used to remove the fill of any filled object (make it
transparent). The currently selected shape will now have a reshape handle
that can be used to change the dimensions of the shape.

Add some extra functionality to the program. These additions include a
splash screen that appears when the system is initially executed, an
about dialog box, keyboard shortcuts for all menu items, and packaging the
application into an executable JAR file.

DescriptionRefinement

1

2

3

4

5

6

7

592 CHAPTER 10 software engineering

The detailed design and implementation for the interface refinement might
develop similarly to other graphical projects we’ve developed in previous chap-
ters. We can create listener objects and methods as appropriate but not concern
ourselves with their inner workings at this time. That is, our focus in this refine-
ment is to present the user interface, not create any of the functionality behind
the interface. During the development of this refinement, we modify the details of
the user interface until it appears just the way we’d like it.

At the end of the first refinement, we are left with a completely implemented
program that presents only the user interface. The buttons do nothing when
pushed and the menu items do nothing when selected. We have no way of creat-
ing a drawing yet.

What we do have, however, is a complete entity that has been debugged and
tested to the level of this refinement. We may show it to the client at this point
and get further input. Any changes that result from these discussions can be incor-
porated into future refinements. Figure 10.11 shows the PaintBox program after
the first refinement has been completed.

figure 10.10 A class diagram for the interface refinement
of the PaintBox project

+ main (args : String[]) : void

PaintBox

1

5

JRadioButton JButton

ButtonBar

JToolBar

DrawingPanel

PaintFrame JMenuBar

JFrame

10.4 the PaintBox project 593

PaintBox refinement #2
The next refinement to address is the ability to draw basic shapes, because all
other operations use drawn shapes in one way or another. Therefore, in this
refinement we focus on providing the processing power behind the buttons that
draw shapes and specify color.

figure 10.11 The PaintBox program after refinement #1 is complete

Most of the objects and classes that we will use in this refinement are not pre-
defined as they were in the interface refinement. We might consider using the
Rectangle class from the Java standard class library, but on further investigation
we realize that its role is not really consistent with our goals. In addition, no other
classes are defined for the other shapes we need.

So, as we envisioned in our architectural design, we consider having one class
per shape type: Line, Oval, Rect, and Poly. Remember that circles and squares
will just be specific instances of the Oval and Rect classes, respectively. Each
shape class will have a draw method that draws that kind of shape on the screen.

Now let’s consider the kind of information that each shape needs to store to
be able to draw itself. A line needs two points: a starting point and an ending
point. Each polyline, on the other hand, needs a list of points to define the start
and end points of each line segment. Both ovals and rectangles are defined by a
bounded rectangle, storing an upper left corner and the width and height of the
shape.

This analysis leads to the conclusion that Oval and Rect objects have some
common characteristics that we could exploit using inheritance. They could both,
for instance, be derived from a class called BoundedShape. Furthermore, because
all shapes have to be stored in the ArrayList object that we’ll use to keep track
of the entire drawing, it would simplify the refinement to have a generic Shape
class from which all drawn shapes are derived.

The Shape and BoundedShape classes are used for organizational purposes.
We do not intend to instantiate them; therefore they probably should be abstract
classes. In fact, if we define an abstract method called draw in the Shape class,
we could capitalize on polymorphism to simplify the drawing of the shapes in the
drawing area. A loop can move through the ArrayList, having each shape
(whatever it may be) draw itself.

After some consideration, we achieve the class diagram shown in Fig. 10.12.
This diagram specifically represents the classes important to the second refine-
ment of the PaintBox project.

Selecting a current color can be relegated to the JColorChooser component
provided by the Swing package. The color button will bring up the
JColorChooser dialog box and respond accordingly to the user’s selection.

Multiple shapes will accumulate on the drawing surface. We could define a
class to serve as a collection of the drawn shape objects. It could use an
ArrayList to keep track of the list of shapes. Whenever the drawing area needs
to be refreshed, we can iterate through the list of shapes and draw each one in
turn.

594 CHAPTER 10 software engineering

10.4 the PaintBox project 595

Figure 10.13 shows the PaintBox program after the first two refinements have
been completed. Once again, we could visit with the client at this point to deter-
mine whether the evolution of the system meets with his or her satisfaction.

remaining PaintBox refinements
For space reasons, the code for the various PaintBox refinements is not presented
in the text. The full implementation of the first two refinements can be down-
loaded from the book’s Web site. The remaining refinements are left as projects.

figure 10.12 A class diagram for the second refinement of the
PaintBox project

– strokeColor : Color

+ draw() : void

Shape

– firstPoint : Point
– secondPoint : Point

Line

– xList, yList : ArrayList

Poly

– upperLeft : Point
– width, height : int

BoundedShape

1

M

ArrayList

DrawingPanel

Rect Oval

596 CHAPTER 10 software engineering

The program code for the PaintBox project can be obtained from the book’s
Web site.

figure 10.13 The PaintBox program after the interface and
shapes refinements

web
bonus

The refinements of the PaintBox program continue until all requirement
issues and problems have been addressed. This type of evolutionary development
is crucial for medium- and large-scale development efforts.

Figure 10.14 shows the PaintBox program after all of the seven refinements
described in this chapter have been completed.

10.4 the PaintBox project 597

figure 10.14 The completed PaintBox program

598 CHAPTER 10 software engineering

◗ Maintaining software is the process of modifying a program in order to
enhance it or eliminate deficiencies.

◗ Often the maintainers of a program are not the program’s original
developers; thus maintainers must be able to understand a program that
they didn’t design.

◗ The earlier a problem is discovered during the software development
process, the easier and less costly it is to correct.

◗ A working program is not necessarily a good program. Our goal should
be to minimize the efforts required to create and maintain a program for
the long term.

◗ A program produced using the build-and-fix approach is a product of
ad hoc, reckless activities.

◗ The waterfall model does not recognize the inherent iterative nature of
development activities.

◗ Added flexibility in the development process must not be allowed to
degenerate into a build-and-fix approach.

◗ A design or code walkthrough is a meeting in which several people review
and critique a software design or implementation.

◗ The goal of testing is to find errors; therefore a good test is one that
uncovers the deficiencies in a program.

◗ Because programs operate on a large number of possible inputs, it is not
feasible to create test cases for all possible input or user actions.

◗ Test cases can be organized into equivalence categories to get the most
value out of the limited number of tests conducted.

◗ A prototype can be used to explore the feasibility of a decision instead of
proceeding on an assumption that may later prove unwise.

◗ A refinement focuses on a single aspect of a program, such as the user
interface or a particular algorithm.

◗ An architectural design establishes the general structure of a system,
whereas a detailed design focuses on specific methods and algorithms.

◗ Object-oriented programming is particularly well suited for the refinement
process because it supports many types of abstraction, such as modularity
and encapsulation.

summary of
key concepts

exercises 599

◗ The scope of a refinement is a tradeoff between the resources available to
write the program and the complexity of the program.

◗ One way to identify objects is to consider various object categories;
another is to examine the noun phrases of the requirements document.

self-review questions
10.1 What is the relationship between development effort and mainte-

nance effort?

10.2 Describe the build-and-fix approach to software development.

10.3 What is the main problem with the waterfall model?

10.4 What is a code walkthrough?

10.5 How is white-box testing different from black-box testing?

10.6 What is a prototype?

10.7 What is evolutionary software development?

10.8 What is a program refinement?

10.9 What refinements might come up during the evolutionary process?

exercises
10.1 Develop a UML class diagram that captures the design of refine-

ment #3 of the PaintBox project as described in Fig. 10.9.

10.2 Develop a UML class diagram that captures the design of refine-
ment #4 of the PaintBox project as described in Fig. 10.9.

10.3 Develop a UML class diagram that captures the design of refine-
ment #5 of the PaintBox project as described in Fig. 10.9.

10.4 Develop a UML class diagram that captures the design of refine-
ment #6 of the PaintBox project as described in Fig. 10.9.

10.5 Develop a UML class diagram that captures the design of refine-
ment #7 of the PaintBox project as described in Fig. 10.9.

10.6 Define the black-box testing equivalence categories for the Wages
program in Chapter 3 and determine a set of appropriate test cases.

10.7 Determine a white-box set of test cases for the Wages program in
Chapter 3.

600 CHAPTER 10 software engineering

10.8 Define the black-box testing equivalence categories for the
WinPercentage program in Chapter 3 and determine a set of
appropriate test cases.

10.9 Determine a white-box set of test cases for the WinPercentage pro-
gram in Chapter 3.

10.10 Consider the development of a software program to perform library
book management. The system should be able to catalog all books,
record books being borrowed and returned, and deal with associ-
ated fines related to books returned late.

◗ Identify several possible refinements, such as book-borrowing, for
the system.

◗ Identify several objects and classes for the book-borrowing
refinement.

◗ Identify possible relationships between classes and objects in the
book-borrowing refinement.

◗ Draw a UML class diagram for the book-borrowing refinement.

10.11 Consider the development of a software program to manage a
household budget. The system should be able to apply debits and
credits, add and remove budget items, and produce a report describ-
ing the current status.

◗ Identify several possible refinements, such as adding budget items,
for the system.

◗ Identify several objects and classes for the budget item refinement.

◗ Identify possible relationships between classes and objects in the
budget item refinement.

◗ Draw a UML class diagram for the budget item refinement.

10.12 Consider the development of a software program to simulate an air-
port. The system should be able to simulate takeoffs and landings of
planes on different runways, simulate an air-traffic controller’s
screen, and allow an operator to control the takeoff, landing, and
flying attributes of planes (such as course and speed).

◗ Identify several possible refinements, such as plane simulation, for
the system.

◗ Identify several objects and classes for the plane-simulation
refinement.

answers to self-review questions 601

◗ Identify possible relationships among classes and objects in the
plane-simulation refinement.

◗ Draw a UML class diagram for the plane-simulation refinement.

programming projects
10.1 Develop PaintBox refinement #3 as defined in Fig. 10.9 to save and

load drawings.

10.2 Develop PaintBox refinement #4 as defined in Fig. 10.9 to select
and move drawn shapes.

10.3 Develop PaintBox refinement #5 as defined in Fig. 10.9 to copy,
cut, and paste shapes.

10.4 Develop PaintBox refinement #6 as defined in Fig. 10.9 to fill and
reshape shapes.

10.5 Develop PaintBox refinement #7 as defined in Fig. 10.9 to add
final touches.

10.6 Develop an additional PaintBox refinement of your own design.

answers to self-review questions
10.1 Much more effort is traditionally put into maintenance tasks than

development tasks. Small, fundamental improvements in develop-
ment efforts can greatly reduce the overall maintenance effort.

10.2 The build-and-fix approach is the ad hoc process of creating soft-
ware without attention to important efforts such as requirements
and design, then modifying the software until it reaches some mini-
mal level of acceptance. It is not really a development model.

10.3 The traditional waterfall model assumes that development activities
fundamentally progress in a linear fashion. The truth is that
medium- and large-scale systems cannot be developed that way, and
should be created using a model that allows backtracking as the sys-
tem evolves.

project601a.html
project601b.html
project601c.html

602 CHAPTER 10 software engineering

10.4 A code walkthrough is a meeting in which developers carefully go
over parts of a software system to search for problems.

10.5 White-box testing focuses on the internal details of a module (such
as a method) to ensure that the logic of the module is thoroughly
tested. Black-box testing focuses on different categories of input to
determine if the predicted output is produced.

10.6 A prototype is a program, drawing, or mockup of some kind that
allows the developer to explore an idea before committing to it in
the developing system.

10.7 Evolutionary software development is a controlled iterative process
that creates a program as a series of well-defined refinements.
Evolutionary development acknowledges our limited ability to ini-
tially conceptualize all details of the program design and
implementation.

10.8 Each refinement in an iterative development process focuses on one
particular aspect of a software system. For example, one refinement
may be to develop the user interface. A refinement allows a pro-
grammer to target a particular task while keeping the overall archi-
tectural design in mind.

10.9 A refinement might be defined dynamically during the evolution of
a system to address some problems that were discovered in previous
refinements.

recursive processing. It contains

an explanation of the basic con-

cepts underlying recursion and

then explores the use of recur-

sion in programming. Several

specific problems are solved

using recursion, demonstrating

its versatility, simplicity, and

elegance.

◗ Explain the underlying concepts of
recursion.

◗ Examine recursive methods and
unravel their processing steps.

◗ Define infinite recursion and dis-
cuss ways to avoid it.

◗ Explain when recursion should and
should not be used.

◗ Demonstrate the use of recursion
to solve problems.

chapter
objectives

Recursion is a powerful programming technique
that provides elegant solutions to certain problems.

This chapter provides an introduction to

11
recursion

604 CHAPTER 11 recursion

11.0 recursive thinking
We’ve seen many times in previous examples that one method can call
another method to accomplish a goal. What we haven’t seen yet, how-
ever, is that a method can call itself. Recursion is a programming tech-
nique in which a method calls itself in order to fulfill its purpose. But
before we get into the details of how we use recursion in a program, we
need to explore the general concept of recursion. The ability to think
recursively is essential to being able to use recursion as a programming
technique.

In general, recursion is the process of defining something in terms of itself. For
example, consider the following definition of the word decoration:

decoration: n. any ornament or adornment used to decorate
something

The word decorate is used to define the word decoration. You may recall your
grade school teacher telling you to avoid such recursive definitions when explain-
ing the meaning of a word. However, in many situations, recursion is an appro-
priate way to express an idea or definition. For example, suppose we wanted to
formally define a list of one or more numbers, separated by commas. Such a list
can be defined recursively as either a number or as a number followed by a
comma followed by a list. This definition can be expressed as follows:

A List is a: number

or a: number comma List

This recursive definition of List defines each of the following lists of numbers:

24, 88, 40, 37

96, 43

14, 64, 21, 69, 32, 93, 47, 81, 28, 45, 81, 52, 69

70

No matter how long a list is, the recursive definition describes it. A list of one
element, such as in the last example, is defined completely by the first (non-recur-
sive) part of the definition. For any list longer than one element, the recursive part
of the definition (the part which refers to itself) is used as many times as neces-
sary until the last element is reached. The last element in the list is always defined
by the non-recursive part of the definition. Figure 11.1 shows how one particu-
lar list of numbers corresponds to the recursive definition of List.

Recursion is a programming
technique in which a method
calls itself. The key to being
able to program recursively is
to be able to think recursively.

ke
y

co
nc

ep
t

11.0 recursive thinking 605

infinite recursion
Note that the definition of List contains one option that is recursive
and one option that is not. The part of the definition that is not recur-
sive is called the base case. If all options had a recursive component, the
recursion would never end. For example, if the definition of List was
simply “a number followed by a comma followed by a List,” no list
could ever end. This problem is called infinite recursion. It is similar to
an infinite loop except that the “loop” occurs in the definition itself.

As in the infinite loop problem, a programmer must be careful to design algo-
rithms so that they avoid infinite recursion. Any recursive definition must have a
base case that does not result in a recursive option. The base case of the List def-
inition is a single number that is not followed by anything. In other words, when
the last number in the list is reached, the base case option terminates the recur-
sive path.

recursion in math
Let’s look at an example of recursion in mathematics. The value referred to as N!
(pronounced N factorial) is defined for any positive integer N as the product of
all integers between 1 and N inclusive. Therefore, 3! is defined as:

3! = 3*2*1 = 6

and 5! is defined as:

figure 11.1 Tracing the recursive definition of List

LIST: number comma LIST

number comma LIST

number comma LIST

number

24 3788,

88

40,

37

37

37

40,

40

,

,

,

Any recursive definition must
have a non-recursive part,
called the base case, which
permits the recursion to even-
tually end.

key
concept

5! = 5*4*3*2*1 = 120.

Mathematical formulas are often expressed recursively. The definition of N!
can be expressed recursively as:

1! = 1

N! = N * (N-1)! for N > 1

The base case of this definition is 1!, which is defined as 1. All other
values of N! (for N > 1) are defined recursively as N times the value
(N–1)!. The recursion is that the factorial function is defined in terms
of the factorial function.

Using this definition, 50! is equal to 50 * 49!. And 49! is equal to 49 * 48!.
And 48! is equal to 48 * 47!. This process continues until we get to the base case
of 1. Because N! is defined only for positive integers, this definition is complete
and will always conclude with the base case.

The next section describes how recursion is accomplished in programs.

11.1 recursive programming
Let’s use a simple mathematical operation to demonstrate the concept of recur-
sive programming. Consider the process of summing the values between 1 and N
inclusive, where N is any positive integer. The sum of the values from 1 to N can
be expressed as N plus the sum of the values from 1 to N–1. That sum can be
expressed similarly, as shown in Fig. 11.2.

For example, the sum of the values between 1 and 20 is equal to 20 plus the
sum of the values between 1 and 19. Continuing this approach, the sum of the
values between 1 and 19 is equal to 19 plus the sum of the values between 1 and
18. This may sound like a strange way to think about this problem, but it is a
straightforward example that can be used to demonstrate how recursion is pro-
grammed.

As we mentioned earlier, in Java, as in many other programming languages, a
method can call itself. Each call to the method creates a new environment in
which to work. That is, all local variables and parameters are newly defined with
their own unique data space every time the method is called. Each parameter is

given an initial value based on the new call. Each time a method termi-
nates, processing returns to the method that called it (which may be an
earlier invocation of the same method). These rules are no different
from those governing any “regular” method invocation.

606 CHAPTER 11 recursion

Mathematical problems and
formulas are often expressed
recursively.

ke
y

co
nc

ep
t

Each recursive call to a method
creates new local variables and
parameters.

ke
y

co
nc

ep
t

11.1 recursive programming 607

A recursive solution to the summation problem is defined by the following
recursive method called sum:

// This method returns the sum of 1 to num

public int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (num-1);

return result;

}

Note that this method essentially embodies our recursive definition that the
sum of the numbers between 1 and N is equal to N plus the sum of the numbers
between 1 and N–1. The sum method is recursive because sum calls itself. The
parameter passed to sum is decremented each time sum is called until it reaches
the base case of 1. Recursive methods invariably contain an if-else statement,
with one of the branches, usually the first one, representing the base case, as in
this example.

Suppose the main method calls sum, passing it an initial value of 1, which is
stored in the parameter num. Since num is equal to 1, the result of 1 is returned to
main and no recursion occurs.

Now let’s trace the execution of the sum method when it is passed an initial
value of 2. Since num does not equal 1, sum is called again with an argument of
num-1, or 1. This is a new call to the method sum, with a new parameter num and
a new local variable result. Since this num is equal to 1 in this invocation, the
result of 1 is returned without further recursive calls. Control returns to the first
version of sum that was invoked. The return value of 1 is added to the initial value

figure 11.2 The sum of the numbers 1 through N, defined recursively

∑
N

i

i = 1
∑

N–1

N – 1

N – 1 N – 2

i

i = 1

= =+ + +N

=

=

+ + +

+ + +

N

N – 1 N – 2 2 1+ +N

N ∑
N–2

i

i = 1

∑
N–3

i

i = 1...

. . .

608 CHAPTER 11 recursion

of num in that call to sum, which is 2. Therefore, result is assigned the
value 3, which is returned to the main method. The method called from
main correctly calculates the sum of the integers from 1 to 2 and
returns the result of 3.

The base case in the summation example is when N equals 1, at
which point no further recursive calls are made. The recursion begins to fold back
into the earlier versions of the sum method, returning the appropriate value each
time. Each return value contributes to the computation of the sum at the higher
level. Without the base case, infinite recursion would result. Each call to a method
requires additional memory space; therefore infinite recursion often results in a
runtime error indicating that memory has been exhausted.

Trace the sum function with different initial values of num until this processing
becomes familiar. Figure 11.3 illustrates the recursive calls when main invokes
sum to determine the sum of the integers from 1 to 4. Each box represents a copy
of the method as it is invoked, indicating the allocation of space to store the for-
mal parameters and any local variables. Invocations are shown as solid lines, and
returns as dotted lines. The return value result is shown at each step. The recur-

A careful trace of recursive pro-
cessing can provide insight
into the way it is used to solve
a problem.

ke
y

co
nc

ep
t

figure 11.3 Recursive calls to the sum method

main

sum

sum

sum

sum

result = 10

result = 6

result =3

result =1

sum(4)

sum(3)

sum(2)

sum(1)

11.1 recursive programming 609

sive path is followed completely until the base case is reached; the calls then begin
to return their result up through the chain.

recursion vs. iteration
Of course, there is a non-recursive solution to the summation problem we just
explored. One way to compute the sum of the numbers between 1 and num inclu-
sive in an iterative manner is as follows:

sum = 0;

for (int number = 1; number <= num; number++)

sum += number;

This solution is certainly more straightforward than the recursive version. We
used the summation problem to demonstrate recursion because it is simple, not
because you would use recursion to solve it under normal conditions. Recursion
has the overhead of multiple method invocations and, in this case, presents a
more complicated solution than its iterative counterpart.

A programmer must learn when to use recursion and when not to use
it. Determining which approach is best depends on the problem being
solved. All problems can be solved in an iterative manner, but in some
cases the iterative version is much more complicated. Recursion, for
some problems, allows us to create relatively short, elegant programs.

direct vs. indirect recursion
Direct recursion occurs when a method invokes itself, such as when sum calls sum.
Indirect recursion occurs when a method invokes another method, eventually
resulting in the original method being invoked again. For example, if method m1
invokes method m2, and m2 invokes method m1, we can say that m1 is indirectly
recursive. The amount of indirection could be several levels deep, as when m1
invokes m2, which invokes m3, which invokes m4, which invokes m1. Figure 11.4
depicts a situation with indirect recursion. Method invocations are shown with
solid lines, and returns are shown with dotted lines. The entire invocation path is
followed, and then the recursion unravels following the return path.

Indirect recursion requires all of the same attention to base cases that direct
recursion requires. Furthermore, indirect recursion can be more difficult to trace
because of the intervening method calls. Therefore extra care is warranted when
designing or evaluating indirectly recursive methods. Ensure that the indirection
is truly necessary and clearly explained in documentation.

Recursion is the most elegant
and appropriate way to solve
some problems, but for others
it is less intuitive than an itera-
tive solution.

key
concept

610 CHAPTER 11 recursion

11.2 using recursion
Each of the following sections describes a particular recursive problem. For each
one, we examine exactly how recursion plays a role in the solution and how a
base case is used to terminate the recursion. As you examine these examples, con-
sider how complicated a non-recursive solution for each problem would be.

traversing a maze
Solving a maze involves a great deal of trial and error: following a path, back-
tracking when you cannot go farther, and trying other untried options. Such
activities often are handled nicely using recursion. The program shown in Listing
11.1 creates a Maze object and attempts to traverse it.

The Maze class shown in Listing 11.2 uses a two-dimensional array of integers
to represent the maze. The goal is to move from the top-left corner (the entry
point) to the bottom-right corner (the exit point). Initially, a 1 indicates a clear
path and a 0 indicates a blocked path. As the maze is solved, these array elements
are changed to other values to indicate attempted paths and ultimately a success-
ful path through the maze if one exists.

The only valid moves through the maze are in the four primary directions:
down, right, up, and left. No diagonal moves are allowed. In this example, the
maze is 8 rows by 13 columns, although the code is designed to handle a maze of
any size.

figure 11.4 Indirect recursion

m1 m2 m3

m1 m2 m3

m1 m2 m3

listing
11.1

//**

// MazeSearch.java Author: Lewis/Loftus

//

// Demonstrates recursion.

//**

public class MazeSearch

{

//---

// Creates a new maze, prints its original form, attempts to

// solve it, and prints out its final form.

//---

public static void main (String[] args)

{

Maze labyrinth = new Maze();

System.out.println (labyrinth);

if (labyrinth.traverse (0, 0))

System.out.println ("The maze was successfully traversed!");

else

System.out.println ("There is no possible path.");

System.out.println (labyrinth);

}

}

1110110001111

1011101111001

0000101010100

1110111010111

1010000111001

1011111101111

1000000000000

1111111111111

11.2 using recursion 611

output

code611.html

612 CHAPTER 11 recursion

listing
11.1 continued

The maze was successfully traversed!

7770110001111

3077707771001

0000707070300

7770777070333

7070000773003

7077777703333

7000000000000

7777777777777

listing
11.2

//**

// Maze.java Author: Lewis/Loftus

//

// Represents a maze of characters. The goal is to get from the

// top left corner to the bottom right, following a path of 1s.

//**

public class Maze

{

private final int TRIED = 3;

private final int PATH = 7;

private int[][] grid = { {1,1,1,0,1,1,0,0,0,1,1,1,1},

{1,0,1,1,1,0,1,1,1,1,0,0,1},

{0,0,0,0,1,0,1,0,1,0,1,0,0},

{1,1,1,0,1,1,1,0,1,0,1,1,1},

{1,0,1,0,0,0,0,1,1,1,0,0,1},

{1,0,1,1,1,1,1,1,0,1,1,1,1},

{1,0,0,0,0,0,0,0,0,0,0,0,0},

{1,1,1,1,1,1,1,1,1,1,1,1,1} };

code612.html

listing
11.2 continued

//---

// Attempts to recursively traverse the maze. Inserts special

// characters indicating locations that have been tried and that

// eventually become part of the solution.

//---

public boolean traverse (int row, int column)

{

boolean done = false;

if (valid (row, column))

{

grid[row][column] = TRIED; // this cell has been tried

if (row == grid.length-1 && column == grid[0].length-1)

done = true; // the maze is solved

else

{

done = traverse (row+1, column); // down

if (!done)

done = traverse (row, column+1); // right

if (!done)

done = traverse (row-1, column); // up

if (!done)

done = traverse (row, column-1); // left

}

if (done) // this location is part of the final path

grid[row][column] = PATH;

}

return done;

}

//---

// Determines if a specific location is valid.

//---

private boolean valid (int row, int column)

{

boolean result = false;

11.2 using recursion 613

614 CHAPTER 11 recursion

Let’s think this through recursively. The maze can be traversed successfully if
it can be traversed successfully from position (0, 0). Therefore, the maze can be
traversed successfully if it can be traversed successfully from any positions adja-
cent to (0, 0), namely position (1, 0), position (0, 1), position (–1, 0), or position
(0, –1). Picking a potential next step, say (1, 0), we find ourselves in the same type
of situation we did before. To successfully traverse the maze from the new cur-
rent position, we must successfully traverse it from an adjacent position. At any
point, some of the adjacent positions may be invalid, may be blocked, or may

listing
11.2 continued

// check if cell is in the bounds of the matrix

if (row >= 0 && row < grid.length &&

column >= 0 && column < grid[row].length)

// check if cell is not blocked and not previously tried

if (grid[row][column] == 1)

result = true;

return result;

}

//---

// Returns the maze as a string.

//---

public String toString ()

{

String result = "\n";

for (int row=0; row < grid.length; row++)

{

for (int column=0; column < grid[row].length; column++)

result += grid[row][column] + "";

result += "\n";

}

return result;

}

}

11.2 using recursion 615

represent a possible successful path. We continue this process recursively. If the
base case, position (7, 12) is reached, the maze has been traversed successfully.

The recursive method in the Maze class is called traverse. It returns a boolean
value that indicates whether a solution was found. First the method determines
whether a move to the specified row and column is valid. A move is considered
valid if it stays within the grid boundaries and if the grid contains a 1 in that loca-
tion, indicating that a move in that direction is not blocked. The initial call to
traverse passes in the upper-left location (0, 0).

If the move is valid, the grid entry is changed from a 1 to a 3, marking this
location as visited so that later we don’t retrace our steps. The traverse method
then determines whether the maze has been completed by having reached the bot-
tom-right location. Therefore, there are actually three possibilities of the base
case for this problem that will terminate any particular recursive path:

◗ an invalid move because the move is out of bounds

◗ an invalid move because the move has been tried before

◗ a move that arrives at the final location

If the current location is not the bottom-right corner, we search for a solution in
each of the primary directions, if necessary. First, we look down by recursively
calling the traverse method and passing in the new location. The logic of the
traverse method starts all over again using this new position. A solution is
either ultimately found by first attempting to move down from the current loca-
tion, or it’s not found. If it’s not found, we try moving right. If that fails, we try
up. Finally, if no other direction has yielded a correct path, we try left. If no direc-
tion from the current location yields a correct solution, then there is no path from
this location, and traverse returns false.

If a solution is found from the current location, the grid entry is changed to a
7. The first 7 is placed in the bottom-right corner. The next 7 is placed in the
location that led to the bottom-right corner, and so on until the final 7 is placed
in the upper-left corner. Therefore, when the final maze is printed, the zeros still
indicate a blocked path, a 1 indicates an open path that was never tried, a 3 indi-
cates a path that was tried but failed to yield a correct solution, and a 7 indicates
a part of the final solution of the maze.

Note that there are several opportunities for recursion in each call to the
traverse method. Any or all of them might be followed, depending on the maze
configuration. Although there may be many paths through the maze, the recur-
sion terminates when a path is found. Carefully trace the execution of this code
while following the maze array to see how the recursion solves the problem. Then
consider the difficulty of producing a non-recursive solution.

616 CHAPTER 11 recursion

the Towers of Hanoi
The Towers of Hanoi puzzle was invented in the 1880s by Edouard Lucas, a
French mathematician. It has become a favorite among computer scientists
because its solution is an excellent demonstration of recursive elegance.

The puzzle consists of three upright pegs and a set of disks with holes in the
middle so that they slide onto the pegs. Each disk has a different diameter.
Initially, all of the disks are stacked on one peg in order of size such that the
largest disk is on the bottom, as shown in Fig. 11.5.

The goal of the puzzle is to move all of the disks from their original (first) peg
to the destination (third) peg. We can use the “extra” peg as a temporary place
to put disks, but we must obey the following three rules:

◗ We can move only one disk at a time.

◗ We cannot place a larger disk on top of a smaller disk.

◗ All disks must be on some peg except for the disk in transit between pegs.

These rules imply that we must move smaller disks “out of the way” in order to
move a larger disk from one peg to another. Figure 11.6 shows the step-by-step
solution for the Towers of Hanoi puzzle using three disks. In order to ultimately
move all three disks from the first peg to the third peg, we first have to get to the
point where the smaller two disks are out of the way on the second peg so that
the largest disk can be moved from the first peg to the third peg.

The first three moves shown in Fig. 11.6 can be thought of as moving the
smaller disks out of the way. The fourth move puts the largest disk in its final
place. The last three moves then put the smaller disks to their final place on top
of the largest one.

Let’s use this idea to form a general strategy. To move a stack of N disks from
the original peg to the destination peg:

◗ Move the topmost N–1 disks from the original peg to the extra peg.

◗ Move the largest disk from the original peg to the destination peg.

◗ Move the N–1 disks from the extra peg to the destination peg.

figure 11.5 The Towers of Hanoi puzzle

11.2 using recursion 617

This strategy lends itself nicely to a recursive solution. The step to move the N–1
disks out of the way is the same problem all over again: moving a stack of disks.
For this subtask, though, there is one less disk, and our destination peg is what
we were originally calling the extra peg. An analogous situation occurs after
we’ve moved the largest disk, and we have to move the original N–1 disks again.

The base case for this problem occurs when we want to move a “stack” that
consists of only one disk. That step can be accomplished directly and without
recursion.

The program in Listing 11.3 creates a TowersOfHanoi object and invokes its
solve method. The output is a step-by-step list of instructions that describe how
the disks should be moved to solve the puzzle. This example uses four disks,
which is specified by a parameter to the TowersOfHanoi constructor.

The TowersOfHanoi class shown in Listing 11.4 uses the solve method to
make an initial call to moveTower, the recursive method. The initial call indicates
that all of the disks should be moved from peg 1 to peg 3, using peg 2 as the extra
position.

figure 11.6 A solution to the three-disk Towers of Hanoi puzzle

Original Configuration

First Move

Second Move

Third Move

Fourth Move

Fifth Move

Sixth Move

Seventh (last) Move

618 CHAPTER 11 recursion

listing
11.3

//**

// SolveTowers.java Author: Lewis/Loftus

//

// Demonstrates recursion.

//**

public class SolveTowers

{

//---

// Creates a TowersOfHanoi puzzle and solves it.

//---

public static void main (String[] args)

{

TowersOfHanoi towers = new TowersOfHanoi (4);

towers.solve();

}

}

Move one disk from 1 to 2

Move one disk from 1 to 3

Move one disk from 2 to 3

Move one disk from 1 to 2

Move one disk from 3 to 1

Move one disk from 3 to 2

Move one disk from 1 to 2

Move one disk from 1 to 3

Move one disk from 2 to 3

Move one disk from 2 to 1

Move one disk from 3 to 1

Move one disk from 2 to 3

Move one disk from 1 to 2

Move one disk from 1 to 3

Move one disk from 2 to 3

output

code618.html

11.2 using recursion 619

listing
11.4

//**

// TowersOfHanoi.java Author: Lewis/Loftus

//

// Represents the classic Towers of Hanoi puzzle.

//**

public class TowersOfHanoi

{

private int totalDisks;

//---

// Sets up the puzzle with the specified number of disks.

//---

public TowersOfHanoi (int disks)

{

totalDisks = disks;

}

//---

// Performs the initial call to moveTower to solve the puzzle.

// Moves the disks from tower 1 to tower 3 using tower 2.

//---

public void solve ()

{

moveTower (totalDisks, 1, 3, 2);

}

//---

// Moves the specified number of disks from one tower to another

// by moving a subtower of n-1 disks out of the way, moving one

// disk, then moving the subtower back. Base case of 1 disk.

//---

private void moveTower (int numDisks, int start, int end, int temp)

{

if (numDisks == 1)

moveOneDisk (start, end);

else

{

moveTower (numDisks-1, start, temp, end);

moveOneDisk (start, end);

moveTower (numDisks-1, temp, end, start);

}

}

code619.html

620 CHAPTER 11 recursion

The moveTower method first considers the base case (a “stack” of one disk).
When that occurs, it calls the moveOneDisk method that prints a single line
describing that particular move. If the stack contains more than one disk, we call
moveTower again to get the N–1 disks out of the way, then move the largest disk,
then move the N–1 disks to their final destination with yet another call to
moveTower.

Note that the parameters to moveTower describing the pegs are switched
around as needed to move the partial stacks. This code follows our general strat-
egy and uses the moveTower method to move all partial stacks. Trace the code
carefully for a stack of three disks to understand the processing. Compare the
processing steps to Fig. 11.6.

Contrary to its short and elegant implementation, the solution to the
Towers of Hanoi puzzle is terribly inefficient. To solve the puzzle with
a stack of N disks, we have to make 2N–1 individual disk moves. This
situation is an example of exponential complexity. As the number of
disks increases, the number of required moves increases exponentially.

Legend has it that priests of Brahma are working on this puzzle in a
temple at the center of the world. They are using 64 gold disks, mov-

ing them between pegs of pure diamond. The downside is that when the priests
finish the puzzle, the world will end. The upside is that even if they move one disk
every second of every day, it will take them over 584 billion years to complete it.
That’s with a puzzle of only 64 disks! It is certainly an indication of just how
intractable exponential algorithm complexity is.

listing
11.4 continued

//---

// Prints instructions to move one disk from the specified start

// tower to the specified end tower.

//---

private void moveOneDisk (int start, int end)

{

System.out.println ("Move one disk from " + start + " to " +

end);

}

}

The Towers of Hanoi solution
has exponential complexity,
which is very inefficient. Yet
the implementation of the solu-
tion is incredibly short and
elegant.

ke
y

co
nc

ep
t

11.3 recursion in graphics 621

11.3 recursion in graphics
The concept of recursion has several uses in images and graphics. The following
section explores some image and graphics-based recursion examples.

tiled pictures
Carefully examine the display for the TiledPictures applet shown in Listing
11.5. There are actually three unique images among the menagerie. The entire
area is divided into four equal quadrants. A picture of the world (with a circle
indicating the Himalayan mountain region) is shown in the bottom-right quad-
rant. The bottom-left quadrant contains a picture of Mt. Everest. In the top-right
quadrant is a picture of a mountain goat.

The interesting part of the picture is the top-left quadrant. It contains a copy
of the entire collage, including itself. In this smaller version you can see the three
simple pictures in their three quadrants. And again, in the top-left corner, the pic-
ture is repeated (including itself). This repetition continues for several levels. It is
similar to the effect you can create when looking at a mirror in the reflection of
another mirror.

This visual effect is created quite easily using recursion. The applet’s init
method initially loads the three images. The paint method then invokes the
drawPictures method, which accepts a parameter that defines the size of
the area in which pictures are displayed. It draws the three images using the
drawImage method, with parameters that scale the picture to the correct size and
location. The drawPictures method is then called recursively to draw the upper-
left quadrant.

On each invocation, if the drawing area is large enough, the drawPictures
method is invoked again, using a smaller drawing area. Eventually, the drawing
area becomes so small that the recursive call is not performed. Note that
drawPictures assumes the origin (0, 0) coordinate as the relative location of the
new images, no matter what their size is.

The base case of the recursion in this problem specifies a minimum size for the
drawing area. Because the size is decreased each time, the base case eventually is
reached and the recursion stops. This is why the upper-left corner is empty in the
smallest version of the collage.

622 CHAPTER 11 recursion

listing
11.5

//**

// TiledPictures.java Author: Lewis/Loftus

//

// Demonstrates the use of recursion.

//**

import java.awt.*;

import javax.swing.JApplet;

public class TiledPictures extends JApplet

{

private final int APPLET_WIDTH = 320;

private final int APPLET_HEIGHT = 320;

private final int MIN = 20; // smallest picture size

private Image world, everest, goat;

//---

// Loads the images.

//---

public void init()

{

world = getImage (getDocumentBase(), "world.gif");

everest = getImage (getDocumentBase(), "everest.gif");

goat = getImage (getDocumentBase(), "goat.gif");

setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

//---

// Draws the three images, then calls itself recursively.

//---

public void drawPictures (int size, Graphics page)

{

page.drawImage (everest, 0, size/2, size/2, size/2, this);

page.drawImage (goat, size/2, 0, size/2, size/2, this);

page.drawImage (world, size/2, size/2, size/2, size/2, this);

if (size > MIN)

drawPictures (size/2, page);

}

11.3 recursion in graphics 623

listing
11.5 continued

//---

// Performs the initial call to the drawPictures method.

//---

public void paint (Graphics page)

{

drawPictures (APPLET_WIDTH, page);

}

}

display

624 CHAPTER 11 recursion

fractals
A fractal is a geometric shape that can be made up of the same pattern repeated
at different scales and orientations. The nature of a fractal lends itself to a recur-
sive definition. Interest in fractals has grown immensely in recent years, largely
due to Benoit Mandelbrot, a Polish mathematician born in 1924. He demon-
strated that fractals occur in many places in mathematics and nature. Computers

have made fractals much easier to generate and investigate.
Over the past quarter century, the bright, interesting
images that can be created with fractals have come to be
considered as much an art form as a mathematical interest.

One particular example of a fractal is called the Koch
snowflake, named after Helge von Koch, a Swedish mathematician. It begins with
an equilateral triangle, which is considered to be the Koch fractal of order 1.
Koch fractals of higher orders are constructed by repeatedly modifying all of the
line segments in the shape.

To create the next higher order Koch fractal, each line segment in the shape is
modified by replacing its middle third with a sharp protrusion made of two line
segments, each having the same length as the replaced part. Relative to the entire
shape, the protrusion on any line segment always points outward. Figure 11.7
shows several orders of Koch fractals. As the order increases, the shape begins to
look like a snowflake.

The applet shown in Listing 11.6 draws a Koch snowflake of several different
orders. The buttons at the top of the applet allow the user to increase and
decrease the order of the fractal. Each time a button is pressed, the fractal image
is redrawn. The applet serves as the listener for the buttons.

The fractal image is drawn on a canvas defined by the KochPanel class shown in
Listing 11.7. The paint method makes the initial calls to the recursive method
drawFractal. The three calls to drawFractal in the paint method represent the
original three sides of the equilateral triangle that make up a Koch fractal of order 1.

A fractal is a geometric shape
that is defined naturally in a
recursive manner.

ke
y

co
nc

ep
t

figure 11.7 Several orders of the Koch snowflake

11.3 recursion in graphics 625

listing
11.6

//**

// KochSnowflake.java Author: Lewis/Loftus

//

// Demonstrates the use of recursion.

//**

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class KochSnowflake extends JApplet implements ActionListener

{

private final int APPLET_WIDTH = 400;

private final int APPLET_HEIGHT = 440;

private final int MIN = 1, MAX = 9;

private JButton increase, decrease;

private JLabel titleLabel, orderLabel;

private KochPanel drawing;

private JPanel appletPanel, tools;

//---

// Sets up the components for the applet.

//---

public void init()

{

tools = new JPanel ();

tools.setLayout (new BoxLayout(tools, BoxLayout.X_AXIS));

tools.setBackground (Color.yellow);

tools.setOpaque (true);

titleLabel = new JLabel ("The Koch Snowflake");

titleLabel.setForeground (Color.black);

increase = new JButton (new ImageIcon ("increase.gif"));

increase.setPressedIcon (new ImageIcon ("increasePressed.gif"));

increase.setMargin (new Insets (0, 0, 0, 0));

increase.addActionListener (this);

626 CHAPTER 11 recursion

listing
11.6 continued

decrease = new JButton (new ImageIcon ("decrease.gif"));

decrease.setPressedIcon (new ImageIcon ("decreasePressed.gif"));

decrease.setMargin (new Insets (0, 0, 0, 0));

decrease.addActionListener (this);

orderLabel = new JLabel ("Order: 1");

orderLabel.setForeground (Color.black);

tools.add (titleLabel);

tools.add (Box.createHorizontalStrut (20));

tools.add (decrease);

tools.add (increase);

tools.add (Box.createHorizontalStrut (20));

tools.add (orderLabel);

drawing = new KochPanel (1);

appletPanel = new JPanel();

appletPanel.add (tools);

appletPanel.add (drawing);

getContentPane().add (appletPanel);

setSize (APPLET_WIDTH, APPLET_HEIGHT);

}

//---

// Determines which button was pushed, and sets the new order

// if it is in range.

//---

public void actionPerformed (ActionEvent event)

{

int order = drawing.getOrder();

if (event.getSource() == increase)

order++;

else

order--;

if (order >= MIN && order <= MAX)

{

orderLabel.setText ("Order: " + order);

drawing.setOrder (order);

11.3 recursion in graphics 627

listing
11.6 continued

repaint();

}

}

}

display

628 CHAPTER 11 recursion

listing
11.7

//**

// KochPanel.java Author: Lewis/Loftus

//

// Represents a drawing surface on which to paint a Koch Snowflake.

//**

import java.awt.*;

import javax.swing.JPanel;

public class KochPanel extends JPanel

{

private final int PANEL_WIDTH = 400;

private final int PANEL_HEIGHT = 400;

private final double SQ = Math.sqrt(3.0) / 6;

private final int TOPX = 200, TOPY = 20;

private final int LEFTX = 60, LEFTY = 300;

private final int RIGHTX = 340, RIGHTY = 300;

private int current; //current order

//---

// Sets the initial fractal order to the value specified.

//---

public KochPanel (int currentOrder)

{

current = currentOrder;

setBackground (Color.black);

setPreferredSize (new Dimension(PANEL_WIDTH, PANEL_HEIGHT));

}

//---

// Draws the fractal recursively. Base case is an order of 1 for

// which a simple straight line is drawn. Otherwise three

// intermediate points are computed, and each line segment is

// drawn as a fractal.

//---

11.3 recursion in graphics 629

listing
11.7 continued

public void drawFractal (int order, int x1, int y1, int x5, int y5,

Graphics page)

{

int deltaX, deltaY, x2, y2, x3, y3, x4, y4;

if (order == 1)

page.drawLine (x1, y1, x5, y5);

else

{

deltaX = x5 - x1; // distance between end points

deltaY = y5 - y1;

x2 = x1 + deltaX / 3; // one third

y2 = y1 + deltaY / 3;

x3 = (int) ((x1+x5)/2 + SQ * (y1-y5)); // tip of projection

y3 = (int) ((y1+y5)/2 + SQ * (x5-x1));

x4 = x1 + deltaX * 2/3; // two thirds

y4 = y1 + deltaY * 2/3;

drawFractal (order-1, x1, y1, x2, y2, page);

drawFractal (order-1, x2, y2, x3, y3, page);

drawFractal (order-1, x3, y3, x4, y4, page);

drawFractal (order-1, x4, y4, x5, y5, page);

}

}

//---

// Performs the initial calls to the drawFractal method.

//---

public void paintComponent (Graphics page)

{

super.paintComponent (page);

page.setColor (Color.green);

drawFractal (current, TOPX, TOPY, LEFTX, LEFTY, page);

drawFractal (current, LEFTX, LEFTY, RIGHTX, RIGHTY, page);

drawFractal (current, RIGHTX, RIGHTY, TOPX, TOPY, page);

}

The variable current represents the order of the fractal to be drawn. Each
recursive call to drawFractal decrements the order by 1. The base case of the
recursion occurs when the order of the fractal is 1, which results in a simple line
segment between the coordinates specified by the parameters.

If the order of the fractal is higher than 1, three additional points are comput-
ed. In conjunction with the parameters, these points form the four line segments
of the modified fractal. Figure 11.8 shows the transformation.

Based on the position of the two end points of the original line segment, a
point one-third of the way and a point two-thirds of the way between them are
computed. The calculation of <x3, y3>, the point at the tip of the protrusion, is
more convoluted and uses a simplifying constant that incorporates multiple geo-
metric relationships. The calculations to determine the three new points actually
have nothing to do with the recursive technique used to draw the fractal, and so
won’t discuss the details of these computations here.

630 CHAPTER 11 recursion

listing
11.7 continued

//---

// Sets the fractal order to the value specified.

//---

public void setOrder (int order)

{

current = order;

}

//---

// Returns the current order.

//---

public int getOrder ()

{

return current;

}

}

11.3 recursion in graphics 631

An interesting mathematical feature of a Koch snowflake is that it has an infi-
nite perimeter but a finite area. As the order of the fractal increases, the perime-
ter grows exponentially larger, with a mathematical limit of infinity. However, a
rectangle large enough to surround the second-order fractal for the Koch
snowflake is large enough to contain all higher-order fractals. The shape is
restricted forever in area, but its perimeter gets infinitely longer.

figure 11.8 The transformation of each line segment of a Koch snowflake

becomes

<x1, y1><x1, y1>

<x5, y5><x5, y5>

<x3, y3>

<x4, y4>

<x2, y2>

632 CHAPTER 11 recursion

◗ Recursion is a programming technique in which a method calls itself. A
key to being able to program recursively is to be able to think recursively.

◗ Any recursive definition must have a non-recursive part, called the base
case, which permits the recursion to eventually end.

◗ Mathematical problems and formulas are often expressed recursively.

◗ Each recursive call to a method creates new local variables and parame-
ters.

◗ A careful trace of recursive processing can provide insight into the way it
is used to solve a problem.

◗ Recursion is the most elegant and appropriate way to solve some prob-
lems, but for others it is less intuitive than an iterative solution.

◗ The Towers of Hanoi solution has exponential complexity, which is very
inefficient. Yet the implementation of the solution is incredibly short and
elegant.

◗ A fractal is a geometric shape that can be defined naturally in a recursive
manner.

self-review questions
11.1 What is recursion?

11.2 What is infinite recursion?

11.3 When is a base case needed for recursive processing?

11.4 Is recursion necessary?

11.5 When should recursion be avoided?

11.6 What is indirect recursion?

11.7 Explain the general approach to solving the Towers of Hanoi puzzle.
How does it relate to recursion?

11.8 What is a fractal? What does it have to do with recursion?

summary of
key concepts

exercises 633

exercises
11.1 Write a recursive definition of a valid Java identifier (see

Chapter 2).

11.2 Write a recursive definition of xy (x raised to the power y), where x
and y are integers and y > 0.

11.3 Write a recursive definition of i * j (integer multiplication), where
i > 0. Define the multiplication process in terms of integer addition.
For example, 4 * 7 is equal to 7 added to itself 4 times.

11.4 Write a recursive definition of the Fibonacci numbers. The
Fibonacci numbers are a sequence of integers, each of which is the
sum of the previous two numbers. The first two numbers in the
sequence are 0 and 1. Explain why you would not normally use
recursion to solve this problem.

11.5 Modify the method that calculates the sum of the integers between
1 and N shown in this chapter. Have the new version match the fol-
lowing recursive definition: The sum of 1 to N is the sum of 1 to
(N/2) plus the sum of (N/2 + 1) to N. Trace your solution using an
N of 7.

11.6 Write a recursive method that returns the value of N! (N factorial)
using the definition given in this chapter. Explain why you would
not normally use recursion to solve this problem.

11.7 Write a recursive method to reverse a string. Explain why you
would not normally use recursion to solve this problem.

11.8 Design or generate a new maze for the MazeSearch program in this
chapter and rerun the program. Explain the processing in terms of
your new maze, giving examples of a path that was tried but failed,
a path that was never tried, and the ultimate solution.

11.9 Annotate the lines of output of the SolveTowers program in this
chapter to show the recursive steps.

11.10 Produce a chart showing the number of moves required to solve the
Towers of Hanoi puzzle using the following number of disks: 2, 3,
4, 5, 6, 7, 8, 9, 10, 15, 20, and 25.

11.10 How many line segments are used to construct a Koch snowflake of
order N? Produce a chart showing the number of line segments that
make up a Koch snowflake for orders 1 through 9.

634 CHAPTER 11 recursion

programming projects
11.1 Design and implement a recursive version of the

PalindromeTester program from Chapter 3.

11.2 Design and implement a program that implements Euclid’s algo-
rithm for finding the greatest common divisor of two positive inte-
gers. The greatest common divisor is the largest integer that divides
both values without producing a remainder. An iterative version of
this method was part of the Rational class presented in Chapter 4.
In a class called DivisorCalc, define a static method called gcd
that accepts two integers, num1 and num2. Create a driver to test
your implementation. The recursive algorithm is defined as follows:

◗ gcd (num1, num2) is num2 if num2 <= num1 and num2

divides num1

◗ gcd (num1, num2) is gcd (num2, num1) if num1 < num2

◗ gcd (num1, num2) is gcd (num2, num1%num2) otherwise

11.3 Modify the Maze class so that it prints out the path of the final solu-
tion as it is discovered without storing it.

11.4 Design an implement a program that traverses a 3D maze.

11.5 Modify the TiledPictures program so that the repeated images
appear in the lower-right quadrant.

11.6 Design and implement a recursive program that solves the Non-
Attacking Queens problem. That is, write a program to determine
how eight queens can be positioned on an eight-by-eight chessboard
so that none of them are in the same row, column, or diagonal as
any other queen. There are no other chess pieces on the board.

11.7 In the language of an alien race, all words take the form of Blurbs.
A Blurb is a Whoozit followed by one or more Whatzits. A Whoozit
is the character ‘x’ followed by zero or more ‘y’s. A Whatzit is a ‘q’
followed by either a ‘z’ or a ‘d’, followed by a Whoozit. Design and
implement a recursive program that generates random Blurbs in this
alien language.

11.8 Design and implement a recursive program to determine whether a
string is a valid Blurb as defined in Programming Project 11.7.

11.9 Design and implement a recursive program to determine and print
the Nth line of Pascal’s Triangle, as shown below. Each interior

project634a.html
project634b.html
project634c.html
project634d.html

answers to self-review questions 635

value is the sum of the two values above it. Hint: use an array to
store the values on each line.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

11.10 Design and implement an applet that generalizes the KochSnowflake
program. Allow the user to choose a fractal design from a menu
item and to pick the background and drawing colors. The buttons
to increase and decrease the order of the fractal will apply to
whichever fractal design is chosen. In addition to the Koch
snowflake, include a C-curve fractal whose order 1 is a straight line.
Each successive order is created by replacing all line segments by
two line segments, both half of the size of the original, and which
meet at a right angle. Specifically, a C-curve of order N from
<x1, y1> to <x3, y3> is replaced by two C-curves from <x1, y1> to
<x2, y2> and from <x2, y2> to <x3, y3> where:

◗ x2 = (x1 + x3 + y1 – y3) / 2;

◗ y2 = (x3 + y1 + y3 – x1) / 2;

11.11 Design and implement a graphic version of the Towers of Hanoi
puzzle. Allow the user to set the number of disks used in the puzzle.
The user should be able to interact with the puzzle in two main
ways. The user can move the disks from one peg to another using
the mouse, in which case the program should ensure that each move
is legal. The user can also watch a solution take place as an anima-
tion, with pause/resume buttons. Permit the user to control the
speed of the animation.

636 CHAPTER 11 recursion

For additional programming projects, click the CodeMate icon below:

11.12

answers to self-review questions
11.1 Recursion is a programming technique in which a method calls itself,

solving a smaller version of the problem each time, until the termi-
nating condition is reached.

11.2 Infinite recursion occurs when there is no base case that serves as a
terminating condition or when the base case is improperly specified.
The recursive path is followed forever. In a recursive program, infi-
nite recursion will often result in an error that indicates that avail-
able memory has been exhausted.

11.3 A base case is always required to terminate recursion and begin the
process of returning through the calling hierarchy. Without the base
case, infinite recursion results.

11.4 Recursion is not necessary. Every recursive algorithm can be written
in an iterative manner. However, some problem solutions are much
more elegant and straightforward when written recursively.

11.5 Avoid recursion when the iterative solution is simpler and more easi-
ly understood and programmed. Recursion has the overhead of mul-
tiple method calls and is not always intuitive.

11.6 Indirect recursion occurs when a method calls another method,
which calls another method, and so on until one of the called meth-
ods invokes the original. Indirect recursion is usually more difficult
to trace than direct recursion, in which a method calls itself.

11.7 The Towers of Hanoi puzzle of N disks is solved by moving N–1
disks out of the way onto an extra peg, moving the largest disk to its
destination, then moving the N–1 disks from the extra peg to the
destination. This solution is inherently recursive because, to move
the substack of N–1 disks, we can use the same process.

11.8 A fractal is a geometric shape that can be composed of multiple ver-
sions of the same shape at different scales and different angles of ori-
entation. Recursion can be used to draw the repetitive shapes over
and over again.

project636.html

information can be organized

and used. Many data structures

have been developed over the

years, and some of them have

become classics. Often, a data

structure can be implemented in

a variety of ways. This chapter

explains how data structures can

be implemented using references

to link one object to another. It

also serves as an introduction to

some specific data structures.

◗ Explore the concept of a collection.

◗ Examine the difference bet-
ween fixed and dynamic
implementations.

◗ Define and use dynamically linked
lists.

◗ Define queue and stack data
structures.

◗ Examine the organization of
non-linear data structures.

◗ Introduce the predefined collection
classes in the Java standard class
library.

chapter
objectives

Problem solving often requires techniques for
organizing and managing information. The term

data structures refers to the various ways

12
data structures

638 CHAPTER 12 data structures

12.0 collections
A collection is an object that serves as a repository for other objects. It is a generic
term that can be applied to many situations, but we usually use it when discussing
an object whose specific role is to provide services to add, remove, and otherwise
manage the elements that are contained within. For example, the ArrayList class
(discussed in Chapter 6) represents a collection. It provides methods to add ele-
ments to the end of a list or to a particular location in the list based on an index
value. It provides methods to remove specific elements as needed.

Some collections maintain their elements in a specific order, while others do
not. Some collections are homogeneous, meaning that they can contain all of the
same type of object; other collections are heterogeneous, which means they can
contain objects of various types. An ArrayList is heterogeneous because it can
hold an object of any type. Its heterogeneous nature comes from the fact that an
ArrayList stores Object references, which means it can store any object because
of inheritance and polymorphism (as discussed in Chapter 7).

separating interface from implementation
A crucial aspect of collections is that they can be implemented in a variety of
ways. That is, the underlying data structure that stores the objects can be imple-
mented using various techniques. The ArrayList class from the Java standard
library, for instance, is implemented using an array. All operations on an
ArrayList are accomplished by invoking methods that perform the appropriate
operations on the underlying array.

An abstract data type (ADT) is a collection of data and the particular opera-
tions that are allowed on that data. An ADT has a name, a domain of values, and
a set of operations that can be performed. An ADT is considered abstract because
the operations you can perform on it are separated from the underlying imple-
mentation. That is, the details of how an ADT stores its data and accomplishes
its methods are separate from the concept that it embodies.

Objects, therefore, are perfectly suited for defining ADTs. An object,
by definition, has a well-defined interface whose implementation is
hidden in the class. The data that is represented, and the operations
that manage the data, are encapsulated together inside the object. This
type of encapsulated ADT is reusable and reliable, because its interac-
tion with the rest of the system is controlled.

An abstract data type hides the
implementation of a data struc-
ture behind a well-defined
interface. This characteristic
makes objects a perfect way to
define ADTs.

ke
y

co
nc

ep
t

12.1 representing data structures
An array is only one way in which a list can be represented. Arrays are limited in
one sense because they have a fixed size throughout their existence. Sometimes
we don’t know how big to make an array because we don’t know how much
information we will store. The ArrayList class handles this by creating a larger
array and copying everything over whenever necessary. This is not necessarily an
efficient implementation.

A dynamic data structure is implemented using links. Using ref-
erences as links between objects, we can create whatever type of struc-
ture is appropriate for the situation. If implemented carefully, the
structure can be quite efficient to search and modify. Structures cre-
ated this way are considered to be dynamic because their size is deter-
mined dynamically, as they are used, and not by their declaration.

dynamic structures
Recall from Chapter 4 that all objects are created dynamically using the new
operator. A variable used to keep track of an object is actually a reference to the
object, meaning that it stores the address of the object. Recall that a declaration
such as:

House home = new House (“602 Greenbriar Court”);

actually accomplishes two things: it declares home to be a reference to a House
object, and it instantiates an object of class House. Now consider an object that
contains a reference to another object of the same type. For example:

class Node

{

int info;

Node next;

}

Two objects of this class can be instantiated and chained together by
having the next reference of one Node object refer to the other Node
object. The second object’s next reference can refer to a third Node
object, and so on, creating a linked list. The first node in the list could
be referenced using a separate variable. The last node in the list would
have a next reference that is null, indicating the end of the list. Figure 12.1
depicts this situation. For this example, the information stored in each Node class
is a simple integer, but keep in mind that we could define a class to contain any
amount of information of any type.

12.1 representing data structures 639

A fixed data structure has a
specific size for the duration of
its existence, whereas a
dynamic data structure grows
and shrinks as needed.

key
concept

A dynamically linked list is
managed by storing and updat-
ing references to objects.

key
concept

640 CHAPTER 12 data structures

a dynamically linked list
The program in Listing 12.1 sets up a list of Magazine objects and then prints the
list. The list of magazines is encapsulated inside the MagazineList class shown
in Listing 12.2 and is maintained as a dynamically linked list.

The MagazineList class represents the list of magazines. From outside of the
class (an external view), we do not focus on how the list is implemented. We don’t
know, for instance, whether the list of magazines is stored in an array or in a
linked list. The MagazineList class provides a set of methods that allows the
user to maintain the list of books. That set of methods, specifically add and
toString, defines the operations to the MagazineList ADT.

The MagazineList class uses an inner class called MagazineNode to represent
a node in the linked list. Each node contains a reference to one magazine and a
reference to the next node in the list. Because MagazineNode is an inner class, it
is reasonable to allow the data values in the class to be public. Therefore the code
in the MagazineList class refers to those data values directly.

The Magazine class shown in Listing 12.3 is well encapsulated, with all data
declared as private and methods provided to accomplish any updates necessary.
Note that, because we use a separate class to represent a node in the list, the
Magazine class itself does not need to contain a link to the next Magazine in the
list. That allows the Magazine class to be free of any issues regarding its con-
tainment in a list.

Other methods could be included in the MagazineList ADT. For
example, in addition to the add method provided, which always adds a
new magazine to the end of the list, another method called insert
could be defined to add a node anywhere in the list (to keep it sorted,
for instance). A parameter to insert could indicate the value of the
node after which the new node should be inserted. Figure 12.2 shows
how the references would be updated to insert a new node.

figure 12.1 A linked list

list

info

next

info

next

info

next

info

next

A versatile list ADT contains
insert and delete operations,
which can be implemented by
carefully manipulating object
references.

ke
y

co
nc

ep
t

Another operation that would be helpful in the list ADT would be a delete
method to remove a particular node. Recall from our discussion in Chapter 5 that
by removing all references to an object, it becomes a candidate for garbage col-
lection. Figure 12.3 shows how references would be updated to delete a node
from a list. Care must be taken to accomplish the modifications to the references
in the proper order to ensure that other nodes are not lost and that references
continue to refer to valid, appropriate nodes in the list.

12.1 representing data structures 641

listing
12.1

//***

// MagazineRack.java Author: Lewis/Loftus

//

// Driver to exercise the MagazineList collection.

//***

public class MagazineRack

{

//--

// Creates a MagazineList object, adds several magazines to the

// list, then prints it.

//--

public static void main (String[] args)

{

MagazineList rack = new MagazineList();

rack.add (new Magazine("Time"));

rack.add (new Magazine("Woodworking Today"));

rack.add (new Magazine("Communications of the ACM"));

rack.add (new Magazine("House and Garden"));

rack.add (new Magazine("GQ"));

System.out.println (rack);

}

}

Time

Woodworking Today

Communications of the ACM

House and Garden

GQ

output

code641.html

642 CHAPTER 12 data structures

listing
12.2

//***

// MagazineList.java Author: Lewis/Loftus

//

// Represents a collection of magazines.

//***

public class MagazineList

{

private MagazineNode list;

//--

// Sets up an initially empty list of magazines.

//--

public MagazineList()

{

list = null;

}

//--

// Creates a new MagazineNode object and adds it to the end of

// the linked list.

//--

public void add (Magazine mag)

{

MagazineNode node = new MagazineNode (mag);

MagazineNode current;

if (list == null)

list = node;

else

{

current = list;

while (current.next != null)

current = current.next;

current.next = node;

}

}

code642.html

//--

// Returns this list of magazines as a string.

//--

public String toString ()

{

String result = "";

MagazineNode current = list;

while (current != null)

{

result += current.magazine + "\n";

current = current.next;

}

return result;

}

//***

// An inner class that represents a node in the magazine list.

// The public variables are accessed by the MagazineList class.

//***

private class MagazineNode

{

public Magazine magazine;

public MagazineNode next;

//--

// Sets up the node

//--

public MagazineNode (Magazine mag)

{

magazine = mag;

next = null;

}

}

}

listing
12.2 continued

12.1 representing data structures 643

644 CHAPTER 12 data structures

listing
12.3

//**

// Magazine.java Author: Lewis/Loftus

//

// Represents a single magazine.

//**

public class Magazine

{

private String title;

//---

// Sets up the new magazine with its title.

//---

public Magazine (String newTitle)

{

title = newTitle;

}

//---

// Returns this magazine as a string.

//---

public String toString ()

{

return title;

}

}

figure 12.2 Inserting a node into the middle of a list

list info

next

info

next

newNode
info

next

info

next

info

next

code644.html

12.1 representing data structures 645

other dynamic list representations
You can use different list implementations, depending on the specific needs of the
program you are designing. For example, in some situations it may make pro-
cessing easier to implement a doubly linked list in which each node has not only
a reference to the next node in the list, but also another reference to the previous
node in the list. Our generic Node class might be declared as follows:

class Node

{

int info;

Node next, prev;

}

Figure 12.4 shows a doubly linked list. Note that, like a single
linked list, the next reference of the last node is null. Similarly, the
previous node of the first node is null since there is no node that
comes before the first one. This type of structure makes it easy to move
back and forth between nodes in the list, but requires more effort to set
up and modify.

figure 12.3 Deleting a node from a list

list info

next

info

next

info

next

info

next

Many variations on the imple-
mentation of dynamic linked
lists exist.

key
concept

figure 12.4 A doubly linked list

list info

next

prev prev prev prev

info

next

info

next

info

next

Another implementation of a linked list could include a header node for the list
that has a reference to the front of the list and another reference to the rear of the
list. A rear reference makes it easier to add new nodes to the end of the list. The
header node could contain other information, such as a count of the number of
nodes currently in the list. The declaration of the header node would be similar
to the following:

class ListHeader

{

int count;

Node front, rear;

}

Note that the header node is not of the same class as the Node class to which
it refers. Figure 12.5 depicts a linked list that is implemented using a header node.

Still other linked list implementations can be created. For instance, the use of
a header can be combined with a doubly linked list, or the list can be maintained
in sorted order. The implementation should cater to the type of processing that is
required. Some extra effort to maintain a more complex data structure may be
worthwhile if it makes common operations on the structure more efficient.

646 CHAPTER 12 data structures

figure 12.5 A list with front and rear references

list count:4

front

rear

info

next

info

next

info

next

info

next

12.2 classic data structures 647

12.2 classic data structures
In addition to lists, some data structures have become classic in that they repre-
sent important generic situations that commonly occur in computing. They can
be separated into two categories. Like lists, a queue and a stack are linear data
structures, meaning that the data they represent is organized in a linear fashion.
Trees and graphs, on the other hand, are non-linear data structures because their
data is not organized linearly. Let’s examine each of these data structures in more
detail.

queues
A queue is similar to a list except that it has restrictions on the way you
put items in and take items out. Specifically, a queue uses first-in, first-
out (FIFO) processing. That is, the first item put in the list is the first
item that comes out of the list. Figure 12.6 depicts the FIFO processing
of a queue.

Any waiting line is a queue. Think about a line of people waiting for a teller
at a bank. A customer enters the queue at the back and moves forward as earlier
customers are serviced. Eventually, each customer comes to the front of the queue
to be processed.

Note that the processing of a queue is conceptual. We may speak in terms of
people moving forward until they reach the front of the queue, but the reality
might be that the front of the queue moves as elements come off. That is, we are
not concerned at this point with whether the queue of customers moves toward
the teller, or remains stationary as the teller moves when customers are serviced.

figure 12.6 A queue data structure

Items go on the queue
at the rear (enqueue)

Items come off the queue
at the front (dequeue)

A queue is a linear data struc-
ture that manages data in a
first-in, first-out manner.

key
concept

648 CHAPTER 12 data structures

A queue data structure typically has the following operations:

◗ enqueue—adds an item to the rear of the queue

◗ dequeue—removes an item from the front of the queue

◗ empty—returns true if the queue is empty

stacks
A stack is similar to a queue except that its elements go on and come
off at the same end. The last item to go on a stack is the first item to
come off, like a stack of plates in the cupboard or a stack of hay bales
in the barn. A stack, therefore, processes information in a last-in, first-
out (LIFO) manner, as shown in Fig. 12.7.

A typical stack ADT contains the following operations:

◗ push—pushes an item onto the top of the stack

◗ pop—removes an item from the top of the stack

◗ peek—retrieves information from the top item of the stack without remov-
ing it

◗ empty—returns true if the stack is empty

The java.util package of the API contains a class called Stack that imple-
ments a stack data structure. It contains methods that correspond to the standard
stack operations, plus a method that searches for a particular object in the stack.

figure 12.7 A stack data structure

The last item to go
on the stack (push)

must be the first item
to come off (pop)

A stack is a linear data struc-
ture that manages data in a
last-in, first-out manner.ke

y
co

nc
ep

t

12.2 classic data structures 649

The Stack class has a search method that returns an integer corresponding
to the position in the stack of the particular object. This type of searching is not
usually considered to be part of the classic stack ADT.

Like ArrayList operations, the Stack operations operate on Object refer-
ences. Because all objects are derived from the Object class, any object can be
pushed onto a stack. If primitive types are to be stored, they must be treated as
objects using the corresponding wrapper class. Unlike the Stack class, no class
implementing a queue is defined in the Java API.

Let’s look at an example that uses a stack to solve a problem. The program in
Listing 12.4 accepts a string of characters that represents a secret message. The
program decodes and prints the message.

listing
12.4

//**

// Decode.java Author: Lewis/Loftus

//

// Demonstrates the use of the Stack class.

//**

import java.util.Stack;

import cs1.Keyboard;

public class Decode

{

//---

// Decodes a message by reversing each word in a string.

//---

public static void main (String[] args)

{

Stack word = new Stack();

String message;

int index = 0;

System.out.println ("Enter the coded message:");

message = Keyboard.readString();

System.out.println ("The decoded message is:");

while (index < message.length())

{

// Push word onto stack

code649.html

A message that has been encoded has each individual word in the message
reversed. Words in the message are separated by a single space. The program uses
the Stack class to push the characters of each word on the stack. When an entire
word has been read, each character appears in reverse order as it is popped off
the stack and printed.

trees and binary trees
A tree is a non-linear data structure that consists of a root node and
potentially many levels of additional nodes that form a hierarchy. All
nodes other than the root are called internal nodes. Nodes that have no
children are called leaf nodes. Figure 12.8 depicts a tree. Note that we
draw a tree “upside down,” with the root at the top and the leaves at
the bottom.

In a general tree like the one in Fig. 12.8, each node could have many child
nodes. As we mentioned in Chapter 7, the inheritance relationships among classes
can be depicted using a general tree structure.

650 CHAPTER 12 data structures

listing
12.4 continued

while (index < message.length() && message.charAt(index) != ' ')

{

word.push (new Character(message.charAt(index)));

index++;

}

// Print word in reverse

while (!word.empty())

System.out.print (((Character)word.pop()).charValue());

System.out.print (" ");

index++;

}

System.out.println();

}

}

Enter the coded message:

artxE eseehc esaelp

The decoded message is:

Extra cheese please

A tree is a non-linear data
structure that organizes data
into a hierarchy.ke

y
co

nc
ep

t

output

12.2 classic data structures 651

In a binary tree, each node can have no more than two child nodes. Binary
trees are useful in various programming situations and usually are easier to imple-
ment than general trees. Technically, binary trees are a subset of general trees, but
they are so important in the computing world that they usually are thought of as
their own data structure.

The operations on trees and binary trees vary, but minimally include adding
and removing nodes from the tree or binary tree. Because of their non-linear
nature, trees and binary trees are implemented nicely using references as dynamic
links. However, it is possible to implement a tree data structure using a fixed rep-
resentation such as an array.

graphs and digraphs
Like a tree, a graph is a non-linear data structure. Unlike a tree, a graph
does not have a primary entry point like the tree’s root node. In a
graph, a node is linked to another node by a connection called an edge.

figure 12.8 A tree data structure

leaf nodes

root node

A graph is a non-linear data
structure that connects nodes
using generic arcs.

key
concept

figure 12.9 A graph data structure

652 CHAPTER 12 data structures

Generally there are no restrictions on the number of edges that can be made
between nodes in a graph. Figure 12.9 presents a graph data structure.

Graphs are useful when representing relationships for which linear paths and
strict hierarchies do not suffice. For instance, the highway system connecting
cities on a map and airline connections between airports are better represented as
graphs than by any other data structure discussed so far.

In a general graph, the edges are bi-directional, meaning that the edge con-
necting nodes A and B can be followed from A to B and also from B to A. In a
directed graph, or digraph, each edge has a specific direction. Figure 12.10 shows
a digraph, in which each edge indicates the direction using an arrowhead.

A digraph might be used, for instance, to represent airline flights between air-
ports. Unlike highway systems, which are in almost all cases bi-directional, hav-
ing a flight from one city to another does not necessarily mean there is a corre-
sponding flight going the other way. Or, if there is, we may want to associate dif-
ferent information with it, such as cost.

Like trees, graphs often are implemented using dynamic links, although they
can be implemented using arrays as well.

12.3 java API collection classes 653

12.3 java API collection classes
The Java standard class library contains several classes that represent
collections of various types. These are often referred to as the Java
Collections API (Application Programmer Interface).

The names of the classes in this set generally indicate both the col-
lection type and the underlying implementation. One example is the
ArrayList class. In addition, a LinkedList class represents a list collection with
a dynamically linked internal implementation. The Vector class and the Stack
classes are carried over from earlier Java incarnations.

Several interfaces are used to define the collection operations themselves.
Theses interfaces include List, Set, SortedSet, Map, and SortedMap. A Set is
consistent with its normal interpretation as a collection of elements without
duplicates. A Map is a group of elements that can be referenced by a key value.

The details of these classes go beyond the scope of this book and so are not
explored further here.

figure 12.10 A directed graph

The Java Collections API con-
tains a class infrastructure that
supports the organization and
management of data.

key
concept

654 CHAPTER 12 data structures

◗ An abstract data type (ADT) hides the implementation of a data structure
behind a well-defined interface. This characteristic makes objects a perfect
way to define ADTs.

◗ A fixed data structure has a specific size for the duration of its existence,
whereas a dynamic data structure grows and shrinks as needed.

◗ A dynamically linked list is managed by storing and updating references to
objects.

◗ A versatile list ADT contains insert and delete operations, which can be
implemented by carefully manipulating object references.

◗ Many variations on the implementation of dynamic linked lists exist.

◗ A queue is a linear data structure that manages data in a first-in, first-out
manner.

◗ A stack is a linear data structure that manages data in a last-in, first-out
manner.

◗ A tree is a non-linear data structure that organizes data into a hierarchy.

◗ A graph is a non-linear data structure that connects nodes using generic
edges.

◗ The Java Collections API contains a class infrastructure that supports the
organization and management of data.

self-review questions
12.1 What is a collection?

12.2 Why are objects particularly well suited for implementing abstract
data types?

12.3 What is a dynamic data structure?

12.4 What is a doubly linked list?

12.5 What is a header node for a linked list?

12.6 How is a queue different from a list?

12.7 What is a stack?

12.8 What is the Stack class?

summary of
key concepts

exercises 655

12.9 What do trees and graphs have in common?

12.10 What is the Java Collections API?

exercises
12.1 Suppose current is a reference to a Node object and that it cur-

rently refers to a specific node in a linked list. Show, in pseudocode,
the steps that would delete the node following current from the
list. Carefully consider the cases in which current is referring to
the first and last nodes in the list.

12.2 Modify your answer to Exercise 12.1 assuming that the list was set
up as a doubly linked list, with both next and prev references.

12.3 Suppose current and newNode are references to Node objects.
Assume current currently refers to a specific node in a linked list
and newNode refers to an unattached Node object. Show, in
pseudocode, the steps that would insert newNode behind current in
the list. Carefully consider the cases in which current is referring
to the first and last nodes in the list.

12.4 Modify your answer to Exercise 12.3 assuming that the list was set
up as a doubly linked list, with both next and prev references.

12.5 Would the front and rear references in the header node of a linked
list ever refer to the same node? Would they ever both be null?
Would one ever be null if the other was not? Explain your answers
using examples.

12.6 Show the contents of a queue after the following operations are per-
formed. Assume the queue is initially empty.

◗ enqueue (45);

◗ enqueue (12);

◗ enqueue (28);

◗ dequeue();

◗ dequeue();

◗ enqueue (69);

◗ enqueue (27);

◗ enqueue (99);

◗ dequeue();

656 CHAPTER 12 data structures

◗ enqueue (24);

◗ enqueue (85);

◗ enqueue (16);

◗ dequeue();

12.7 In terms of the final state of a queue, does it matter how dequeue
operations are intermixed with enqueue operations? Does it matter
how the enqueue operations are intermixed among themselves?
Explain using examples.

12.8 Show the contents of a stack after the following operations are per-
formed. Assume the stack is initially empty.

◗ push (45);

◗ push (12);

◗ push (28);

◗ pop();

◗ pop();

◗ push (69);

◗ push (27);

◗ push (99);

◗ pop();

◗ push (24);

◗ push (85);

◗ push (16);

◗ pop();

12.9 In terms of the final state of a stack, does it matter how the pop
operations are intermixed with the push operations? Does it matter
how the push operations are intermixed among themselves? Explain
using examples.

12.10 Would a tree data structure be a good choice to represent a family
tree that shows lineage? Why or why not? Would a binary tree be a
better choice? Why or why not?

12.11 What data structure would be a good choice to represent the links
between various Web sites? Give an example.

programming projects 657

programming projects
12.1 Consistent with the example from Chapter 6, design and implement

an application that maintains a collection of compact discs using a
linked list. In the main method of the a driver class, add various
CDs to the collection and print the list when complete.

12.2 Modify the MagazineRack program presented in this chapter by
adding delete and insert operations into the MagazineList class.
Have the Magazine class implement the Comparable interface, and
base the processing of the insert method on calls to the
compareTo method in the Magazine class that determines whether
one Magazine title comes before another lexicographically. In the
driver, exercise various insertion and deletion operations. Print the
list of magazines when complete.

12.3 Design and implement a version of selection sort (from Chapter 6)
that operates on a linked list of nodes that each contain an integer.

12.4 Design and implement a version of insertion sort (from Chapter 6)
that operates on a linked list of nodes that each contain an integer.

12.5 Design and implement an application that simulates the customers
waiting in line at a bank. Use a queue data structure to represent
the line. As customers arrive at the bank, customer objects are put
in the rear of the queue with an enqueue operation. When the teller
is ready to service another customer, the customer object is removed
from the front of the queue with a dequeue operation. Randomly
determine when new customers arrive at the bank and when current
customers are finished at the teller window. Print a message each
time an operation occurs during the simulation.

12.6 Modify the solution to the Programming Project 12.5 so that it rep-
resents eight tellers and therefore eight customer queues. Have new
customers go to the shortest queue. Determine which queue had the
shortest waiting time per customer on average.

12.7 Design and implement an application that evaluates a postfix
expression that operates on integer operands using the arithmetic
operators +, –, *, /, and %. We are already familiar with infix
expressions, in which an operator is positioned between its two
operands. A postfix expression puts the operators after its operands.
Keep in mind that an operand could be the result of another opera-

project657a.html
project657b.html
project657c.html

658 CHAPTER 12 data structures

tion. This eliminates the need for parentheses to force precedence.
For example, the following infix expression:

(5 + 2) * (8 – 5)

is equivalent to the following postfix expression.

5 2 + 8 5 – *

The evaluation of a postfix expression is facilitated by using a stack.
As you process a postfix expression from left to right, you
encounter operands and operators. If you encounter an operand,
push it on the stack. If you encounter an operator, pop two
operands off the stack, perform the operation, and push the result
back on the stack. When you have processed the entire expression,
there will be one value on the stack, which is the result of the entire
expression.

You may want to use a StringTokenizer object to assist in the
parsing of the expression. You can assume the expression will be in
valid postfix form.

For additional programming projects, click the CodeMate icon below:

12.8

answers to self-review questions
12.1 A collection is an object whose purpose is to store and organize

primitive data or other objects. Some collections represent classic
data structures that are helpful in particular problem solving
situations.

12.2 An abstract data type (ADT) is a collection of data and the opera-
tions that can be performed on that data. An object is essentially the
same thing in that we encapsulate related variables and methods in
an object. The object hides the underlying implementation of the
ADT, separating the interface from the underlying implementation,
permitting the implementation to be changed without affecting the
interface.

12.3 A dynamic data structure is constructed using references to link var-
ious objects together into a particular organization. It is dynamic in

project657d.html

answers to self-review questions 659

that it can grow and shrink as needed. New objects can be added to
the structure and obsolete objects can be removed from the struc-
ture at runtime by adjusting references between objects in the
structure.

12.4 Each node in a doubly linked list has references to both the node
that comes before it in the list and the node that comes after it in
the list. This organization allows for easy movement forward and
backward in the list, and simplifies some operations.

12.5 A header node for a linked list is a special node that holds informa-
tion about the list, such as references to the front and rear of the list
and an integer to keep track of how many nodes are currently in the
list.

12.6 A queue is a linear data structure like a list but it has more con-
straints on its use. A general list can be modified by inserting or
deleting nodes anywhere in the list, but a queue only adds nodes to
one end (enqueue) and takes them off of the other (dequeue). Thus
a queue uses a first-in, first-out (FIFO) approach.

12.7 A stack is a linear data structure that adds (pushes) and removes
(pops) nodes from one end. It manages information using a last-in,
first-out (LIFO) approach.

12.8 The Stack class is defined in the java.util package of the Java
standard class library. It implements a generic stack ADT. The
Stack class stores Object references, so the stack can be used to
store any kind of object.

12.9 Trees and graphs are both non-linear data structures, meaning that
the data they store is not organized in a linear fashion. Trees create
a hierarchy of nodes. The nodes in a graph are connected using gen-
eral edges.

12.10 The Java Collections API is a set of classes in the Java standard
class library that represents collections of various types, such as
ArrayList and LinkedList.

A
glossary

abstract—A Java reserved word that serves as a
modifier for classes, interfaces, and methods.
An abstract class cannot be instantiated and
is used to specify bodiless abstract methods that
are given definitions by derived classes.
Interfaces are inherently abstract.

abstract class—See abstract.

abstract data type (ADT)—A collection of data
and the operations that are defined on that
data. An abstract data type might be imple-
mented in a variety of ways, but the interface
operations are consistent.

abstract method—See abstract.

Abstract Windowing Toolkit (AWT)—The
package in the Java API (java.awt) that con-
tains classes related to graphics and graphical
user interfaces. See also Swing.

abstraction—The concept of hiding details. If
the right details are hidden at the right times,
abstraction can significantly help control com-
plexity and focus attention on appropriate
issues.

access—The ability to reference a variable or
invoke a method from outside the class in
which it is declared. Controlled by the visibility
modifier used to declare the variable or
method. Also called the level of encapsulation.
See also visibility modifier.

access modifier—See visibility modifier.

actual parameter—The value passed to a
method as a parameter. See also formal param-
eter.

adaptor class—See listener adaptor class.

address—(1) A numeric value that uniquely
identifies a particular memory location in a
computer’s main memory. (2) A designation
that uniquely identifies a computer among all
others on a network.

ADT—See abstract data type.

aggregate object—An object that contains vari-
ables that are references to other objects. See
also has-a relationship.

aggregation—Something that is composed, at
least in part, of other things. See also aggregate
object.

algorithm—A step-by-step process for solving a
problem. A program is based on one or more
algorithms.

alias—A reference to an object that is currently
also referred to by another reference. Each ref-
erence is an alias of the other.

analog—A representation that is in direct pro-
portion to the source of the information. See
also digital.

animation—A series of images or drawings that
give the appearance of movement when dis-
played in order at a particular speed.

API—See Application Programming Interface.

applet—A Java program that is linked into an
HTML document, then retrieved and executed
using a Web browser, as opposed to a stand-
alone Java application.

appletviewer—A software tool that interprets
and displays Java applets through links in
HTML documents. Part of the Java
Development Kit.

application—(1) A generic term for any pro-
gram. (2) A Java program that can be run with-
out the use of a Web browser, as opposed to a
Java applet.

Application Programming Interface (API)—A
set of classes that defines services for a pro-
grammer. Not part of the language itself, but
often relied on to perform even basic tasks. See
also class library.

arc angle—When defining an arc, the radial dis-
tance that defines the arc’s length. See also start
angle.

architectural design—A high-level design that
identifies the large portions of a software sys-
tem and key data structures. See also detailed
design.

architecture—See computer architecture.

662 APPENDIX A glossary

architecture neutral—Not specific to any particular
hardware platform. Java code is considered architec-
ture neutral because it is compiled into bytecode and
then interpreted on any machine with a Java inter-
preter.

arithmetic operator—An operator that performs a
basic arithmetic computation, such as addition or mul-
tiplication.

arithmetic promotion—The act of promoting the type
of a numeric operand to be consistent with the other
operand.

array—A programming language construct used to
store an ordered list of primitive values or objects.
Each element in the array is referenced using a numer-
ical index from 0 to N–1, where N is the size of the
array.

array element—A value or object that is stored in an
array.

array element type—The type of the values or objects
that are stored in an array.

ASCII—A popular character set used by many pro-
gramming languages. ASCII stands for American
Standard Code for Information Interchange. It is a
subset of the Unicode character set, which is used by
Java.

assembly language—A low-level language that uses
mnemonics to represent program commands.

assignment conversion—Some data types can be con-
verted to another in an assignment statement. See
widening conversion.

assignment operator—An operator that results in an
assignment to a variable. The = operator performs
basic assignment. Many other assignment operators
perform additional operations prior to the assignment,
such as the *= operator.

association—A relationship between two classes in
which one uses the other or relates to it in some way.
See also operator association, use relationship.

AWT—See Abstract Windowing Toolkit.

background color—(1) The color of the background
of a graphical user interface component. (2) The color
of the background of an HTML page. See also fore-
ground color.

base—The numerical value on which a particular
number system is based. It determines the number of
digits available in that number system and the place
value of each digit in a number. See also binary, deci-
mal, hexadecimal, octal, place value.

base 2—See binary.

base 8—See octal.

base 10—See decimal.

base 16—See hexadecimal.

base case—The situation that terminates recursive
processing, allowing the active recursive methods to
begin returning to their point of invocation.

base class—See superclass.

behavior—The functional characteristics of an object,
defined by its methods. See also identity, state.

binary—The base-2 number system. Modern com-
puter systems store information as strings of binary
digits (bits).

binary operator—An operator that uses two operands.

binary search—A searching algorithm that requires
that the list be sorted. It repetitively compares the
“middle” element of the list to the target value, nar-
rowing the scope of the search each time. See also lin-
ear search.

binary string—A series of binary digits (bits).

binary tree—A tree data structure in which each node
can have no more than two child nodes.

binding—The process of associating an identifier with
the construct that it represents. For example, the
process of binding a method name to the specific defi-
nition that it invokes.

bit—A binary digit, either 0 or 1.

bit shifting—The act of shifting the bits of a data value
to the left or right, losing bits on one end and insert-
ing bits on the other.

bits per second (bps)—A measurement rate for data
transfer devices.

bitwise operator—An operator that manipulates indi-
vidual bits of a value, either by calculation or by
shifting.

APPENDIX A glossary 663

black-box testing—Producing and evaluating test
cases based on the input and expected output of a
software component. The test cases focus on covering
the equivalence categories and boundary values of the
input. See also white-box testing.

block—A group of programming statements and dec-
larations delimited by braces ({}).

boolean—A Java reserved word representing a logical
primitive data type that can only take the values true
or false.

boolean expression—An expression that evaluates to
a true or false result, primarily used as conditions in
selection and repetition statements.

boolean operator—Any of the bitwise operators AND
(&), OR (|), or XOR (^) when applied to boolean
operands. The results are equivalent to their logical
counterparts, except that boolean operators are not
short-circuited.

border—A graphical edge around a graphical user
interface component to enhance its appearance or to
group components visually. An empty border creates a
buffer of space around a component.

bounding rectangle—A rectangle that delineates a
region in which an oval or arc is defined.

boundary values—The input values corresponding to
the edges of equivalence categories. Used in black-box
testing.

bounds checking—The process of determining
whether an array index is in bounds, given the size of
the array. Java performs automatic bounds checking.

bps—See bits per second.

break—A Java reserved word used to interrupt the
flow of control by breaking out of the current loop or
switch statement.

browser—Software that retrieves HTML documents
across network connections and formats them for
viewing. A browser is the primary vehicle for access-
ing the World Wide Web. See also Netscape
Navigator.

bug—A slang term for a defect or error in a computer
program.

build-and-fix approach—An approach to software
development in which a program is created without
any significant planning or design, then modified until
it reaches some level of acceptance. It is a prevalent,
but unwise, approach.

bus—A group of wires in the computer that carry data
between components such as the CPU and main mem-
ory.

button—A graphical user interface component that
allows the user to initiate an action, set a condition, or
choose an option with a mouse click. There are several
kinds of GUI buttons. See also check box, push but-
ton, radio button

byte—(1) A unit of binary storage equal to eight bits.
(2) A Java reserved word that represents a primitive
integer type, stored using eight bits in two’s comple-
ment format.

byte stream—An I/O stream that manages 8-bit bytes
of raw binary data. See also character stream.

bytecode—The low-level format into which the Java
compiler translates Java source code. The bytecodes
are interpreted and executed by the Java interpreter,
perhaps after transportation over the Internet.

capacity—See storage capacity.

case—(1) A Java reserved word that is used to identify
each unique option in a switch statement. (2) The ori-
entation of an alphabetic character (uppercase or low-
ercase).

case sensitive—Differentiating between the uppercase
and lowercase versions of an alphabetic letter. Java is
case sensitive; therefore the identifier total and the
identifier Total are considered to be different identi-
fiers.

cast—A Java operation expressed using a type or class
name in parentheses to explicitly convert and return a
value of one data type into another.

catch—A Java reserved word that is used to specify an
exception handler, defined after a try block.

CD-Recordable (CD-R)—A compact disc on which
information can be stored once using a home com-
puter with an appropriate drive. See also CD-
Rewritable, CD-ROM.

664 APPENDIX A glossary

CD-Rewritable (CD-RW)—A compact disc on which
information can be stored and rewritten multiple times
using a home computer with an appropriate drive. See
also CD-Recordable, CD-ROM.

CD-ROM—An optical secondary memory medium
that stores binary information in a manner similar to
a musical compact disc.

central processing unit (CPU)—The hardware compo-
nent that controls the main activity of a computer,
including the flow of information and the execution of
commands.

char—A Java reserved word that represents the primi-
tive character type. All Java characters are members of
the Unicode character set and are stored using 16 bits.

character font—A specification that defines the dis-
tinct look of a character when it is printed or drawn.

character set—An ordered list of characters, such as
the ASCII or Unicode character sets. Each character
corresponds to a specific, unique numeric value within
a given character set. A programming language adopts
a particular character set to use for character repre-
sentation and management.

character stream—An I/O stream that manages 16-bit
Unicode characters. See also byte stream.

character string—A series of ordered characters.
Represented in Java using the String class and string
literals such as “hello”.

check box—A graphical user interface component that
allows the user to set a boolean condition with a
mouse click. A check box can be used alone or inde-
pendently among other check boxes. See also radio
button.

checked exception—A Java exception that must be
either caught or explicitly thrown to the calling
method. See also unchecked exception.

child class—See subclass.

class—(1) A Java reserved word used to define a class.
(2) The blueprint of an object—the model that defines
the variables and methods an object will contain when
instantiated.

class diagram—A diagram that shows the relation-
ships between classes, including inheritance and use
relationships. See also Unified Modeling Language.

class hierarchy—A tree-like structure created when
classes are derived from other classes through inher-
itance. See also interface hierarchy.

class library—A set of classes that define useful ser-
vices for a programmer. See also Application Pro-
gramming Interface.

class method—A method that can be invoked using
only the class name. An instantiated object is not
required as it is with instance methods. Defined in a
Java program by using the static reserved word.

CLASSPATH—An operating system setting that deter-
mines where the Java interpreter searches for class
files.

class variable—A variable that is shared among all
objects of a class. It can also be referenced through the
class name, without instantiating any object of that
class. Defined in a Java program by using the static
reserved word.

client-server model—A manner in which to construct
a software design based on objects (clients) making use
of the services provided by other objects (servers).

coding guidelines—A series of conventions that
describe how programs should be constructed. They
make programs easier to read, exchange, and inte-
grate. Sometimes referred to as coding standards, espe-
cially when they are enforced.

coding standard—See coding guidelines.

cohesion—The strength of the relationship among the
parts within a software component. See also coupling.

collision—The process of two hash values producing
the same hash code. See also hash code, hashing.

color chooser—A graphical user interface component,
often displayed as a dialog box, that allows the user to
select or specify a color.

combo box—A graphical user interface component
that allows the user to select one of several options. A
combo box displays the most recent selection. See also
list.

command-line arguments—The values that follow the
program name on the command line. Accessed within
a Java program through the String array parameter
to the main method.

APPENDIX A glossary 665

comment—A programming language construct that
allows a programmer to embed human-readable
annotations into the source code. See also documen-
tation.

compiler—A program that translates code from one
language to equivalent code in another language. The
Java compiler translates Java source code into Java
bytecode. See also interpreter.

compile-time error—Any error that occurs during the
compilation process, often indicating that a program
does not conform to the language syntax or that an
operation was attempted on an inappropriate data
type. See also logical error, run-time error, syntax
error.

component—Any portion of a software system that
performs a specific task, transforming input to output.
See also GUI component.

computer architecture—The structure and interaction
of the hardware components of a computer.

concatenation—See string concatenation.

condition—A boolean expression used to determine
whether the body of a selection or repetition statement
should be executed.

conditional coverage—A strategy used in white-box
testing in which all conditions in a program are exe-
cuted, producing both true and false results. See
also statement coverage.

conditional operator—A Java ternary operator that
evaluates one of two expressions based on a condi-
tion.

conditional statement—See selection statement.

const—A Java reserved word that is not currently
used.

constant—An identifier that contains a value that can-
not be modified. Used to make code more readable
and to facilitate changes. Defined in Java using the
final modifier.

constructor—A special method in a class that is
invoked when an object is instantiated from the class.
Used to initialize the object.

container—A Java graphical user interface component
that can hold other components. See also containment
hierarchy.

containment hierarchy—The relationships among
graphical components of a user interface. See also con-
tainer.

content pane—The part of a top-level container to
which components are added.

control characters—See nonprintable characters.

controller—Hardware devices that control the inter-
action between a computer system and a particular
kind of peripheral.

coupling—The strength of the relationship between
two software components. See also cohesion.

CPU—See central processing unit.

data stream—An I/O stream that represents a particu-
lar source or destination for data, such as a file. See
also processing stream.

data structure—Any programming construct, either
defined in the language or by a programmer, used to
organize data into a format to facilitate access and
processing. Arrays, linked lists, and stacks can all be
considered data structures.

data type—A designation that specifies a set of values
(which may be infinite). For example, each variable
has a data type that specifies the kinds of values that
can be stored in it.

data transfer device—A hardware component that
allows information to be sent between computers,
such as a modem.

debugger—A software tool that allows a programmer
to step through an executing program and examine
the value of variables at any point. See also jdb.

decimal—The base-10 number system, which humans
use in everyday life. See also binary.

default—A Java reserved word that is used to indicate
the default case of a switch statement, used if no
other cases match.

default visibility—The level of access designated when
no explicit visibility modifier is used to declare a class,
interface, method, or variable. Sometimes referred to
as package visibility. Classes and interfaces declared
with default visibility can be used within their pack-
age. A method or variable declared with default visi-
bility is inherited and accessible by all subclasses in the
same package.

666 APPENDIX A glossary

defect testing—Testing designed to uncover errors in a
program.

defined—Existing for use in a derived class, even if it
can only be accessed indirectly. See also inheritance.

delimiter—Any symbol or word used to set the
boundaries of a programming language construct,
such as the braces ({}) used to define a Java block.

deprecated—Something, such as a particular method,
that is considered old-fashioned and should not be
used.

derived class—See subclass.

design—(1) The plan for implementing a program,
which includes a specification of the classes and
objects used and an expression of the important pro-
gram algorithms. (2) The process of creating a pro-
gram design.

desk check—A type of review in which a developer
carefully examines a design or program to find errors.

detailed design—(1) The low-level algorithmic steps of
a method. (2) The development stage at which low-
level algorithmic steps are determined.

development stage—The software life-cycle stage in
which a software system is first created, preceding use,
maintenance, and eventual retirement.

dialog box—A graphical window that pops up to
allow brief, specific user interaction.

digital—A representation that breaks information
down into pieces, which are in turn represented as
numbers. All modern computer systems are digital.

digitize—The act of converting an analog represen-
tation into a digital one by breaking it down into
pieces.

digraph—A graph data structure in which each edge
has a specific direction.

dimension—The number of index levels of a particular
array.

direct recursion—The process of a method invoking
itself. See also indirect recursion.

disable—Make a graphical user interface component
inactive so that it cannot be used. A disabled compo-
nent is grayed to indicate its disabled status. See also
enable.

DNS—See Domain Name System.

do—A Java reserved word that represents a repetition
construct. A do statement is executed one or more
times. See also for, while.

documentation—Supplemental information about a
program, including comments in a program’s source
code and printed reports such as a user’s guide.

domain name—The portion of an Internet address
that specifies the organization to which the computer
belongs.

Domain Name System (DNS)—Software that trans-
lates an Internet address into an IP address using a
domain server.

domain server—A file server that maintains a list of
Internet addresses and their corresponding IP
addresses.

double—A Java reserved word that represents a prim-
itive floating point numeric type, stored using 64 bits
in IEEE 754 format.

doubly linked list—A linked list with two references in
each node: one that refers to the next node in the list
and one that refers to the previous node in the list.

dynamic binding—The process of associating an iden-
tifier with its definition during run time. See also bind-
ing.

dynamic data structure—A set of objects that are
linked using references, which can be modified as
needed during program execution.

editor—A software tool that allows the user to enter
and store a file of characters on a computer. Often
used by programmers to enter the source code of a
program.

efficiency—The characteristic of an algorithm that
specifies the required number of a particular operation
in order to complete its task. For example, the effi-
ciency of a sort can be measured by the number of
comparisons required to sort a list. See also order.

element—A value or object stored in another object
such as an array.

element type—See array element type.

APPENDIX A glossary 667

else—A Java reserved word that designates the por-
tion of code in an if statement that will be executed
if the condition is false.

enable—Make a graphical user interface component
active so that it can be used. See also disable.

encapsulation—The characteristic of an object that
limits access to the variables and methods contained in
it. All interaction with an object occurs through a
well-defined interface that supports a modular design.

equality operator—One of two Java operators that
returns a boolean result based on whether two values
are equal (==) or not equal (!=).

equivalence category—A range of functionally equiva-
lent input values as specified by the requirements of
the software component. Used when developing
black-box test cases.

error—(1) Any defect in a design or program. (2) An
object that can be thrown and processed by special
catch blocks, though usually errors should not be
caught. See also compile-time error, exception, logical
error, run-time error, syntax error.

escape sequence—In Java, a sequence of characters
beginning with the backslash character (\), used to
indicate a special situation when printing values. For
example, the escape sequence \t specifies that a hori-
zontal tab should be printed.

exception—(1) A situation that arises during program
execution that is erroneous or out of the ordinary. (2)
An object that can be thrown and processed by special
catch blocks. See also error.

exception handler—The code in a catch clause of a
try statement, executed when a particular type of
exception is thrown.

exception propagation—The process that occurs when
an exception is thrown: control returns to each calling
method in the stack trace until the exception is caught
and handled or until the exception is thrown from the
main method, terminating the program.

exponent—The portion of a floating point value’s
internal representation that specifies how far the deci-
mal point is shifted. See also mantissa.

expression—A combination of operators and oper-
ands that produce a result.

extends—A Java reserved word used to specify the
parent class in the definition of a child class.

event—(1) A user action, such as a mouse click or key
press. (2) An object that represents a user action, to
which the program can respond. See also event-driven
programming.

event-driven programming—An approach to software
development in which the program is designed to
acknowledge that an event has occurred and to act
accordingly. See also event.

false—A Java reserved word that serves as one of the
two boolean literals (true and false).

fetch-decode-execute—The cycle through which the
CPU continually obtains instructions from main mem-
ory and executes them.

FIFO—See first-in, first-out.

file—A named collection of data stored on a second-
ary storage device such as a disk. See also text file.

file chooser—A graphical user interface component,
usually displayed as a dialog box, that allows the user
to select a file from a storage device.

file server—A computer in a network, usually with a
large secondary storage capacity, that is dedicated to
storing software needed by many network users.

filtering stream—See processing stream.

final—A Java reserved word that serves as a modifier
for classes, methods, and variables. A final class can-
not be used to derive a new class. A final method
cannot be overridden. A final variable is a constant.

finalize—A Java method defined in the Object class
that can be overridden in any other class. It is called
after the object becomes a candidate for garbage col-
lection and before it is destroyed. It can be used to per-
form “clean-up” activity that is not performed auto-
matically by the garbage collector.

finalizer method—A Java method, called finalize,
that is called before an object is destroyed. See also
finalize.

668 APPENDIX A glossary

finally—A Java reserved word that designates a block
of code to be executed when an exception is thrown,
after any appropriate catch handler is processed.

first-in, first-out (FIFO)—A data management tech-
nique in which the first value that is stored in a data
structure is the first value that comes out. See also last-
in, first-out; queue.

float—A Java reserved word that represents a primi-
tive floating point numeric type, stored using 32 bits in
IEEE 754 format.

flushing—The process of forcing the contents of the
output buffer to be displayed on the output device.

font—See character font.

for—A Java reserved word that represents a repetition
construct. A for statement is executed zero or more
times and is usually used when a precise number of
iterations is known.

foreground color—The color in which any current
drawing will be rendered. See also background color.

formal parameter—An identifier that serves as a
parameter name in a method. It receives its initial
value from the actual parameter passed to it. See also
actual parameter.

fourth-generation language—A high-level language
that provides built-in functionality such as automatic
report generation or database management, beyond
that of traditional high-level languages.

function—A named group of declarations and pro-
gramming statements that can be invoked (executed)
when needed. A function that is part of a class is called
a method. Java has no functions because all code is
part of a class.

garbage—(1) An unspecified or uninitialized value in a
memory location. (2) An object that cannot be
accessed anymore because all references to it have
been lost.

garbage collection—The process of reclaiming
unneeded, dynamically allocated memory. Java per-
forms automatic garbage collection of objects that no
longer have any valid references to them.

gigabyte (GB)—A unit of binary storage, equal to 230

(approximately 1 billion) bytes.

goto—(1) A Java reserved word that is not currently
used. (2) An unconditional branch.

grammar—A representation of language syntax that
specifies how reserved words, symbols, and identifiers
can be combined into valid programs.

graph—A non-linear data structure made up of nodes
and edges that connect the nodes. See also digraph.

graphical user interface (GUI)—Software that pro-
vides the means to interact with a program or operat-
ing system by making use of graphical images and
point-and-click mechanisms such as buttons and text
fields.

graphics context—The drawing surface and related
coordinate system on which a drawing is rendered or
graphical user interface components are placed.

GUI component—A visual element, such as a button
or text field, that is used to make up a graphical user
interface (GUI).

hardware—The tangible components of a computer
system, such as the keyboard, monitor, and circuit
boards.

has-a relationship—The relationship between two
objects in which one is composed, at least in part, of
one or more of the other. See also aggregate object, is-
a relationship.

hash code—An integer value calculated from any
given data value or object, used to determine where a
value should be stored in a hash table. Also called a
hash value. See also hashing.

hash method—A method that calculates a hash code
from a data value or object. The same data value or
object will always produce the same hash code. Also
called a hash function. See also hashing.

hash table—A data structure in which values are
stored for efficient retrieval. See also hashing.

hashing—A technique for storing items so that they
can be found efficiently. Items are stored in a hash
table at a position specified by a calculated hash code.
See also hash method.

hexadecimal—The base-16 number system, often used
as an abbreviated representation of binary strings.

APPENDIX A glossary 669

hierarchy—An organizational technique in which
items are layered or grouped to reduce complexity.

high-level language—A programming language in
which each statement represents many machine-level
instructions.

HTML—See HyperText Markup Language.

hybrid object-oriented language—A programming
language that can be used to implement a program in
a procedural manner or an object-oriented manner, at
the programmer’s discretion. See also pure object-
oriented language.

hypermedia—The concept of hypertext extended to
include other media types such as graphics, audio,
video, and programs.

hypertext—A document representation that allows a
user to easily navigate through it in other than a linear
fashion. Links to other parts of the document are
embedded at the appropriate places to allow the user
to jump from one part of the document to another. See
also hypermedia.

HyperText Markup Language (HTML)—The nota-
tion used to define Web pages. See also browser,
World Wide Web.

icon—A small, fixed-sized picture, often used to deco-
rate a graphical interface. See also image.

identifier—Any name that a programmer makes up to
use in a program, such as a class name or variable
name.

identity—The designation of an object, which, in Java,
is an object’s reference name. See also state, behavior.

IEEE 754—A standard for representing floating point
values. Used by Java to represent float and double
data types.

if—A Java reserved word that specifies a simple con-
ditional construct. See also else.

image—A picture, often specified using a GIF or JPEG
format. See also icon.

immutable—The characteristic of something that does
not change. For example, the contents of a Java char-
acter string are immutable once the string has been
defined.

implementation—(1) The process of translating a
design into source code. (2) The source code that
defines a method, class, abstract data type, or other
programming entity.

implements—A Java reserved word that is used in a
class declaration to specify that the class implements
the methods specified in a particular interface.

import—A Java reserved word that is used to specify
the packages and classes that are used in a particular
Java source code file.

index—The integer value used to specify a particular
element in an array.

index operator—The brackets ([]) in which an array
index is specified.

indirect recursion—The process of a method invoking
another method, which eventually results in the origi-
nal method being invoked again. See also direct recur-
sion.

infinite loop—A loop that does not terminate because
the condition controlling the loop never becomes
false.

infinite recursion—A recursive series of invocations
that does not terminate because the base case is never
reached.

infix expression—An expression in which the opera-
tors are positioned between the operands on which
they work. See also postfix expression.

inheritance—The ability to derive a new class from an
existing one. Inherited variables and methods of the
original (parent) class are available in the new (child)
class as if they were declared locally.

initialize—To give an initial value to a variable.

initializer list—A comma-separated list of values,
delimited by braces ({}), used to initialize and specify
the size of an array.

inline documentation—Comments that are included in
the source code of a program.

inner class—A nonstatic, nested class.

input/output buffer—A storage location for data on
its way from the user to the computer (input buffer) or
from the computer to the user (output buffer).

670 APPENDIX A glossary

input/output devices—Hardware components that
allow the human user to interact with the computer,
such as a keyboard, mouse, and monitor.

input/output stream—A sequence of bytes that repre-
sents a source of data (input stream) or a destination
for data (output stream).

insertion sort—A sorting algorithm in which each
value, one at a time, is inserted into a sorted subset of
the entire list. See also selection sort.

inspection—See walkthrough.

instance—An object created from a class. Multiple
objects can be instantiated from a single class.

instance method—A method that must be invoked
through a particular instance of a class, as opposed to
a class method.

instance variable—A variable that must be referenced
through a particular instance of a class, as opposed to
a class variable.

instanceof—A Java reserved word that is also an oper-
ator, used to determine the class or type of a variable.

instantiation—The act of creating an object from a
class.

int—A Java reserved word that represents a primitive
integer type, stored using 32 bits in two’s complement
format.

integration test—The process of testing software
components that are made up of other interacting
components. Stresses the communication between
components rather than the functionality of individ-
ual components.

interface—(1) A Java reserved word that is used to
define a set of abstract methods that will be imple-
mented by particular classes. (2) The set of messages
to which an object responds, defined by the methods
that can be invoked from outside of the object. (3) The
techniques through which a human user interacts with
a program, often graphically. See also graphical user
interface.

interface hierarchy—A tree-like structure created
when interfaces are derived from other interfaces
through inheritance. See also class hierarchy.

interpreter—A program that translates and executes
code on a particular machine. The Java interpreter
translates and executes Java bytecode. See also com-
piler.

Internet—The most pervasive wide-area network
in the world; it has become the primary vehicle for
computer-to-computer communication.

Internet address—A designation that uniquely iden-
tifies a particular computer or device on the Internet.

Internet Naming Authority—The governing body that
approves all Internet addresses.

invisible component—A graphical user interface com-
ponent that can be added to a container to provide
buffering space between other components.

invocation—See method invocation.

I/O devices—See input/output devices.

IP address—A series of several integer values, sepa-
rated by periods (.), that uniquely identifies a partic-
ular computer or device on the Internet. Each Internet
address has a corresponding IP address.

is-a relationship—The relationship created through
properly derived classes via inheritance. The subclass
is-a more specific version of the superclass. See also
has-a relationship.

ISO-Latin-1—A 128-character extension to the ASCII
character set defined by the International Standards
Organization (ISO). The characters correspond to the
numeric values 128 through 255 in both ASCII and
Unicode.

iteration—(1) One execution of the body of a repeti-
tion statement. (2) One pass through a cyclic process,
such as an iterative development process.

iteration statement—See repetition statement.

iterative development process—A step-by-step approach
for creating software, which contains a series of stages
that are performed repetitively.

Java Virtual Machine (JVM)—The conceptual device,
implemented in software, on which Java bytecode is
executed. Bytecode, which is architecture neutral, does
not run on a particular hardware platform; instead, it
runs on the JVM.

APPENDIX A glossary 671

java—The Java command-line interpreter, which
translates and executes Java bytecode. Part of the Java
Development Kit.

Java—The programming language used throughout
this text to demonstrate software development con-
cepts. Described by its developers as object oriented,
robust, secure, architecture neutral, portable, high-
performance, interpreted, threaded, and dynamic.

Java API—See Application Programming Interface.

Java Development Kit (JDK)—A collection of soft-
ware tools available free from Sun Microsystems, the
creators of the Java programming language. See also
Software Development Kit.

javac—The Java command-line compiler, which trans-
lates Java source code into Java bytecode. Part of the
Java Development Kit.

javadoc—A software tool that creates external docu-
mentation in HTML format about the contents and
structure of a Java software system. Part of the Java
Development Kit.

javah—A software tool that generates C header and
source files, used for implementing native methods.
Part of the Java Development Kit.

javap—A software tool that disassembles a Java class
file, containing unreadable bytecode, into a human-
readable version. Part of the Java Development Kit.

jdb—The Java command-line debugger. Part of the
Java Development Kit.

JDK—See Java Development Kit.

JVM—See Java Virtual Machine.

kilobit (Kb)—A unit of binary storage, equal to 210, or
1024 bits.

kilobyte (K or KB)—A unit of binary storage, equal to
210, or 1024 bytes.

label—(1) A graphical user interface component that
displays text, an image, or both. (2) An identifier in
Java used to specify a particular line of code. The
break and continue statements can jump to a spe-
cific, labeled line in the program.

LAN—See local-area network.

last-in, first-out (LIFO)—A data management tech-
nique in which the last value that is stored in a data
structure is the first value that comes out. See also
first-in, first-out; stack.

layout manager—An object that specifies the presen-
tation of graphical user interface components. Each
container is governed by a particular layout manager.

lexicographic ordering—The ordering of characters
and strings based on a particular character set such as
Unicode.

life cycle—The stages through which a software prod-
uct is developed and used.

LIFO—See last-in, first-out.

linear search—A search algorithm in which each item
in the list is compared to the target value until the tar-
get is found or the list is exhausted. See also binary
search.

link—(1) A designation in a hypertext document that
“jumps” to a new document (or to a new part of the
same document) when followed. (2) A connection
between two items in a dynamically linked structure,
represented as an object reference.

linked list—A dynamic data structure in which objects
are linked using references.

list—A graphical user interface component that pres-
ents a list of items from which the user can choose.
The current selection is highlighted in the list. See also
combo box.

listener—An object that is set up to respond to an
event when it occurs.

listener adaptor class—A class defined with empty
methods corresponding to the methods invoked when
particular events occur. A listener object can be
derived from an adaptor class. See also listener inter-
face.

listener interface—A Java interface that defines the
methods invoked when particular events occur. A lis-
tener object can be created by implementing a listener
interface. See also listener adaptor class.

literal—A primitive value used explicitly in a program,
such as the numeric literal 147 or the string literal
“hello”.

672 APPENDIX A glossary

local-area network (LAN)—A computer network
designed to span short distances and connect a rela-
tively small number of computers. See also wide-area
network.

local variable—A variable defined within a method,
which does not exist except during the execution of
the method.

logical error—A problem stemming from inappro-
priate processing in the code. It does not cause an
abnormal termination of the program, but it produces
incorrect results. See also compile-time error, run-time
error, syntax error.

logical line of code—A logical programming statement
in a source code program, which may extend over
multiple physical lines. See also physical line of code.

logical operator—One of the operators that perform
a logical NOT (!), AND (&&), or OR (||), returning a
boolean result. The logical operators are short-
circuited, meaning that if their left operand is suffi-
cient to determine the result, the right operand is not
evaluated.

long—A Java reserved word that represents a primi-
tive integer type, stored using 64 bits in two’s com-
plement format.

loop—See repetition statement.

loop control variable—A variable whose value spe-
cifically determines how many times a loop body is
executed.

low-level language—Either machine language or
assembly language, which are not as convenient to
construct software in as high-level languages are.

machine language—The native language of a partic-
ular CPU. Any software that runs on a particular CPU
must be translated into its machine language.

main memory—The volatile hardware storage device
where programs and data are held when they are
actively needed by the CPU. See also secondary mem-
ory.

maintenance—(1) The process of fixing errors in or
making enhancements to a released software product.
(2) The software life-cycle phase in which the software
is in use and changes are made to it as needed.

mantissa—The portion of a floating point value’s
internal representation that specifies the magnitude of
the number. See also exponent.

megabyte (MB)—A unit of binary storage, equal to
220 (approximately 1 million) bytes.

member—A variable or method in an object or class.

memory—Hardware devices that store programs and
data. See also main memory, secondary memory.

memory location—An individual, addressable cell
inside main memory into which data can be stored.

memory management—The process of controlling
dynamically allocated portions of main memory, espe-
cially the act of returning allocated memory when it is
no longer required. See also garbage collection.

method—A named group of declarations and pro-
gramming statements that can be invoked (executed)
when needed. A method is part of a class.

method call conversion—The automatic widening
conversion that can occur when a value of one type is
passed to a formal parameter of another type.

method definition—The specification of the code that
gets executed when the method is invoked. The defini-
tion includes declarations of local variables and formal
parameters.

method invocation—A line of code that causes a
method to be executed. It specifies any values that are
passed to the method as parameters.

method overloading—See overloading.

mnemonic—(1) A word or identifier that specifies a
command or data value in an assembly language. (2)
A keyboard character used as a alternative means to
activate a graphical user interface component such as
a button.

modal—Having multiple modes (such as a dialog
box).

modem—A data transfer device that allows informa-
tion to be sent along a telephone line.

modifier—A designation used in a Java declaration
that specifies particular characteristics to the construct
being declared.

APPENDIX A glossary 673

monitor—The screen in the computer system that
serves as an output device.

multidimensional array—An array that uses more
than one index to specify a value stored in it.

multiple inheritance—Deriving a class from more than
one parent, inheriting methods and variables from
each. Multiple inheritance is not supported in Java.

multiplicity—The numeric relationship between two
objects, often shown in class diagrams.

NaN—An abbreviation that stands for “not a num-
ber,” which is the designation for an inappropriate or
undefined numeric value.

narrowing conversion—A conversion between two
values of different but compatible data types. Nar-
rowing conversions could lose information because
the converted type usually has an internal represen-
tation smaller than the original storage space. See also
widening conversion.

native—A Java reserved word that serves as a modifier
for methods. A native method is implemented in
another programming language.

natural language—A language that humans use to
communicate, such as English or French.

negative infinity—A special floating point value that
represents the “lowest possible” value. See also posi-
tive infinity.

nested class—A class declared within another class in
order to facilitate implementation and restrict access.

nested if statement—An if statement that has as its
body another if statement.

Netscape Navigator—A popular World Wide Web
browser.

network—Two or more computers connected together
so that they can exchange data and share resources.

network address—See address.

new—A Java reserved word that is also an operator,
used to instantiate an object from a class.

newline character—A nonprintable character that
indicates the end of a line.

nonprintable characters—Any character, such as
escape or newline, that does not have a symbolic rep-

resentation that can be displayed on a monitor or
printed by a printer. See also printable characters.

nonvolatile—The characteristic of a memory device
that retains its stored information even after the
power supply is turned off. Secondary memory devices
are nonvolatile. See also volatile.

null—A Java reserved word that is a reference literal,
used to indicate that a reference does not currently
refer to any object.

number system—A set of values and operations
defined by a particular base value that determines the
number of digits available and the place value of each
digit.

object—(1) The primary software construct in the
object-oriented paradigm. (2) An encapsulated col-
lection of data variables and methods. (3) An instance
of a class.

object diagram—A visual representation of the objects
in a program at a given point in time, often showing
the status of instance data.

object-oriented programming—An approach to soft-
ware design and implementation that is centered
around objects and classes. See also procedural pro-
gramming.

octal—The base-8 number system, sometimes used to
abbreviate binary strings. See also binary, hexadeci-
mal.

off-by-one error—An error caused by a calculation or
condition being off by one, such as when a loop is set
up to access one too many array elements.

operand—A value on which an operator performs its
function. For example, in the expression 5 + 2, the val-
ues 5 and 2 are operands.

operating system—The collection of programs that
provide the primary user interface to a computer and
manage its resources, such as memory and the CPU.

operator—A symbol that represents a particular oper-
ation in a programming language, such as the addition
operator (+).

operator association—The order in which operators
within the same precedence level are evaluated, either

674 APPENDIX A glossary

right to left or left to right. See also operator prece-
dence.

operator overloading—Assigning additional meaning
to an operator. Operator overloading is not supported
in Java, though method overloading is.

operator precedence—The order in which operators
are evaluated in an expression as specified by a well-
defined hierarchy.

order—The dominant term in an equation that spec-
ifies the efficiency of an algorithm. For example, selec-
tion sort is of order n2.

overflow—A problem that occurs when a data value
grows too large for its storage size, which can result in
inaccurate arithmetic processing. See also underflow.

overloading—Assigning additional meaning to a pro-
gramming language construct, such as a method or
operator. Method overloading is supported by Java
but operator overloading is not.

overriding—The process of modifying the definition of
an inherited method to suit the purposes of the sub-
class. See also shadowing variables.

package—A Java reserved word that is used to specify
a group of related classes.

package visibility—See default visibility.

panel—A graphical user interface (GUI) container that
holds and organizes other GUI components.

parameter—(1) A value passed from a method invo-
cation to its definition. (2) The identifier in a method
definition that accepts the value passed to it when the
method is invoked. See also actual parameter, formal
parameter.

parameter list—The list of actual or formal parameters
to a method.

parent class—See superclass.

pass by reference—The process of passing a reference
to a value into a method as the parameter. In Java, all
objects are managed using references, so an object’s
formal parameter is an alias to the original. See also
pass by value.

pass by value—The process of making a copy of a
value and passing the copy into a method. Therefore

any change made to the value inside the method is not
reflected in the original value. All Java primitive types
are passed by value.

PDL—See Program Design Language.

peripheral—Any hardware device other than the CPU
or main memory.

persistence—The ability of an object to stay in exist-
ence after the executing program that creates it ter-
minates. See also serialize.

physical line of code—A line in a source code file, ter-
minated by a newline or similar character. See also log-
ical line of code.

pixel—A picture element. A digitized picture is made
up of many pixels.

place value—The value of each digit position in a
number, which determines the overall contribution of
that digit to the value. See also number system.

pointer—A variable that can hold a memory address.
Instead of pointers, Java uses references, which pro-
vide essentially the same functionality as pointers but
without the complications.

point-to-point connection—The link between two net-
worked devices that are connected directly by a wire.

polyline—A shape made up of a series of connected
line segments. A polyline is similar to a polygon, but
the shape is not closed.

polymorphism—An object-oriented technique by
which a reference that is used to invoke a method can
result in different methods being invoked at different
times. All Java method invocations are potentially
polymorphic in that they invoke the method of the
object type, not the reference type.

portability—The ability of a program to be moved
from one hardware platform to another without hav-
ing to change it. Because Java bytecode is not related
to any particular hardware environment, Java pro-
grams are considered portable. See also architecture
neutral.

positive infinity—A special floating point value that
represents the “highest possible” value. See also nega-
tive infinity.

APPENDIX A glossary 675

postfix expression—An expression in which an oper-
ator is positioned after the operands on which it
works. See also infix expression.

postfix operator—In Java, an operator that is posi-
tioned behind its single operand, whose evaluation
yields the value prior to the operation being performed.
Both the increment (++) and decrement (––) operators
can be applied postfix. See also prefix operator.

precedence—See operator precedence.

prefix operator—In Java, an operator that is posi-
tioned in front of its single operand, whose evaluation
yields the value after the operation has been per-
formed. Both the increment (++) and decrement (––)
operators can be applied prefix. See also postfix oper-
ator.

primitive data type—A data type that is predefined in
a programming language.

printable characters—Any character that has a sym-
bolic representation that can be displayed on a
monitor or printed by a printer. See also nonprintable
characters.

private—A Java reserved word that serves as a visi-
bility modifier for methods and variables. Private
methods and variables are not inherited by subclasses,
and can only be accessed in the class in which they are
declared.

procedural programming—An approach to software
design and implementation that is centered around
procedures (or functions) and their interaction. See
also object-oriented programming.

processing stream—An I/O stream that performs some
type of manipulation on the data in the stream.
Sometimes called a filtering stream. See also data
stream.

program—A series of instructions executed by hard-
ware, one after another.

Program Design Language (PDL)—A language in
which a program’s design and algorithms are
expressed. See also pseudocode.

programming language—A specification of the syntax
and semantics of the statements used to create a pro-
gram.

programming language statement—An individual
instruction in a given programming language.

prompt—A message or symbol used to request infor-
mation from the user.

propagation—See exception propagation.

protected—A Java reserved word that serves as a vis-
ibility modifier for methods and variables. Protected
methods and variables are inherited by all subclasses
and are accessible from all classes in the same pack-
age.

prototype—A program used to explore an idea or
prove the feasibility of a particular approach.

pseudocode—Structured and abbreviated natural lan-
guage used to express the algorithmic steps of a pro-
gram. See also Program Design Language.

pseudo–random number—A value generated by soft-
ware that performs extensive calculations based on an
initial seed value. The result is not truly random
because it is based on a calculation, but it is usually
random enough for most purposes.

public—A Java reserved word that serves as a visibil-
ity modifier for classes, interfaces, methods, and
variables. A public class or interface can be used any-
where. A public method or variable is inherited by all
subclasses and is accessible anywhere.

pure object-oriented language—A programming lan-
guage that enforces, to some degree, software devel-
opment using an object-oriented approach. See also
hybrid object-oriented language.

push button—A graphical user interface component
that allows the user to initiate an action with a mouse
click. See also check box, radio button.

queue—An abstract data type that manages infor-
mation in a first-in, first-out manner.

radio button—A graphical user interface component
that allows the user choose one of a set of options
with a mouse click. A radio button is useful only as
part of a group of other radio buttons. See also check
box.

RAM—See random access memory.

676 APPENDIX A glossary

random access device—A memory device whose infor-
mation can be directly accessed. See also random
access memory, sequential access device.

random access memory (RAM)—A term basically
interchangeable with main memory. Should probably
be called read-write memory, to distinguish it from
read-only memory.

random number generator—Software that produces a
pseudo–random number, generated by calculations
based on a seed value.

read-only memory (ROM)—Any memory device
whose stored information is stored permanently when
the device is created. It can be read from, but not writ-
ten to.

recursion—The process of a method invoking itself,
either directly or indirectly. Recursive algorithms
sometimes provide elegant, though perhaps inefficient,
solutions to a problem.

reference—A variable that holds the address of an
object. In Java, a reference can be used to interact with
an object, but its address cannot be accessed, set, or
operated on directly.

refinement—One iteration of a evolutionary develop-
ment cycle in which a particular aspect of the system,
such as the user interface or a particular algorithm, is
addressed.

refinement scope—The specific issues that are
addressed in a particular refinement during evolution-
ary software development.

register—A small area of storage in the CPU of the
computer.

relational operator—One of several operators that
determine the ordering relationship between two val-
ues: less than (<), less than or equal to (<=), greater
than (>), and greater than or equal to (>=). See also
equality operator.

release—A version of a software product that is made
available to the customer.

repetition statement—A programming construct that
allows a set of statements to be executed repetitively as
long as a particular condition is true. The body of the
repetition statement should eventually make the con-

dition false. Also called an iteration statement or loop.
See also do, for, while.

requirements—(1) The specification of what a pro-
gram must and must not do. (2) An early phase of the
software development process in which the program
requirements are established.

reserved word—A word that has special meaning in a
programming language and cannot be used for any
other purpose.

retirement—The phase of a program’s life cycle in
which the program is taken out of active use.

return—A Java reserved word that causes the flow of
program execution to return from a method to the
point of invocation.

return type—The type of value returned from a
method, specified before the method name in the
method declaration. Could be void, which indicates
that no value is returned.

reuse—Using existing software components to create
new ones.

review—The process of critically examining a design
or program to discover errors. There are many types
of reviews. See also desk check, walkthrough.

RGB value—A collection of three values that define a
color. Each value represents the contribution of the
primary colors red, green, and blue.

ROM—See read-only memory.

run-time error—A problem that occurs during pro-
gram execution that causes the program to terminate
abnormally. See also compile-time error, logical error,
syntax error.

scope—The areas within a program in which an iden-
tifier, such as a variable, can be referenced. See also
access.

scroll pane—A graphical user interface container that
offers a limited view of a component and provides
horizontal and/or vertical scrollbars to change that
view.

SDK—See Software Development Kit.

searching—The process of determining the existence
or location of a target value within a list of values. See
also binary search, linear search.

APPENDIX A glossary 677

secondary memory—Hardware storage devices, such
as magnetic disks or tapes, which store information in
a relatively permanent manner. See also main memory.

seed value—A value used by a random number gen-
erator as a base for the calculations that produce a
pseudo-random number.

selection sort—A sorting algorithm in which each
value, one at a time, is placed in its final, sorted posi-
tion. See also insertion sort.

selection statement—A programming construct that
allows a set of statements to be executed if a particu-
lar condition is true. See also if, switch.

semantics—The interpretation of a program or pro-
gramming construct.

sentinel value—A specific value used to indicate a spe-
cial condition, such as the end of input.

serialize—The process of converting an object into a
linear series of bytes so it can be saved to a file or sent
across a network. See also persistence.

service methods—Methods in an object that are
declared with public visibility and define a service that
the object’s client can invoke.

shadowing variables—The process of defining a vari-
able in a subclass that supersedes an inherited version.

short—A Java reserved word that represents a prim-
itive integer type, stored using 16 bits in two’s com-
plement format.

sibling—Two items in a tree or hierarchy, such as a
class inheritance hierarchy, that have the same parent.

sign bit—A bit in a numeric value that represents the
sign (positive or negative) of that value.

signed numeric value—A value that stores a sign (pos-
itive or negative). All Java numeric values are signed.
A Java character is stored as an unsigned value.

signature—The number, types, and order of the
parameters of a method. Overloaded methods must
each have a unique signature.

slider—A graphical user interface component that
allows the user to specify a numeric value within a
bounded range by moving a knob to the appropriate
place in the range.

software—(1) Programs and data. (2) The intangible
components of a computer system.

software component—See component.

Software Development Kit (SDK)—A collection of
software tools that assist in the development of soft-
ware. The Java Software Development Kit is another
name for the Java Development Kit.

software engineering—The discipline within computer
science that addresses the process of developing high-
quality software within practical constraints.

sorting—The process of putting a list of values into a
well-defined order. See also insertion sort, selection
sort.

split pane—A graphical user interface container that
displays two components, either side by side or one on
top of the other, separated by a moveable divider bar.

stack—An abstract data type that manages data in a
last-in, first-out manner.

stack trace—The series of methods called to reach a
certain point in a program. The stack trace can be
analyzed when an exception is thrown to assist the
programmer in tracking down the problem.

standard I/O stream—One of three common I/O
streams representing standard input (usually the key-
board), standard output (usually the monitor screen),
and standard error (also usually the monitor). See also
stream.

start angle—When defining an arc, the angle at which
the arc begins. See also arc angle.

state—The state of being of an object, defined by the
values of its data. See also behavior, identity.

statement—See programming language statement.

statement coverage—A strategy used in white-box
testing in which all statements in a program are exe-
cuted. See also condition coverage.

static—A Java reserved word that serves as a modifier
for methods and variables. A static method is also
called a class method and can be referenced without
an instance of the class. A static variable is also called
a class variable and is common to all instances of the
class.

678 APPENDIX A glossary

static data structure—A data structure that has a fixed
size and cannot grow and shrink as needed. See also
dynamic data structure.

storage capacity—The total number of bytes that can
be stored in a particular memory device.

stream—A source of input or a destination for output.

strictfp—A Java reserved word that is used to control
certain aspects of floating point arithmetic.

string—See character string.

string concatenation—The process of attaching the
beginning of one character string to the end of
another, resulting in one longer string.

strongly typed language—A programming language in
which each variable is associated with a particular
data type for the duration of its existence. Variables
are not allowed to take on values or be used in oper-
ations that are inconsistent with their type.

structured programming—An approach to program
development in which each software component has
one entry and exit point and in which the flow of con-
trol does not cross unnecessarily.

stub—A method that simulates the functionality of a
particular software component. Often used during
unit testing.

subclass—A class derived from another class via inher-
itance. Also called a derived class or child class. See
also superclass.

subscript—See index.

super—A Java reserved word that is a reference to the
parent class of the object making the reference. Often
used to invoke a parent’s constructor.

super reference—See super.

superclass—The class from which another class is
derived via inheritance. Also called a base class or par-
ent class. See also subclass.

support methods—Methods in an object that are not
intended for use outside the class. They provide sup-
port functionality for service methods. As such, they
are usually not declared with public visibility.

swapping—The process of exchanging the values of
two variables.

swing—The package in the Java API (javax.swing)
that contains classes related to graphical user inter-
faces. Swing provides alternative components than the
Abstract Windowing Toolkit package, but does not
replace it.

switch—A Java reserved word that specifies a com-
pound conditional construct.

synchronization—The process of ensuring that data
shared among multiple threads cannot be accessed by
more than one thread at a time. See also synchronized.

synchronized—A Java reserved word that serves as a
modifier for methods. Separate threads of a process
can execute concurrently in a method, unless the
method is synchronized, making it a mutually exclu-
sive resource. Methods that access shared data should
be synchronized.

syntax rules—The set of specifications that govern
how the elements of a programming language can be
put together to form valid statements.

syntax error—An error produced by the compiler
because a program did not conform to the syntax of
the programming language. Syntax errors are a subset
of compile-time errors. See also compile-time error,
logical error, run-time error, syntax rules.

tabbed pane—A graphical user interface (GUI) con-
tainer that presents a set of cards from which the user
can choose. Each card contains its own GUI compo-
nents.

target value—The value that is sought when per-
forming a search on a collection of data.

TCP/IP—Software that controls the movement of
messages across the Internet. The acronym stands for
Transmission Control Protocol/Internet Protocol.

terabyte (TB)—A unit of binary storage, equal to 240

(approximately 1 trillion) bytes.

termination—The point at which a program stops exe-
cuting.

ternary operator—An operator that uses three oper-
ands.

test case—A set of input values and user actions, along
with a specification of the expected output, used to
find errors in a system.

APPENDIX A glossary 679

testing—(1) The process of running a program with
various test cases in order to discover problems. (2)
The process of critically evaluating a design or pro-
gram.

text area—A graphical user interface component that
displays, or allows the user to enter, multiple lines of
data.

text field—A graphical user interface component that
displays, or allows the user to enter, a single line of
data.

text file—A file that contains data formatted as ASCII
or Unicode characters.

this—A Java reserved word that is a reference to the
object executing the code making the reference.

thread—An independent process executing within a
program. A Java program can have multiple threads
running in a program at one time.

throw—A Java reserved word that is used to start an
exception propagation.

throws—A Java reserved word that specifies that a
method may throw a particular type of exception.

timer—An object that generates an event at regular
intervals.

token—A portion of a string defined by a set of delim-
iters.

tool tip—A short line of text that appears when the
mouse pointer is allowed to rest on top of a particular
component. Usually, tool tips are used to inform the
user of the component’s purpose.

top-level domain—The last part of a network domain
name, such as edu or com.

transient—A Java reserved word that serves as a mod-
ifier for variables. A transient variable does not con-
tribute to the object’s persistent state, and therefore
does not need to be saved. See also serialize.

tree—A non-linear data structure that forms a hierar-
chy stemming from a single root node.

true—A Java reserved word that serves as one of the
two boolean literals (true and false).

truth table—A complete enumeration of all permu-
tations of values involved in a boolean expression, as
well as the computed result.

try—A Java reserved word that is used to define the
context in which certain exceptions will be handled if
they are thrown.

two-dimensional array—An array that uses two
indices to specify the location of an element. The two
dimensions are often thought of as the rows and
columns of a table. See also multidimensional array.

two’s complement—A technique for representing
numeric binary data. Used by all Java integer primitive
types (byte, short, int, long).

type—See data type.

UML—See Unified Modeling Language.

unary operator—An operator that uses only one
operand.

unchecked exception—A Java exception that does not
need to be caught or dealt with if the programmer so
chooses.

underflow—A problem that occurs when a floating
point value becomes too small for its storage size,
which can result in inaccurate arithmetic processing.
See also overflow.

Unicode—The international character set used to
define valid Java characters. Each character is repre-
sented using a 16-bit unsigned numeric value.

Unified Modeling Language (UML)—A graphical
notation for visualizing relationships among classes
and objects. Abbreviated UML. There are many types
of UML diagrams. See also class diagrams.

uniform resource locator (URL)—A designation for a
resource that can be located through a World Wide
Web browser.

unit test—The process of testing an individual soft-
ware component. May require the creation of stub
modules to simulate other system components.

unsigned numeric value—A value that does not store
a sign (positive or negative). The bit usually reserved
to represent the sign is included in the value, doubling
the magnitude of the number that can be stored. Java
characters are stored as unsigned numeric values, but
there are no primitive numeric types that are unsigned.

URL—See uniform resource locator.

680 APPENDIX A glossary

use relationship—A relationship between two classes,
often shown in a class diagram, that establishes that
one class uses another in some way, such as relying on
its services. See also association.

user interface—The manner in which the user interacts
with a software system, which is often graphical. See
also graphical user interface.

variable—An identifier in a program that represents a
memory location in which a data value is stored.

visibility modifier—A Java modifier that defines the
scope in which a construct can be accessed. The Java
visibility modifiers are public, protected, private,
and default (no modifier used).

void—A Java reserved word that can be used as a
return value for a method, indicating that no value is
returned.

volatile—(1) A Java reserved word that serves as a
modifier for variables. A volatile variable might be
changed asynchronously and therefore indicates that
the compiler should not attempt optimizations on it.
(2) The characteristic of a memory device that loses
stored information when the power supply is inter-
rupted. Main memory is a volatile storage device. See
also nonvolatile.

von Neumann architecture—The computer architec-
ture named after John von Neumann, in which
programs and data are stored together in the same
memory devices.

walkthrough—A form of review in which a group of
developers, managers, and quality assurance personnel
examine a design or program in order to find errors.
Sometimes referred to as an inspection. See also desk
check.

WAN—See wide-area network.

waterfall model—One of the earliest software devel-
opment process models. It defines a basically linear
interaction between the requirements, design, imple-
mentation, and testing stages.

Web—See World Wide Web.

while—A Java reserved word that represents a repe-
tition construct. A while statement is executed zero or
more times. See also do, for.

white-box testing—Producing and evaluating test
cases based on the interior logic of a software com-
ponent. The test cases focus on stressing decision
points and ensuring coverage. See also black-box test-
ing, condition coverage, statement coverage.

white space—Spaces, tabs, and blank lines that are
used to set off sections of source code to make pro-
grams more readable.

wide-area network (WAN)—A computer network that
connects two or more local area networks, usually
across long geographic distances. See also local-area
network.

widening conversion—A conversion between two val-
ues of different but compatible data types. Widening
conversions usually leave the data value intact because
the converted type has an internal representation equal
to or larger than the original storage space. See also
narrowing conversion.

word—A unit of binary storage. The size of a word
varies by computer, and is usually two, four, or eight
bytes. The word size indicates the amount of informa-
tion that can be moved through the machine at one
time.

World Wide Web (WWW or Web)—Software that
makes the exchange of information across a network
easier by providing a common user interface for mul-
tiple types of information. Web browsers are used to
retrieve and format HTML documents.

wrapper class—A class designed to store a primitive
type in an object. Usually used when an object refer-
ence is needed and a primitive type would not suffice.

WWW—See World Wide Web.

B
number systems

This appendix contains a detailed introduction to number systems and their
underlying characteristics. The particular focus is on the binary number system,
its use with computers, and its similarities to other number systems. This intro-
duction also covers conversions between bases.

In our everyday lives, we use the decimal number system to represent values,
to count, and to perform arithmetic. The decimal system is also referred to as the
base-10 number system. We use 10 digits (0 through 9) to represent values in the
decimal system.

Computers use the binary number system to store and manage information.
The binary system, also called the base-2 number system, has only two digits (0
and 1). Each 0 and 1 is called a bit, short for binary digit. A series of bits is called
a binary string.

There is nothing particularly special about either the binary or decimal sys-
tems. Long ago, humans adopted the decimal number system probably because
we have 10 fingers on our hands. If humans had 12 fingers, we would probably
be using a base-12 number system regularly and find it as easy to deal with as we
do the decimal system now. It all depends on what you get used to. As you
explore the binary system, it will become more familiar and natural.

Binary is used for computer processing because the devices used to manage and
store information are less expensive and more reliable if they have to represent
only two possible values. Computers have been made that use the decimal system,
but they are not as convenient.

There are an infinite number of number systems, and they all follow the same
basic rules. You already know how the binary number system works, but you just
might not be aware that you do. It all goes back to the basic rules of arithmetic.

place value
In decimal, we represent the values of 0 through 9 using only one digit. To rep-
resent any value higher than 9, we must use more than one digit. The position of
each digit has a place value that indicates the amount it contributes to the over-
all value. In decimal, we refer to the one’s column, the ten’s column, the hundred’s
column, and so on forever.

Each place value is determined by the base of the number system, raised to
increasing powers as we move from right to left. In the decimal number system,
the place value of the digit furthest to the right is 100, or 1. The place value of
the next digit is 101, or 10. The place value of the third digit from the right is 102,

682 APPENDIX B number systems

or 100, and so on. Figure B.1 shows how each digit in a decimal number con-
tributes to the value.

The binary system works the same way except that we exhaust the available
digits much sooner. We can represent 0 and 1 with a single bit, but to represent
any value higher than 1, we must use multiple bits.

The place values in binary are determined by increasing powers of the base as
we move right to left, just as they are in the decimal system. However, in binary,
the base value is 2. Therefore the place value of the bit furthest to the right is 20,
or 1. The place value of the next bit is 21, or 2. The place value of the third bit
from the right is 22, or 4, and so on. Figure B.2 shows a binary number and its
place values.

The number 1101 is a valid binary number, but it is also a valid decimal num-
ber as well. Sometimes to make it clear which number system is being used, the
base value is appended as a subscript to the end of a number. Therefore you can
distinguish between 11012, which is equivalent to 13 in decimal, and 110110 (one
thousand, one hundred and one), which in binary is represented as
100010011012.

A number system with base N has N digits (0 through N–1). As we have seen,
the decimal system has 10 digits (0 through 9), and the binary system has two dig-
its (0 and 1). They all work the same way. For instance, the base-5 number sys-
tem has five digits (0 to 4).

Note that, in any number system, the place value of the digit furthest to the
right is 1, since any base raised to the zero power is 1. Also notice that the value
10, which we refer to as “ten” in the decimal system, always represents the base
value in any number system. In base 10, 10 is one 10 and zero 1’s. In base 2, 10
is one 2 and zero 1’s. In base 5, 10 is one 5 and zero 1’s.

figure B.1 Place values in the decimal system

Place value:

Decimal number:

Decimal number:

103 102 101 100

8

8

4

4

2

2

103

1000

102

100

101

10

*

*

*

*

*

*

100

1 8427

*

*

+

+

+

+

7

7

+

+

=

=

8 4 2 7

APPENDIX B number systems 683

bases higher than 10
Since all number systems with base N have N digits, then base 16 has 16 digits.
But what are they? We are used to the digits 0 through 9, but in bases higher than
10, we need a single digit, a single symbol, that represents the decimal value 10.
In fact, in base 16, which is also called hexadecimal, we need digits that represent
the decimal values 10 through 15.

For number systems higher than 10, we use alphabetic characters as single dig-
its for values greater than 9. The hexadecimal digits are 0 through F, where 0
through 9 represent the first 10 digits, and A represents the decimal value 10, B
represents 11, C represents 12, D represents 13, E represents 14, and F represents
15.

Therefore the number 2A8E is a valid hexadecimal number. The place values
are determined as they are for decimal and binary, using increasing powers of the
base. So in hexadecimal, the place values are powers of 16. Figure B.3 shows how
the place values of the hexadecimal number 2A8E contribute to the overall value.

All number systems with bases greater than 10 use letters as digits. For exam-
ple, base 12 has the digits 0 through B and base 19 has the digits 0 through I.
However, beyond having a different set of digits and a different base, the rules
governing each number system are the same.

Keep in mind that when we change number systems, we are simply changing
the way we represent values, not the values themselves. If you have 1810 pencils,
it may be written as 10010 in binary or as 12 in hexadecimal, but it is still the
same number of pencils.

figure B.2 Place values in the binary system

Place value:

Binary number:

Decimal number: 1

1

1

1

0

0

23

8

22

4

21

2

*

*

*

*

*

*

20

1 13

*

*

+

+

+

+

1

1

+

+

=

=

23 22 21 20

1 1 0 1

684 APPENDIX B number systems

Figure B.4 shows the representations of the decimal values 0 through 20 in sev-
eral bases, including base 8, which is also called octal. Note that the larger the
base, the higher the value that can be represented in a single digit.

conversions
We’ve already seen how a number in another base is converted to decimal by
determining the place value of each digit and computing the result. This process
can be used to convert any number in any base to its equivalent value in base 10.

Now let’s reverse the process, converting a base-10 value to another base. First,
find the highest place value in the new number system that is less than or equal
to the original value. Then divide the original number by that place value to
determine the digit that belongs in that position. The remainder is the value that
must be represented in the remaining digit positions. Continue this process, posi-
tion by position, until the entire value is represented.

For example, Fig. B.5 shows the process of converting the decimal value 180
into binary. The highest place value in binary that is less than or equal to 180 is
128 (or 27), which is the eighth bit position from the right. Dividing 180 by 128
yields 1 with 52 remaining. Therefore the first bit is 1, and the decimal value 52
must be represented in the remaining seven bits. Dividing 52 by 64, which is the
next place value (26), yields 0 with 52 remaining. So the second bit is 0. Dividing
52 by 32 yields 1 with 20 remaining. So the third bit is 1 and the remaining five
bits must represent the value 20. Dividing 20 by 16 yields 1 with 4 remaining.
Dividing 4 by 8 yields 0 with 4 remaining. Dividing 4 by 4 yields 0 with 0
remaining.

figure B.3 Place values in the hexadecimal system

Place value:

Hexadecimal number:

Decimal number: 2

2

10

10

8

8

163

4096

162

256

161

16

*

*

*

*

*

*

160

1 10893

*

*

+

+

+

+

13

13

+

+

=

=

103 102 101 100

2 A 8 E

APPENDIX B number systems 685

Since the number has been completely represented, the rest of the bits are zero.
Therefore 18010 is equivalent to 10110100 in binary. This can be confirmed by
converting the new binary number back to decimal to make sure we get the orig-
inal value.

This process works to convert any decimal value to any target base. For each
target base, the place values and possible digits change. If you start with the cor-
rect place value, each division operation will yield a valid digit in the new base.

figure B.4 Counting in various number systems

Binary
(base 2)

Octal
(base 8)

Decimal
(base 10)

Hexadecimal
(base 16)

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

10001

10010

10011

10100

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

686 APPENDIX B number systems

In the example in Fig. B.5, the only digits that could have resulted from each
division operation would have been 1 or 0, since we were converting to binary.
However, when we are converting to other bases, any valid digit in the new base
could result. For example, Fig. B.6 shows the process of converting the decimal
value 1967 into hexadecimal.

The place value of 256, which is 162, is the highest place value less than or
equal to the original number, since the next highest place value is 163 or 4096.
Dividing 1976 by 256 yields 7 with 175 remaining. Dividing 175 by 16 yields 10
with 15 remaining. Remember that 10 in decimal can be represented as the sin-

figure B.5 Converting a decimal value into binary

Place
value Number Digit

128

64

32

16

8

4

2

1

180

52

52

20

4

4

0

0

1

0

1

1

0

1

0

0

18010 = 101101002

figure B.6 Converting a decimal value into hexadecimal

Place
value Number Digit

256

16

1

1967

175

15

7

A

F

196710 = 7AF16

APPENDIX B number systems 687

gle digit A in hexadecimal. The 15 remaining can be represented as the digit F.
Therefore 196710 is equivalent to 7AF in hexadecimal.

shortcut conversions
We have established techniques for converting any value in any base to its equiv-
alent representation in base 10, and from base 10 to any other base. Therefore
you can now convert a number in any base to any other base by going through
base 10. However, an interesting relationship exists between the bases that are
powers of 2, such as binary, octal, and hexadecimal, which allows very quick con-
versions between them.

To convert from binary to hexadecimal, for instance, you can simply group the
bits of the original value into groups of four, starting from the right, then convert
each group of four into a single hexadecimal digit. The example in Fig. B.7
demonstrates this process.

To go from hexadecimal to binary, we reverse this process, expanding each
hexadecimal digit into four binary digits. Note that you may have to add leading
zeros to the binary version of each expanded hexadecimal digit if necessary to
make four binary digits. Figure B.8 shows the conversion of the hexadecimal
value 40C6 to binary.

Why do we section the bits into groups of four when converting from binary
to hexadecimal? The shortcut conversions work between binary and any base

figure B.7 Shortcut conversion from binary to hexadecimal

1011111101100112 = 5FB316

101111110110011

1011

BF5 3

5FB3

101 1111 0011

688 APPENDIX B number systems

that is a power of 2. We section the bits into groups of that power. Since 24 = 16,
we section the bits in groups of four.

Converting from binary to octal is the same process except that the bits are sec-
tioned into groups of three, since 23 = 8. Likewise, when converting from octal
to binary, we expand each octal digit into three bits.

To convert between, say, hexadecimal and octal is now a process of doing two
shortcut conversions. First convert from hexadecimal to binary, then take that
result and perform a shortcut conversion from binary to octal.

By the way, these types of shortcut conversions can be performed between any
base B and any base that is a power of B. For example, conversions between base
3 and base 9 can be accomplished using the shortcut grouping technique, sec-
tioning or expanding digits into groups of two, since 32 = 9.

figure B.8 Shortcut conversion from hexadecimal to binary

40C616 = 1000000110001102

100000011000110

40C6

11000100 0000 0110

C
the unicode character set

The Java programming language uses the Unicode character set for managing
text. A character set is simply an ordered list of characters, each corresponding to
a particular numeric value. Unicode is an international character set that contains
letters, symbols, and ideograms for languages all over the world. Each character
is represented as a 16-bit unsigned numeric value. Unicode, therefore, can sup-
port over 65,000 unique characters. Only about half of those values have char-
acters assigned to them at this point. The Unicode character set continues to be
refined as characters from various languages are included.

Many programming languages still use the ASCII character set. ASCII stands
for the American Standard Code for Information Interchange. The 8-bit extended
ASCII set is quite small, so the developers of Java opted to use Unicode in order
to support international users. However, ASCII is essentially a subset of Unicode,
including corresponding numeric values, so programmers used to ASCII should
have no problems with Unicode.

Figure C.1 shows a list of commonly used characters and their Unicode
numeric values. These characters also happen to be ASCII characters. All of the
characters in Fig. C.1 are called printable characters because they have a symbolic
representation that can be displayed on a monitor or printed by a printer. Other
characters are called nonprintable characters because they have no such symbolic
representation. Note that the space character (numeric value 32) is considered a
printable character, even though no symbol is printed when it is displayed.
Nonprintable characters are sometimes called control characters because many of
them can be generated by holding down the control key on a keyboard and press-
ing another key.

The Unicode characters with numeric values 0 through 31 are nonprintable
characters. Also, the delete character, with numeric value 127, is a nonprintable
character. All of these characters are ASCII characters as well. Many of them have
fairly common and well-defined uses, while others are more general. The table in
Fig. C.2 lists a small sample of the nonprintable characters.

Nonprintable characters are used in many situations to represent special con-
ditions. For example, certain nonprintable characters can be stored in a text doc-
ument to indicate, among other things, the beginning of a new line. An editor will
process these characters by starting the text that follows it on a new line, instead
of printing a symbol to the screen. Various types of computer systems use differ-
ent nonprintable characters to represent particular conditions.

Except for having no visible representation, nonprintable characters are essen-
tially equivalent to printable characters. They can be stored in a Java character
variable and be part of a character string. They are stored using 16 bits, can be
converted to their numeric value, and can be compared using relational operators.

690 APPENDIX C the unicode character set

The first 128 characters of the Unicode character set correspond to the com-
mon ASCII character set. The first 256 characters correspond to the ISO-Latin-1
extended ASCII character set. Many operating systems and Web browsers will
handle these characters, but they may not be able to print the other Unicode
characters.

figure C.1 A small portion of the Unicode character set

Value Char Value Char Value Char Value Char Value Char

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

3

4

5

6

7

8

9

:

;

<

>

?

@

A

B

C

D

E

Y

Z

[

\

]

ˆ

–

'

a

b

c

d

e

f

g

h

i

j

k

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

space

!

"

#

$

%

&

'

(

)

*

+

'

–

.

/

0

1

2

=

APPENDIX C the unicode character set 691

figure C.2 Some nonprintable characters in the Unicode character set

Value Character

0

7

8

9

10

12

13

27

127

null

bell

backspace

tab

line feed

form feed

carriage return

escape

delete

D
java operators

Java operators are evaluated according to the precedence hierarchy shown in Fig.
D.1. Operators at low precedence levels are evaluated before operators at higher
levels. Operators within the same precedence level are evaluated according to the
specified association, either right to left (R to L) or left to right (L to R).
Operators in the same precedence level are not listed in any particular order.

figure D.1 Java operator precedence

Precedence
Level

Operator Operation Associates

array indexing
object member reference
parameter evaluation and method invocation
postfix increment
postfix decrement

1 L to R

prefix increment
prefix decrement
unary plus
unary minus
bitwise NOT
logical NOT

R to L

[]

.

(parameters)
++

--

2 ++

--

+

-

~

!

object instantiation
cast

R to L3 new

(type)

multiplication
division
remainder

L to R4 *

/

%

addition
string concatenation
subtraction

L to R5 +

+

-

less than
less than or equal
greater than
greater than or equal
type comparison

L to R7 <

<=

>

>=

instanceof

equal
not equal

L to R8 ==

!=

left shift
right shift with sign
right shift with zero

6 <<

>>

>>>

694 APPENDIX D java operators

The order of operator evaluation can always be forced by the use of parenthe-
ses. It is often a good idea to use parentheses even when they are not required to
make it explicitly clear to a human reader how an expression is evaluated.

For some operators, the operand types determine which operation is carried
out. For instance, if the + operator is used on two strings, string concatenation is
performed, but if it is applied to two numeric types, they are added in the arith-
metic sense. If only one of the operands is a string, the other is converted to a
string, and string concatenation is performed. Similarly, the operators &, ^, and |
perform bitwise operations on numeric operands but boolean operations on
boolean operands. Appendix E describes the bitwise and boolean operators in
more detail.

figure D.1 Java operator precedence, continued

Precedence
Level

Operator Operation Associates

bitwise AND
boolean AND

L to R9 &

&

bitwise XOR
boolean XOR

L to R10 ˆ

ˆ

bitwise OR
boolean OR

L to R11 |

|

logical AND L to R12 &&

logical OR L to R13 ||

conditional operator R to L14 ?:

assignment
addition, then assignment
string concatenation, then assignment
subtraction, then assignment
multiplication, then assignment
division, then assignment
remainder, then assignment
left shift, then assignment
right shift (sign), then assignment
right shift (zero), then assignment
bitwise AND, then assignment
boolean AND, then assignment
bitwise XOR, then assignment
boolean XOR, then assignment
bitwise OR, the assignment
boolean OR, the assignment

R to L15 =

+=

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

&=

ˆ=

ˆ=

|=

|=

APPENDIX D java operators 695

The boolean operators & and | differ from the logical operators && and || in
a subtle way. The logical operators are “short-circuited” in that if the result of an
expression can be determined by evaluating only the left operand, the right
operand is not evaluated. The boolean versions always evaluate both sides of the
expression. There is no logical operator that performs an exclusive OR (XOR)
operation.

E
java bitwise operators

This appendix discusses the Java bitwise operators, which operate on individual
bits within a primitive value. They are defined only for integers and characters.
They are unique among all Java operators because they let us work at the lowest
level of binary storage. Figure E.1 lists the Java bitwise operators.

Three of the bitwise operators are similar to the logical operators !, &&, and
||. The bitwise NOT, AND, and OR operations work basically the same way as
their logical counterparts, except they work on individual bits of a value. The
rules are essentially the same. Figure E.2 shows the results of bitwise operators on
all combinations of two bits. Compare this chart to the truth tables for the logi-
cal operators in Chapter 3 to see the similarities.

The bitwise operators include the XOR operator, which stands for exclusive
OR. The logical || operator is an inclusive OR operation, which means it returns
true if both operands are true. The | bitwise operator is also inclusive and yields
a 1 if both corresponding bits are 1. However, the exclusive OR operator (^)
yields a 0 if both operands are 1. There is no logical exclusive OR operator in
Java.

When the bitwise operators are applied to integer values, the operation is per-
formed individually on each bit in the value. For example, suppose the integer
variable number is declared to be of type byte and currently holds the value 45.
Stored as an 8-bit byte, it is represented in binary as 00101101. When the bitwise
complement operator (~) is applied to number, each bit in the value is inverted,

figure E.1 Java bitwise operators

Operator Description

~

&

|

ˆ

<<

>>

>>>

bitwise NOT

bitwise AND

bitwise OR

bitwise XOR

left shift

right shift with sign

right shift with zero fill

698 APPENDIX E java bitwise operators

yielding 11010010. Since integers are stored using two’s complement representa-
tion, the value represented is now negative, specifically –46.

Similarly, for all bitwise operators, the operations are applied bit by bit,
which is where the term “bitwise” comes from. For binary operators (with two
operands), the operations are applied to corresponding bits in each operand. For
example, assume num1 and num2 are byte integers, and num1 holds the value 45,
and num2 holds the value 14. Figure E.3 shows the results of several bitwise
operations.

The operators &, |, and ^ can also be applied to boolean values, and they have
basically the same meaning as their logical counterparts. When used with boolean
values, they are called boolean operators. However, unlike the operators && and
||, which are “short-circuited,” the boolean operators are not short-circuited.
Both sides of the expression are evaluated every time.

Like the other bitwise operators, the three bitwise shift operators manipulate
the individual bits of an integer value. They all take two operands. The left
operand is the value whose bits are shifted; the right operand specifies how many
positions they should move. Prior to performing a shift, byte and short values

figure E.2 Bitwise operations on individual bits

a b ~ a a | ba & b a ˆ b

0

0

1

1

0

0

0

1

0

1

1

1

0

1

1

0

0

1

0

1

1

1

0

0

figure E.3 Bitwise operations on bytes

num1 & num2 num1 | num2 num1 ˆ num2

00101101

& 00001110

= 00001100

00101101

| 00001110

= 00101111

00101101

ˆ 00001110

= 00100011

APPENDIX E java bitwise operators 699

are promoted to int for all shift operators. Furthermore, if either of the operands
is long, the other operand is promoted to long. For readability, we use only 16
bits in the examples in this section, but the concepts are the same when carried
out to 32- or 64-bit strings.

When bits are shifted, some bits are lost off one end, and others need to be
filled in on the other. The left shift operator (<<) shifts bits to the left, filling the
right bits with zeros. For example, if the integer variable number currently has the
value 13, then the statement

number = number << 2;

stores the value 52 into number. Initially, number contains the bit string
0000000000001101. When shifted to the left, the value becomes
0000000000110100, or 52. Notice that for each position shifted to the left, the
original value is multiplied by 2.

The sign bit of a number is shifted along with all of the others. Therefore the
sign of the value could change if enough bits are shifted to change the sign bit.
For example, the value –8 is stored in binary two’s complement form as
1111111111111000. When shifted left two positions, it becomes
1111111111100000, which is –32. However, if enough positions are shifted, a
negative number can become positive and vice versa.

There are two forms of the right shift operator: one that preserves the sign of
the original value (>>) and one that fills the leftmost bits with zeros (>>>).

Let’s examine two examples of the right-shift-with-sign-fill operator. If the int
variable number currently has the value 39, the expression (number >> 2)

results in the value 9. The original bit string stored in number is
0000000000100111, and the result of a right shift two positions is
0000000000001001. The leftmost sign bit, which in this case is a zero, is used to
fill from the left.

If number has an original value of –16, or 1111111111110000, the right shift
(with sign fill) expression (number >> 3) results in the binary string
1111111111111110, or –2. The leftmost sign bit is a 1 in this case and is used to
fill in the new left bits, maintaining the sign.

If maintaining the sign is not desirable, the right-shift-with-zero-fill operator
(>>>) can be used. It operates similarly to the >> operator but fills with zero no
matter what the sign of the original value is.

F
java modifiers

This appendix summarizes the modifiers that give particular characteristics to Java
classes, interfaces, methods, and variables. For discussion purposes, the set of all
Java modifiers is divided into two groups: visibility modifiers and all others.

java visibility modifiers
The table in Fig. F.1 describes the effect of Java visibility modifiers on various
constructs. Some relationships are not applicable (N/A). For instance, a class can-
not be declared with protected visibility. Note that each visibility modifier oper-
ates in the same way on classes and interfaces and in the same way on methods
and variables.

Default visibility means that no visibility modifier was explicitly used. Default
visibility is sometimes called package visibility, but you cannot use the reserved
word package as a modifier. Classes and interfaces can have default or public vis-
ibility; this visibility determines whether a class or interface can be referenced out-
side of its package. Only an inner class can have private visibility, in which case
only the enclosing class may access it.

When applied to methods and variables, the visibility modifiers dictate two
specific characteristics:

◗ Inheritance, which determines whether a method or variable can be refer-
enced in a subclass as if it were declared locally.

◗ Access, or the degree of encapsulation, which determines the scope in which
a method or variable can be directly referenced. All methods and variables
are accessible in the class in which they are declared.

figure F.1 Java visibility modifiers

Modifier Classes and interfaces Methods and variables

default (no modifier) Visible in its package. Inherited by any subclass in the same package as its class.

Accessible by any class in the same package as its class.

Visible anywhere. Inherited by all subclasses of its class.

Accessible anywhere.

N/A Inherited by all subclasses of its class.

Accessible by any class in the same package as its class.

Visible to the enclosing
class only

Not inherited by any subclass.

Not accessible by any other class.

public

protected

private

702 APPENDIX F java modifiers

Public methods and variables are inherited by all subclasses and can be
accessed by anyone. Private methods and variables are not inherited by any sub-
classes and can only be accessed inside the class in which they are declared.

Protected visibility and default visibility (no modifier) vary in subtle ways.
Note that a subclass of a parent may or may not be in the same package as the
parent, and that not all classes in a package are related by inheritance.

Protected methods and variables are inherited by all subclasses, whether they
are in the same package as the parent or not. Access to protected methods and
variables is given to any class in the same package as the class in which they are
declared. Therefore a subclass in a different package will inherit the protected
methods and variables, but the subclass cannot directly reference them in an
instance of the parent. Furthermore, a class can directly access a protected
method or variable that is declared in another class in the same package, whether
the two classes are related by inheritance or not.

A method or variable with default visibility is inherited only by subclasses that
are in the same package as the class in which the method or variable is declared.
A method or variable with default visibility can be accessed by any class in the
same package, whether they are related by inheritance or not.

All methods and variables declared in a parent class exist for all subclasses but
are not necessarily inherited by them. For example, when a child class is instan-
tiated, memory space is reserved for a private variable of the parent class.
However, that child class cannot refer to that variable by name since the variable
was not inherited. The child class can, however, call an inherited method that ref-
erences that variable. Similarly, an inherited method can invoke a method that the
child class cannot call explicitly. For this reason, inheritance is carefully defined
using the words “as if it were declared locally.” Noninherited methods and vari-
ables can still be referenced indirectly.

a visibility example
Consider the situation depicted in the Fig. F.2. Class P is the parent class that is
used to derive child classes C1 and C2. Class C1 is in the same package as P, but
C2 is not. Class P contains four methods, each with different visibility modifiers.
One object has been instantiated from each of these classes.

The public method a() has been inherited by C1 and C2, and any code with
access to object x can invoke x.a(). The private method d() is not inherited
by C1 or C2, so objects y and z have no such method available to them.
Furthermore, d() is fully encapsulated and can only be invoked from within
object x.

APPENDIX F java modifiers 703

The protected method b() is inherited by both C1 and C2. A method in y
could invoke x.b(), but a method in z could not. Furthermore, an object of any
class in package One could invoke x.b(), even those that are not related to class
P by inheritance, such as an object created from class Another1.

Method c() has default visibility, since no visibility modifier was used to
declare it. Class C1 inherits c(), but C2 does not. Therefore object y can refer to
the method c() as if it were declared locally, but object z cannot. Object y can
invoke x.c(), as can an object instantiated from any class in package One, such
as Another1. Object z cannot invoke x.c().

These rules generalize in the same way for variables. The visibility rules may
appear complicated initially, but they can be mastered with a little effort.

other java modifiers
Figure F.3 summarizes the rest of the Java modifiers, which address a variety of
issues. Furthermore, any given modifier has a different effect on classes, inter-
faces, methods, and variables. Some modifiers cannot be used with certain con-
structs and therefore are listed as not applicable (N/A).

figure F.2 A situation demonstrating Java visibility modifiers

class Another1

package One
class P

public a()
protected b()

c()
private d()

class Another2

package Two

P x = new P();

C1 y = new C1();

C2 z = new C2();

class C2
class C1

704 APPENDIX F java modifiers

The transient modifier is used to indicate data that need not be stored in a
persistent (serialized) object. That is, when an object is written to a serialized
stream, the object representation will include all data that is not specified as tran-
sient. See Chapter 8 for a more detailed description.

figure F.3 The rest of the Java modifiers

Modifier Class Interface Method Variable

The class may con-
tain abstract meth-
ods. It cannot be
instantiated.

All interfaces are
inherently abstract.
The modifier is
optional.

No method body is
defined. The method
requires implementation
when inherited.

The class cannot be
used to drive new
classes.

N/A

N/A N/AN/A

N/AN/A

N/A N/A

The variable will not
be serialized.

The variable is changed
asynchronously. The
compiler should not
perform optimizations
on it.

N/A

N/AN/A

N/A

N/A

N/AN/A

The method cannot be
overridden.

No method body is neces-
sary since implementation
is in another language.

The execution of the
method is mutually exclu-
sive among all threads.

Defines a class method. It
does not require an instan-
tiated object to be invoked.
It cannot reference non-
static methods or variables.
It is implicitly final.

Defines a class variable. It
does not require an instan-
tiated object to be refer-
enced. It is shared (com-
mon memory space) among
all instances of the class.

The variable is a constant,
whose value cannot be
changed once initially set.

N/Aabstract

final

native

static

synchro-
nized

transient

volatile

G
java coding guidelines

This appendix contains a series of guidelines that describe how to organize and
format Java source code. They are designed to make programs easier to read and
maintain. Some guidelines can be attributed to personal preferences and could be
modified. However, it is important to have some standard set of practices that
make sense and to follow them carefully. The guidelines presented here are fol-
lowed in the example code throughout the text and are consistent with the Java
naming conventions.

Consistency is half the battle. If you follow the same rules throughout a pro-
gram, and follow them from one program to another, you make the effort of
reading and understanding your code easier for yourself and others. It is not
unusual for a programmer to develop software that seems straightforward at the
time, only to revisit it months later and have difficulty remembering how it
works. If you follow consistent development guidelines, you reduce this problem
considerably.

When an organization adopts a coding standard, it is easier for people to work
together. A software product is often created by a team of cooperating develop-
ers, each responsible for a piece of the system. If they all follow the same devel-
opment guidelines, they facilitate the process of integrating the separate pieces
into one cohesive entity.

You may have to make tradeoffs between some guidelines. For example, you
may be asked to make all of your identifiers easy to read yet keep them to a rea-
sonably short length. Use common sense on a case-by-case basis to embrace the
spirit of all guidelines as much as possible.

You may choose, or be asked, to follow this set of guidelines as presented. If
changes or additions are made, make sure they are clear and that they represent
a conscious effort to use good programming practices. Most of these issues are
discussed further in appropriate areas of the text but are presented succinctly
here, without elaboration.

design guidelines
A. Design Preparation

1. The ultimate guideline is to develop a clean design. Think before you start
coding. A working program is not necessarily a good program.

2. Express and document your design with consistent, clear notation.

706 APPENDIX G java coding guidelines

B. Structured Programming

1. Do not use the continue statement.

2. Only use the break statement to terminate cases of a switch statement.

3. Have only one return statement in a method, as the last line, unless it
unnecessarily complicates the method.

C. Classes and Packages

1. Do not have additional methods in the class that contains the main
method.

2. Define the class that contains the main method at the top of the file it is
in, followed by other classes if appropriate.

3. If only one class is used from an imported package, import that class by
name. If two or more are imported, use the * symbol.

D. Modifiers

1. Do not declare variables with public visibility.

2. Do not use modifiers inside an interface.

3. Always use the most appropriate modifiers for each situation. For exam-
ple, if a variable is used as a constant, explicitly declare it as a constant
using the final modifier.

E. Exceptions

1. Use exception handling only for truly exceptional conditions, such as ter-
minating errors, or for significantly unusual or important situations.

2. Do not use exceptions to disguise or hide inappropriate processing.

3. Handle each exception at the appropriate level of design.

F. Miscellaneous

1. Use constants instead of literals in almost all situations.

2. Design methods so that they perform one logical function. As such, the
length of a method will tend to be no longer than 50 lines of code, and
usually much shorter.

3. Keep the physical lines of a source code file to less than 80 characters in
length.

4. Extend a logical line of code over two or more physical lines only when
necessary. Divide the line at a logical place.

APPENDIX G java coding guidelines 707

style guidelines
A. Identifier Naming

1. Give identifiers semantic meaning. For example, do not use single letter
names such as a or i unless the single letter has semantic meaning.

2. Make identifiers easy to read. For example, use currentValue instead of
curval.

3. Keep identifiers to a reasonably short length.

4. Use the underscore character to separate words of a constant.

B. Identifier Case

1. Use UPPERCASE for constants.

2. Use Title Case for class, package, and interface names.

3. Use lowercase for variable and method names, except for the first letter of
each word other than the first word. For example, minTaxRate. Note that
all reserved words must be lowercase.

C. Indentation

1. Indent the code in any block by three spaces.

2. If the body of a loop, if statement, or else clause is a single statement
(not a block), indent the statement three spaces on its own line.

3. Put the left brace ({) starting each new block on a new line. Line up the
terminating right brace (}) with the opening left brace. For example:

while (value < 25)

{

value += 5;

System.out.println (“The value is ” + value);

}

4. In a switch statement, indent each case label three spaces. Indent all
code associated with a case three additional spaces.

D. Spacing

1. Carefully use white space to draw attention to appropriate features of a
program.

2. Put one space after each comma in a parameter list.

3. Put one space on either side of a binary operator.

708 APPENDIX G java coding guidelines

4. Do not put spaces immediately after a left parenthesis or before a right
parenthesis.

5. Do not put spaces before a semicolon.

6. Put one space before a left parenthesis, except before an empty parameter
list.

7. When declaring arrays, associate the brackets with the element type, as
opposed to the array name, so that it applies to all variables on that line.
For example:

int[30] list1, list2;

8. When referring to the type of an array, do not put any spaces between the
element type and the square brackets, such as int[].

E. Messages and Prompts

1. Do not condescend.

2. Do not attempt to be humorous.

3. Be informative, but succinct.

4. Define specific input options in prompts when appropriate.

5. Specify default selections in prompts when appropriate.

F. Output

1. Label all output clearly.

2. Present information to the user in a consistent manner.

documentation guidelines
A. The Reader

1. Write all documentation as if the reader is computer literate and basically
familiar with the Java language.

2. Assume the reader knows almost nothing about what the program is sup-
posed to do.

3. Remember that a section of code that seems intuitive to you when you
write it might not seem so to another reader or to yourself later. Docu-
ment accordingly.

APPENDIX G java coding guidelines 709

B. Content

1. Make sure comments are accurate.

2. Keep comments updated as changes are made to the code.

3. Be concise but thorough.

C. Header Blocks

1. Every source code file should contain a header block of documentation
providing basic information about the contents and the author.

2. Each class and interface, and each method in a class, should have a small
header block that describes its role.

3. Each header block of documentation should have a distinct delimiter on
the top and bottom so that the reader can visually scan from one con-
struct to the next easily. For example:

//***

// header block

//***

D. In-Line Comments

1. Use in-line documentation as appropriate to clearly describe interesting
processing.

2. Put a comment on the same line with code only if the comment applies to
one line of code and can fit conveniently on that line. Otherwise, put the
comment on a separate line above the line or section of code to which it
applies.

E. Miscellaneous

1. Avoid the use of the /* */ style of comment except to conform to the
javadoc (/** */) commenting convention.

2. Don’t wait until a program is finished to insert documentation. As pieces
of your system are completed, comment them appropriately.

H
review checklist

This appendix contains a checklist of issues that should be addressed during a
design or code review. A review is a careful critique of the design or code after it
has been completed. A review can take many forms. In a desk check, a pro-
grammer reviews his or her own work. In a walkthrough or inspection, a group
of people meet to examine and discuss the product. No matter what form a
review takes, using a checklist ensures that particular issues important to creat-
ing high-quality software are not overlooked.

Reviews involve reading through a program or design to check that objects
and classes are well designed, that algorithms are implemented correctly, that
code is commented properly, and that other quality attributes of the software are
ensured. When a review is conducted as a walkthrough, the participants usually
include the author of the code, the designer (if a separate person), one or more
additional software engineers, and a person that understands the system require-
ments. Other people that might attend a walkthrough include managers and qual-
ity control personnel.

During a walkthrough, many problems usually come to light. Errors in imple-
mentation and misunderstandings about requirements are discovered. Careful
notes must be taken so that these issues can be addressed. The goal is not neces-
sarily to solve the problems in the meeting, but at least to note them for later con-
sideration. Many walkthroughs have been sidetracked by participants following
tangents concerning one particular problem.

Walkthroughs on large software projects are an absolute necessity. Unfor-
tunately, on small software projects, walkthroughs are often overlooked or dis-
missed as nonessential. The same benefits that occur in reviews of large software
projects also occur on smaller projects. They should never be considered unnec-
essary. Considerable evidence shows that as much as 70 percent of the errors in
a program can be identified during a careful walkthrough.

Before a walkthrough can begin, the people involved must be prepared. The
software or design must be complete and ready for review. The relevant docu-
mentation, such as design documents and requirements, must be gathered. The
appropriate people to attend the walkthrough must be identified and given the
documentation. By the time the meeting takes place, the participants should
have reviewed all of the provided materials and prepared constructive com-
ments and suggestions. An unsuccessful walkthrough is usually the result of a
lack of preparation.

During the walkthrough, the author often presents a brief overview of the soft-
ware or design. The author may ask the others in the meeting to concentrate on
particular areas of concern. A specific person is usually designated as a recorder

712 APPENDIX H review checklist

to capture the major questions or problems that come up. The author and review-
ers then step through the code or design in detail, bringing up concerns and iden-
tifying problems at the appropriate time. After a walkthrough, the problems and
corrective actions noted during the meeting should be summarized and presented
to the author of the code or design so that they can be addressed.

The following checklist contains specific issues that should be covered in a
review, whether conducted by yourself or in a meeting. A checklist makes the
review process systematic and prevents important issues from being overlooked.
Depending on your knowledge of software development and Java constructs,
some of the checklist issues may not be clear. Focus on those issues that you
understand and incorporate others as they become familiar.

This checklist can be augmented with other issues. Don’t hesitate to add par-
ticular topics that address your own common programming and design challenges.

review checklist
General Issues

❑ Is the design or code complete?

❑ Can any algorithms be simplified?

❑ Does the program work for all valid input?

❑ Does the program handle invalid input appropriately?

❑ Does the program do everything it is supposed to?

❑ Does the program operate under all constraints that were established?

❑ Is the API being used to its fullest extent?

❑ Have resources (such as books and the Web) been checked for published
sources of required algorithms?

Design Issues

❑ Are classes designed to encapsulate specific implementation decisions?

❑ Are classes designed to maximize reuse?

❑ Is the design modular, facilitating the inclusion of new algorithms or com-
ponents?

❑ Does each inheritance derivation represent an appropriate “is-a” relationship?

❑ Is the class hierarchy appropriate for the problem being solved?

❑ Are abstract classes used to enhance the design of the class hierarchy?

APPENDIX H review checklist 713

❑ Are interfaces used properly in the design to maximize consistency among
classes?

❑ Are classes grouped appropriately into packages?

❑ Are exceptions used only for handling erroneous conditions or truly unusual
processing?

❑ Are threads used appropriately to minimize user response time?

Implementation Issues

❑ Are all coding standards followed?

❑ Are all comments complete and accurate?

❑ Are all variables initialized before they are used?

❑ Are constants used to make the code more readable and facilitate modifica-
tions?

❑ Are all identifiers named so that their role is clear?

❑ Do all loops terminate?

❑ Do all array indexes stay within bounds?

❑ Do all method arguments match their parameters appropriately?

❑ Are modifications to parameters in methods consistent with how those param-
eters are passed?

❑ Do all overriding methods have the same signature as the parent’s method?

❑ Are all appropriate “clean-up” activities performed, such as files being closed?

❑ Is the implementation consistent with the design?

I
comparing java to C++

The designers of Java based much of its syntax on the programming languages C
and C++ so that developers who know those languages would feel comfortable
using Java. However, Java should not be thought of as a revision of C++. There
are many critical differences between the two.

In fact, Java has integrated the best characteristics of several programming
languages. At the heart of Java are important tenets of program design and imple-
mentation that are fundamentally distinct from the approach of C++. However,
because of the similar syntax and the popularity of C++, comparisons between
these two languages are inevitable.

This appendix compares and contrasts Java and C++. It is a focused summary
of the primary similarities and differences, and is intended for developers with
experience using C++.

primitive types
There are several important differences between Java and C++ concerning prim-
itive data types and their use. Figure I.1 summarizes these differences.

Each variable in a Java program is either associated with a primitive type
(boolean, char, byte, short, int, long, float, or double) or is a reference to
an object. C++ has various primitive types, plus structs, unions, enums, arrays,
and pointers. C++ pointers might or might not refer to objects.

C++ structs are subsumed by Java objects. Java does not currently have an
enumerated type. Java designers thought the concept of unions to save memory
space was unnecessary. All Java primitives are signed and have a consistent size
no matter what platform is used, enhancing portability.

figure I.1 Java versus C++: Primitive types

Java C++

Two type categories.

All nonprimitive types are objects.

All numeric types are signed.

All primitive types are a fixed size for all platforms.

16-bit Unicode characters.

Boolean data type primitive.

Conditions must be boolean expressions.

Variables are automatically initialized.

Various type categories.

Separate types for structs, unions, enums, and arrays.

Signed and unsigned numeric types.

Primitive type size varies by platform.

8-bit ASCII characters.

No explicit boolean data type.

Integer results are interpreted as boolean conditions.

No automatic initialization of variables.

716 APPENDIX I comparing java to C++

All Java implementations are based on the international Unicode character set,
whereas most C++ implementations use ASCII (American Standard Code for
Information Interchange). However, since ASCII is essentially a subset of
Unicode, this distinction is transparent for programmers used to using ASCII.
Unicode characters can be used in identifiers and literals in a Java program.

The boolean type in Java cannot be cast to any other type, and vice versa. Java
integers cannot be used as logical conditions. In C++, there is no built-in boolean
type, and integers are used for decision making.

No Java variables can contain garbage since they are set to a default value if
not initialized when created. However, Java compilers may warn against the use
of variables before their value has been explicitly set, whether intentional or not.

pointers and data structures
The absence of pointers in Java is a key difference between the two languages.
Figure I.2 summarizes the differences concerning the use of pointers, references,
and basic data structures.

Java uses references that provide the functionality and versatility of pointers
without their involved syntax and dangerous characteristics. Linked data struc-
tures are accomplished with references as you would with pointers in C++, but in
Java it is impossible to get a segmentation fault since a reference can only refer to
an object, not an arbitrary memory location.

figure I.2 Java versus C++: Pointers, references, and basic data structures

Java C++

References, with no explicit pointer manipulation
and no pointer arithmetic.

Array references are not translated to pointer arithmetic.

Arrays automatically check index limits.

Strings are objects.

Use string concatenation operator for long string literals.

No typedef.

Built-in string concatenation operator (+).

Array lengths in multidimensional arrays can vary
from one element to the next within one dimension.

Pointers, with dereferencing (* or ->) and address (&)
operators.

Array references translate to pointer arithmetic.

No automatic array bounds checking.

Strings are null-terminated character arrays.

Use line continuation (\) for long string literals.

typedef to define types.

String concatenation through a library function.

Array lengths in multidimensional arrays are all the
same size in a given dimension, fixed by the declaration.

APPENDIX I comparing java to C++ 717

Arrays and character strings are objects in Java, with appropriate support
methods. String concatenation is a built-in operation in the Java language, and
array bounds checking is automatic.

Multidimensional arrays in Java are actually arrays of arrays, in which each
array is a distinct object. Therefore, for example, each row in a two-dimensional
array can have a different number of elements. The length of each array is deter-
mined when each array object is instantiated, not when the initial declaration is
made.

Defining explicit type names is not necessary in either Java or C++ since the
declaration of larger structures, such as classes, implicitly defines a type name.
C++ includes the typedef operation for compatibility with C.

object-oriented programming
Both languages are object oriented but have significantly different philosophies
and techniques, as summarized in Fig. I.3.

C++ supports the object-oriented approach, but it doesn’t enforce it. Since C++
is essentially a superset of C, which is a procedural language, a program written
in C++ could be a hybrid mix of procedural and object-oriented techniques. Java
is a pure object-oriented language since it enforces the object-oriented approach.
As such, all functions in Java are methods, defined inside a class.

Several constructs and techniques that are a part of C++ are not included in
Java, mainly to keep the complexity of the language down. These include multi-
ple inheritance, parameterized types, and operator overloading. However, Java

figure I.3 Java versus C++: Object-oriented programming

Java C++

All methods (except final methods) are dynamically
bound.

Pure object-oriented language.

All functions (methods) are part of a class.

Formal interface specifications.

No operator overloading.

No parameterized type.

No multiple inheritance.

Virtual functions are dynamically bound.

Hybrid between procedural and object-oriented.

Can have stand-alone functions.

No formal interface specifications.

Operator overloading.

Templates as a parameterized type.

Multiple inheritance.

718 APPENDIX I comparing java to C++

has the ability to define a formal interface specification, which gives the most
important characteristics of multiple inheritance to Java programs. Both lan-
guages support method overloading.

In C++, a method must be explicitly declared as virtual in order to allow run-
time dynamic binding of a method invocation to the appropriate definition. In
Java, all methods are handled consistently and are dynamically bound, except for
methods that are defined with the final modifier.

special characteristics
Some of the most highly promoted aspects of Java concern its relationship to the
Web and other special characteristics that distinguish it from C++. Figure I.4 sum-
marizes these differences.

Links to Java applets can be embedded in HTML documents, then retrieved
and executed using Web browsers. The Java API has specific support for network
communication.

A C++ programmer must perform explicit dynamic memory management,
releasing objects and other dynamically allocated data space when it is no longer
needed. In Java, garbage collection is automatic. An object in a Java program is
marked as a candidate for garbage collection after the last reference to it is
removed. Therefore Java does not support destructors, though there is the ability
to define a finalize method for other cleanup activity.

Java source code is compiled into bytecode, a low-level representation that is
not tied to any particular processor. The bytecode can then be executed on any
platform that has a Java interpreter. Java is therefore considered architecture
neutral.

figure I.4 Java versus C++: Special characteristics

Java C++

Automatic generation of documentation in HTML
format.

Specifically attuned to network and Web processing.

Automatic garbage collection.

Slower execution when interpreted.

Supports multithreading.

Architecture neutral.

Combination of compiled and interpreted.

No automatic documentation generation.

No relationship to networks or the Web.

No automatic garbage collection.

Fast execution.

No multithreading.

Architecture specific.

Compiled.

APPENDIX I comparing java to C++ 719

When interpreted, Java programs have a slower execution speed; however,
because they are already compiled to a low-level representation, the interpre-
tation overhead is not problematic for many applications. C++ compilers are spe-
cific to each type of processor.

The Java language supports multiple threads of execution, with synchro-
nization mechanisms. It also has a special comment syntax, which can be used to
generate external documentation in HTML format about the contents and struc-
ture of a Java system.

general programming issues
Several specific differences between Java and C++ affect basic programming prac-
tices. Figure I.5 summarizes these differences.

Java does not support variable-length parameter lists for methods. It also does
not allow parameters to be given a default value, which essentially makes them
optional during invocation.

figure I.5 Java versus C++: General programming issues

Java C++

Method bodies must be defined inside the class to
which they belong.

No forward referencing required.

No preprocessor.

No comma operator.

No variable-length parameter lists.

No optional method parameters.

No const reference parameters.

No goto statement.

Labels on break and continue.

Main method cannot return a value.

No global variables.

Cannot mask identifiers through scope.

Character escape sequences can appear in a program.

Command-line arguments do not include the
program name.

Method bodies must be defined inside the class to
which they belong.

Explicit forward referencing required.

Heavy reliance on preprocessor.

Comma operator.

Variable-length parameter lists.

Optional function parameters.

const reference parameters.

goto statement.

No labels on break and continue.

Main function can return a value.

Global variables.

Can mask identifiers through scope.

Character escape sequences must appear in a string
or character literal.

Command-line arguments do not include the
program name.

720 APPENDIX I comparing java to C++

Java has no comma operator, though its for loop syntactically allows multiple
initializations and increments using the comma symbol. Java does not allow vari-
ables to be declared with global scope. In C++, you must use an explicit forward
reference (function prototype) to inform the compiler that a function will be used
prior to its definition, but in Java no such forward referencing is needed.

Java does not rely on a preprocessor. Most of the functionality that is provided
by the C++ preprocessor is defined in the Java language itself.

There is no goto statement in Java, though goto is included in the Java
reserved words. Java allows statements to be labeled, and the break and
continue statements can jump to specific labeled points in the code.

Finally, in Java, an identifier name cannot be masked by another declaration
and scope, as it can in C++. For example, the following code segment is valid in
C++ but causes a compile-time error in Java:

{

int x = 12;

{

int x = 25; // same variable name with

// distinct memory space

}

}

J
an HTML

tutorial
This appendix contains a brief tutorial covering the HyperText Markup Lan-
guage (HTML) and the creation of basic Web pages. HTML files contain instruc-
tions that describe how text, images, and multimedia are displayed by Web
browsing software. Two of the more popular Web browsers are Microsoft’s
Internet Explorer and Netscape’s Navigator.

HTML files can be created using a simple text editor. The files contain the text
to be displayed and tags that describe the layout, style, and other features of a
document. Tags suggest how the browser program should display the document,
but each browser interprets the meaning of a tag in its own way. Furthermore,
although all browsers recognize a common set of tags, a particular browser may
also recognize additional tags that others do not. Therefore what you see when
you view a particular HTML document with one browser might be different from
what you see when viewed with another.

In this appendix, we describe the most popular HTML tags. If you plan to cre-
ate advanced Web pages, you may want to use additional sources covering all
aspects of HTML. Many Web sites contain detailed information on specific
HTML constructs. In fact, one of the best ways to learn HTML is to find inter-
esting Web pages and use your Web browser to view the HTML source for that
document.

basic HTML documents
Every HTML file has two basic sections. The first section is the head of the doc-
ument, which contains a description of the document, including its title. The sec-
ond section is the body of the document, which contains the information to be
displayed, such as text, images, and links to other documents. The following is an
example of a basic HTML document for a local student activities group:

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

Students in Action is dedicated to helping our local

community by using the volunteer effort of college

students. This semester, our planned actions are

to help a local food drive for flood victims in

the Midwest, to visit local adult care centers, and to

teach Java to grade-school students.

Our group is active, energetic, and always in need of

donations of equipment, effort, and money. We are

722 APPENDIX J an HTML tutorial

always willing to help staff and plan community

events.

As always, our president (at x222) is eager and

willing to answer questions and hear suggestions on

how we can be more active in our community.

</BODY>

</HTML>

The words such as HEAD, TITLE, and BODY are called elements. Tags are spec-
ified using an element enclosed in angle brackets (<>). Tags are often used in
pairs, called a start tag and an end tag. These tags delimit, or mark, a particular
region of text. Generally, the start tag uses the element name, such as <HEAD>, and
the end tag uses a slash (/) followed by the element name, such as </HEAD>.

Everything between <HEAD> and </HEAD> is considered the introduction of the
document. In this case, it contains one line that defines the title of the document.

figure J.1 The initial Students in Action Web page

APPENDIX J an HTML tutorial 723

The text between <TITLE> and </TITLE> appears in the title bar of the Web
browser when the document is displayed.

Everything between <BODY> and </BODY> is considered the body of the docu-
ment. In this case, the body contains several paragraphs of text that will be dis-
played in the browser window. The text in an HTML document can be in any
form convenient for its author. Browsers only pay attention to tags. Therefore it
does not matter how white space is used to separate words or lines between tags.
Browsers will reformat the text to be displayed appropriately for the width and
height of the browser window, independent of how the document is written.
Figure J.1 shows this Web page as displayed in a browser. Figure J.2 shows the
same Web page but in a different-sized browser window. Notice how the text is
reformatted because of the browser’s width and height.

formatting text
Many tags can be used to aid browsers with formatting text. Notice in Figs J.1
and J.2 that the blank spaces in the paragraphs were ignored when the text was
displayed. For browsers to understand how to format text, each part of the text
must be marked with tags. To indicate to the browser what paragraphs are in the
text, the P element should be used. The following is a marked-up version of the
Students in Action Web page, including paragraph tags.

figure J.2 The Web page in a different-sized browser window

724 APPENDIX J an HTML tutorial

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

<P>Students in Action is dedicated to helping our

local community by using the volunteer effort of

college students. This semester, our planned actions

are to help a local food drive for flood victims

in the Midwest, to visit local adult care centers,

and to teach Java to grade-school students.</P>

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our president (at x222) is eager and

willing to answer questions and hear suggestions on

how we can be more active in our community.</P>

</BODY>

</HTML>

Figure J.3 is a snapshot showing the effects of the <P> tag used in the text.
Notice the <P> is not displayed by the browser, but instead a single blank line has
been inserted.

In addition to the P element, many other elements can be used to change the
format of the text. The table in Fig. J.4 shows some elements and their effect on
the text associated with a tag.

B, I, and U are popular elements that control the style of the font presented.
They work similarly to how a word processor allows text to be bold, italic, or
underlined. For example, the following HTML lines:

<P>I’d buy that for a dollar</P>

<P><I>May the force be with you</I></P>

<P><I>I’ll be back</I></P>

would be displayed by a browser as:

I’d buy that for a dollar

May the force be with you

I’ll be back

APPENDIX J an HTML tutorial 725

Many elements can be nested to produce a combination of effects. Notice the
use of I and B on the last line of the previous example. Usually, it is considered
good practice to unnest tags in the same order as they were nested. This practice
makes it easier to modify the HTML later. The rest of the elements described in
Fig. J.4 also change characteristics of the font displayed by the browser.

Several other elements can be used to change the layout of the text. The
<CENTER> and </CENTER> tags indicate that the browser should center the text
associated with the tag. The
 tag forces a line break in the text. The <HR> tag
tells the browser to include a horizontal rule in the document. The horizontal rule
is often used to separate sections of a document visually. Note that the HR and BR
elements do not have associated ending tags because they do not affect text
directly. The <NOBR> and </NOBR> tags indicate that the browser should not
insert line breaks anywhere when displaying the text associated with the tags. The

figure J.3 The Students in Action Web page with paragraph formatting

726 APPENDIX J an HTML tutorial

<Q> tag is used within a line of text to quote a few words. Text associated with
the Q element is displayed within single quotes. The <BQ> tag can be used to quote
a block of text, such as a paragraph.

In addition to marking up portions of the document to be displayed in a par-
ticular way, HTML header tags can provide an overall hierarchical structure to
the document. Headers are used to indicate different sections of a document.
HTML provides six heading levels: <H1>, <H2>, <H3>, <H4>, <H5>, and <H6>. The
<H1> heading tag is the highest heading level, and <H6> is the lowest. An H1 ele-
ment can be thought of as marking a chapter of a book. An H2 element can be
thought of as marking a section of a chapter. An H3 element is associated with a
subsection, and the other headers follow suit. Generally, headings are displayed
by most browsers as bold text and usually are larger in size (compared to the rest
of the “normal” text in the document). For example, consider the following
HTML document:

figure J.4 Some HTML text elements

Element Effect or Purpose

U

B

I

STRONG

EM

STRIKE

TT

CODE

KBD

VAR

BIG

SMALL

SUB

SUP

CITE

BLINK

Underline

Boldface

Italics

Strong type, often rendered using boldface

Emphasis, often rendered using italics

A line drawn through the text

typewriter typeface

Code listings

Keyboard input

Variables or arguments to commands

A larger point size than the current font

A smaller point size than the current font

Subscript

Superscript

Citation of reference documents

Blinks on and off

APPENDIX J an HTML tutorial 727

<HTML>

<HEAD>

<TITLE>Header Example</TITLE>

</HEAD>

<BODY>

<H1> 1. Heading One

<H2> 2. Heading Two

<H3> 3. Heading Three

<H4> 4. Heading Four

<H5> 5. Heading Five

<H6> 6. Heading Six

</BODY>

</HTML>

Figure J.5 shows the display of this page.

figure J.5 Header example

728 APPENDIX J an HTML tutorial

There are several reasons to use headers in your Web pages. The first is that
headers make a document easier to read. They provide a visual cue to a reader of
the different sections of your text. These cues enable a reader to easily identify
and skip to the appropriate section of a Web page. The second reason is that Web
search engines often catalog the text associated with headers in a document.
Therefore using a good heading for a section of a document may help others find
your page on the Internet. Generally, documents should contain no more than
three levels of headings.

The following HTML is the Students in Action Web page marked up with a
header and some font styles.

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

<CENTER><H1>Students in Action</H1></CENTER>

<CENTER><I>Dedicated to helping our local community

by using the volunteer effort of college

students.</I></CENTER>

<P>This semester, our planned actions are to help a

local food drive for flood victims in the Midwest,

to visit local adult care centers, and to teach Java

to grade-school students.</P>

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our president (at x222) is eager and

willing to answer questions and hear suggestions on

how we can be more active in our community.</P>

</BODY>

</HTML>

Figure J.6 shows the display of this page.

You can use several other elements, including frames, tables, and lists to struc-
ture a Web document. Frames and tables are more complicated than the tags we
have seen so far and are beyond the scope of this tutorial. HTML has two types
of lists: an ordered list and an unordered list. Creating a list requires two parts to
be identified using tags. The first is the entire list. For an ordered list, place the
 tag at the start of the list, and at the end of the list, and then sur-
round each item in the list with and . For example, the following
HTML defines one list with three items:

APPENDIX J an HTML tutorial 729

I’d buy that for a dollar

May the force be with you

I’ll be back

This text will be formatted in browsers as:

figure J.6 Header, centering, and font changes for the
Students in Action Web page

1. I’d buy that for a dollar

2. May the force be with you

3. I’ll be back

Notice that the browser will automatically count and sequence the items in the
list. Lists can also be nested within lists. Consider the following HTML code:

First Item in first list

First Item in first sublist

Second Item in first sublist

Second Item in first list

First Item in second sublist

Second Item in second sublist

This text will be formatted similar to the following:

An unordered list is very similar to an ordered list. Unordered lists use the UL
element instead of the OL element. Unordered lists are usually displayed with a
bullet symbol to the left of the list item. Some browsers may use a different sym-
bol, and there are tag attributes you can specify that will let you use images as the
list item symbol.

The following uses an unordered list to represent the various activities that the
Students in Action have planned for this semester. In addition, we added hori-
zontal rules to offset the H1 element in the document.

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

<HR>

730 APPENDIX J an HTML tutorial

1. First Item in first list

1. First Item in first sublist

2. Second Item in first sublist

2. Second Item in first list

1. First Item in second sublist

2. Second Item in second sublist

APPENDIX J an HTML tutorial 731

<CENTER><H1>Students in Action</H1></CENTER>

<HR>

<CENTER><I>Dedicated to helping our local community

by using the volunteer effort of college

students.</I></CENTER>

<HR>

<P>This semester, our planned actions are:</P>

 to help a local food drive for flood

victims in the Midwest

 to visit local adult care centers

 to teach Java to grade-school students

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our president (at x222) is eager and

willing to answer questions and hear suggestions on

how we can be more active in our community.</P>

</BODY>

</HTML>

Figure J.7 shows the display of this document. As you can see from Fig. J.7,
although the content of the Web page has not changed since Fig. J.1, the presen-
tation has changed dramatically.

links
The World Wide Web would not be a “web” without links between documents.
A link connects one document to another. The destination of the link can be a
local file or a remote file hosted on another computer. Links are displayed in a
number of different ways, but the most popular and recognizable is underlined
blue text. In most browsers, when you move your pointing device (a mouse or
other device) over a link in a graphical browser, the destination of the link is dis-
played somewhere on the screen. The most popular browsers display the desti-
nation link on the bottom of the display window.

732 APPENDIX J an HTML tutorial

The link tag, <A>, takes one attribute that defines its destination. Inside the
link tags (also known as anchor tags), the URL of a new document is specified.
For example, the following HTML creates two links:

figure J.7 Lists and lines added to the Web page

APPENDIX J an HTML tutorial 733

Dr. Lewis’ Home

Page Link

Yahoo Internet Search Link

The text associated with the <A> and tags is what the browser will usually
display as underlined blue text. No checking is done on the validity of the desti-
nation until the user selects (or clicks on) the link. Therefore when one writes a
Web page, all links should be tested (that is, clicked on or exercised). Following
the selection of a link by a user, the browser will attempt to load the contents of
the destination. When a successful connection is made to the destination link
(either as a remote computer or another file on your own computer), the browser
will display the contents of the destination page.

Links are very useful for breaking up a document based on content. Links have
been the driving force behind the popularity of HTML and the Web because they
allow users to read documents located on computers throughout the world. The
following HTML has five example links in it. The first three represent links to
local documents that describe the Students in Action projects and are located on
the same server. The fourth link represents an absolute URL, which can refer to
any document in the Web. The fifth link is a mailto link. This is a special type of
link that allows users to send mail by clicking on the link. In the following case,
the mail would be sent to president@breakaway.com.

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

<HR>

<CENTER><H1>Students in Action</H1></CENTER>

<HR>

<CENTER><I>Dedicated to helping our local community

by using the volunteer effort of college

students.</I></CENTER>

<HR>

<P>This semester, our planned actions are:</P>

 to help a local food drive

for flood victims in the Midwest

 to visit local adult care

centers

734 APPENDIX J an HTML tutorial

Figure J.8 shows how a browser would display this page.

color and images
Some of the most popular browsers (Netscape Navigator and Microsoft Internet
Explorer) have introduced common extension attributes to the <BODY> tag to
allow a background color or images for the document to be specified.
Background images or color can dramatically improve the aesthetic appearance
on a color-capable display.

The first attribute is the BGCOLOR attribute. This attribute is used to set the
background color of the entire document. For example, the following will set the
background color to red in an HTML document:

<BODY BGCOLOR=RED>

There are two basic methods for defining a color in HTML. The first, as seen
in the previous example, uses a standard color name. Note that the display of
HTML code is solely under the control of a browser; therefore these names are
not truly standard but are common color names that most browsers support. Be
sure to check all browsers your users may have to see what specific color names
are accepted before choosing an appropriate color. A few de facto standard names
for colors that are accepted by both Netscape’s and Microsoft’s browsers are
black, blue, gray, green, navy, purple, red, yellow, and white. The second method
of choosing a color is to change the color name to an RGB value. An RGB value
is a sequence of three numbers that represents the amount of red, green, and blue

 to teach Java to grade-

school students

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our

president (at x222) is eager and willing to answer

questions and hear suggestions on how we can be more

active in our community.</P>

<P>Visit our University Home

Page.</P>

</BODY>

</HTML>

APPENDIX J an HTML tutorial 735

that will be used to create the color. The numbers represent the various strength
of the colors involved (0=off, 255=full on). The combination of three values pro-
duce a specific color. The RGB values are represented as three pairs of hex char-
acters preceded by a number sign (#) and surrounded by double quotes. For

figure J.8 Links added to the Students in Action Web page

736 APPENDIX J an HTML tutorial

example, to represent the color in which red is 50, green is 150, and blue is 255,
the <BODY> tag would look like the following:

<BODY BGCOLOR=”#3296FF”>

There are many good shareware programs available on the Internet that will help
you determine the RGB values for a particular color.

In addition to setting the background to a single color, it is also possible to tile
the background with a particular image. Most graphical browsers have imple-
mented an extension to the <BODY> tag that will take a GIF or JPEG image and
repeat it both horizontally and vertically (that is, tile it) to create a background
pattern. Some images can be fairly simple, such as a single-color image. Others
can be more complex, representing a repeating pattern such as bathroom tiles or
a stone mosaic. To use an image as a background, use the BACKGROUND attribute
in the <BODY> tag and follow it with the name of the image file in quotes. For
example, the following piece of HTML code uses the STONE.GIF image as a tiling
background image:

<BODY BACKGROUND=”STONE.GIF”>

Care should be given to the type of image and strength of its colors. Many
times, using an interesting image can make the document’s text difficult to read.
Many pages on the Web have free images that you can copy and use as back-
grounds.

Graphic images can be included in an HTML document in other ways as well.
Most popular browsers can show both GIF and JPEG image formats. To include
an image, use the tag. The SRC attribute of the tag can be used to
describe the URL of the graphic image file. For example, the following HTML
fragment will include an image called new.gif:

The following HTML code is the Students in Action Web page modified to use
an image as a banner that introduces the organization, and a new image to draw
attention to a portion of the page that may have changed recently.

APPENDIX J an HTML tutorial 737

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY>

<HR>

<CENTER></CENTER>

<HR>

<CENTER><I>Dedicated to helping our local community

by using the volunteer effort of college

students.</I></CENTER>

<HR>

<P>This semester, our planned actions are:</P>

 to help a local food drive

for flood victims in the Midwest

 to visit local adult care

centers

 to teach Java to grade-

school students

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our

president (at x222) is eager and willing to answer

questions and hear suggestions on how we can be more

active in our community.</P>

<P>Visit our University Home

Page.</P>

</BODY>

</HTML>

Figure J.9 shows how a browser would display this page.

738 APPENDIX J an HTML tutorial

figure J.9 Images added to the Students in Action Web page

APPENDIX J an HTML tutorial 739

applets
The <APPLET> tag is used to execute an applet in a document. The <APPLET> tag
has many possible attributes; however, its only required attribute is the CODE
attribute. The CODE attribute names the class file of the applet that should exe-
cute in the document. The browser will load that applet’s class file from the same
URL as the document that contains the <APPLET> tag. For example, to execute
the Marquee applet, the following HTML fragment is used:

<APPLET code=Marquee>

</APPLET>

A browser displaying this HTML code will load the Marquee.class file into
the browser and execute it. Other attributes for the <APPLET> tag include:

◗ HEIGHT—used to define the space in pixels reserved for the display height
of the applet

◗ WIDTH—used to define the space in pixels reserved for the display width of
the applet

◗ CODEBASE—used to define an alternate URL for the location of the class file

In this example, we will reserve 50 pixels for the height and 100 pixels for the
width. In the following code fragment, we also reset the location of the class code
to another site:

<APPLET CODE=Marquee WIDTH=100 HEIGHT=50

CODEBASE=”http://www.javasite.com/applets2use”>

</APPLET>

When inserted between the <APPLET> and </APPLET> tags, the <PARAM> tag
allows you to pass parameters to the Java applet at run time. The <PARAM> tag
has two required attributes that allow it to pass information to the applet pro-
gram. The attributes are NAME and VALUE. By defining a NAME and VALUE pair, the
applet can use and decipher the information it is passed at run time. The follow-
ing example sends two parameters, a state and city, to the Map applet:

<APPLET CODE=Map WIDTH=100 HEIGHT=5

CODEBASE=”http://www.javasite.com/applets2use”>

<PARAM NAME=”state” VALUE=”pennsylvania”>

<PARAM NAME=”city” VALUE=”philadelphia”>

</APPLET>

The following HTML code is the Students in Action Web page with an added
applet that scrolls a message across the document as the page is browsed:

740 APPENDIX J an HTML tutorial

<HTML>

<HEAD>

<TITLE>Students in Action</TITLE>

</HEAD>

<BODY BGCOLOR=”WHITE” TEXT=”BLACK”>

<HR>

<CENTER></CENTER>

<HR>

<CENTER><I>Dedicated to helping our local community

by using the volunteer effort of college

students.</I></CENTER>

<HR>

<P>This semester, our planned actions are:</P>

 to help a local food drive

for flood victims in the Midwest

 to visit local adult care

centers

 to teach Java to grade-

school students

<P>Our group is active, energetic, and always in

need of donations of equipment, effort, and money.

We are always willing to help staff and plan

community events.</P>

<P>As always, our

president (at x222) is eager and willing to answer

questions and hear suggestions on how we can be more

active in our community.</P>

<APPLET CODE=”Marquee.class” WIDTH=500 HEIGHT=50>

<PARAM NAME=text

VALUE=”Join us for our Spring picnic in April!”>

<PARAM NAME=delay VALUE=”100”>

<PARAM NAME=bgcolor VALUE=”255255255”>

<PARAM NAME=fgcolor VALUE=”000000128”>

</APPLET>

<P>Visit our University Home

Page.</P>

</BODY>

</HTML>

K
java exceptions and errors

This appendix contains a list of run-time exceptions and errors produced by the
Java language and the classes of the Java standard class library. It is not an
exhaustive list, but it does contain most of the exceptions and errors that arise in
programs within the scope of this text.

Both exceptions and errors indicate that a problem has occurred while a pro-
gram was executing. Exceptions can be caught and handled under programmer
control using the Java try statement. Errors represent more serious problems
and generally should not be caught. Some exceptions and errors indicate the same
type of problem, such as NoSuchMethodException and NoSuchMethodError. In
these cases, the particular situation in which the problem arises determines
whether an exception or an error is thrown.

exceptions

AccessControlException (java.security)

Requested access to a critical system resource is denied.

ArithmeticException (java.lang)

An illegal arithmetic operation was attempted, such as dividing by zero.

ArrayIndexOutOfBoundsException (java.lang)

An index into an array object is out of range.

ArrayStoreException (java.lang)

An attempt was made to assign a value to an array element of an incompatible
type.

AWTException (java.awt)

A general exception indicating that some problem has occurred in a class of
the java.awt package.

BindException (java.net)

A socket could not be bound to a local address and port.

ClassCastException (java.lang)

An attempt was made to cast an object reference to an incompatible type.

ClassNotFoundException (java.lang)

A specific class or interface could not be found.

CloneNotSupportedException (java.lang)

An attempt was made to clone an object instantiated from a class that does not
implement the Cloneable interface.

742 APPENDIX K java exceptions and errors

EmptyStackException (java.util)

An attempt was made to reference an element from an empty stack.

EOFException (java.io)

The end of file has been encountered before normal completion of an input
operation.

Exception (java.lang)

The root of the exception hierarchy.

FileNotFoundException (java.io)

A specified file name could not be found.

GeneralSecurityException (java.security)

The root of all security exceptions.

IllegalAccessException (java.lang)

The currently executing method does not have access to the definition of a
class that it is attempting to load.

IllegalArgumentException (java.lang)

An invalid or inappropriate argument was passed to a method.

IllegalComponentStateException (java.awt)

An operation was attempted on a component that was in an inappropriate
state.

IllegalMonitorStateException (java.lang)

A thread attempted to notify or wait on another thread that is waiting on an
object that it has not locked.

IllegalStateException (java.lang)

A method was invoked from an improper state.

IllegalThreadStateException (java.lang)

An operation was attempted on a thread that was not in an appropriate state
for that operation to succeed.

IndexOutOfBoundsException (java.lang)

An index into an object such as an array, string, or vector was out of range.
The invalid index could be part of a subrange, specified by a start and end
point or a start point and a length.

InstantiationException (java.lang)

A class could not be instantiated using the newInstance method of class
Class because it is abstract, an array, or an interface.

APPENDIX K java exceptions and errors 743

InterruptedException (java.lang)

While one thread was waiting, another thread interrupted it using the interrupt
method of the Thread class.

InterruptedIOException (java.io)

While one thread was waiting for the completion of an I/O operation, another
thread interrupted it using the interrupt method of the Thread class.

InvalidClassException (java.io)

The serialization run time has detected a problem with a class.

InvalidParameterException (java.security)

An invalid parameter has been passed to a method.

IOException (java.io)

A requested I/O operation could not be completed normally.

JarException (java.util.jar)

A problem occurred while reading from or writing to a JAR file.

MalformedURLException (java.net)

A specified URL does not have an appropriate format or used an unknown
protocol.

NegativeArraySizeException (java.lang)

An attempt was made to instantiate an array that has a negative length.

NoRouteToHostException (java.net)

A path could not be found when attempting to connect a socket to a remote
address and port.

NoSuchElementException (java.util)

An attempt was made to access an element of an empty vector.

NoSuchFieldException (java.lang)

An attempt was made to access a nonexistent field.

NoSuchMethodException (java.lang)

A specified method could not be found.

NullPointerException (java.lang)

A null reference was used where an object reference was needed.

NumberFormatException (java.lang)

An operation was attempted using a number in an illegal format.

ParseException (java.text)

A string could not be parsed according to the specified format.

744 APPENDIX K java exceptions and errors

ProtocolException (java.net)

Some aspect of a network communication protocol was not executed correctly.

RuntimeException (java.lang)

The superclass of all unchecked runtime exceptions.

SecurityException (java.lang)

An operation that violates some kind of security measure was attempted.

SocketException (java.net)

An operation using a socket could not be completed normally.

StringIndexOutOfBoundsException (java.lang)

An index into a String or StringBuffer object is out of range.

TooManyListenersException (java.util)

An event source has registered too many listeners.

UTFDataFormatException (java.io)

An attempt was made to convert a string to or from UTF-8 format, but the
string was too long or the data were not in valid UTF-8 format.

UnknownHostException (java.net)

A specified network host name could not be resolved into a network address.

UnknownServiceException (java.net)

An attempt was made to request a service that the current network connection
does not support.

errors

AbstractMethodError (java.lang)

An attempt was made to invoke an abstract method.

AWTError (java.awt)

A general error indicating that a serious problem has occurred in a class of the
java.awt package.

ClassCircularityError (java.lang)

A circular dependency was found while performing class initialization.

ClassFormatError (java.lang)

The format of the bytecode in a class file is invalid.

Error (java.lang)

The root of the error hierarchy.

APPENDIX K java exceptions and errors 745

ExceptionInInitializerError (java.lang)

An exception has occurred in a static initializer.

IllegalAccessError (java.lang)

An attempt was made to reference a class, method, or variable that was not
accessible.

IncompatibleClassChangeError (java.lang)

An illegal operation was attempted on a class.

InstantiationError (java.lang)

An attempt was made to instantiate an abstract class or an interface.

InternalError (java.lang)

An error occurred in the Java interpreter.

LinkageError (java.lang)

An error occurred while attempting to link classes or resolve dependencies
between classes.

NoClassDefFoundError (java.lang)

The definition of a specified class could not be found.

NoSuchFieldError (java.lang)

A specified field could not be found.

NoSuchMethodError (java.lang)

A specified method could not be found.

OutOfMemoryError (java.lang)

The interpreter has run out of memory and cannot reclaim more through
garbage collection.

StackOverflowError (java.lang)

A stack overflow has occurred in the Java interpreter.

ThreadDeath (java.lang)

The stop method of a thread has caused a thread (but not the interpreter) to
terminate. No error message is printed.

UnknownError (java.lang)

An error has occurred in the Java Virtual Machine (JVM).

UnsatisfiedLinkError (java.lang)

All of the links in a loaded class could not be resolved.

VerifyError (java.lang)

A class failed the bytecode verification procedures.

VirtualMachineError (java.lang)

The superclass of several errors relating to the Java Virtual Machine (JVM).

L
java syntax

This appendix contains syntax diagrams that collectively describe the way in
which Java language elements can be constructed. Rectangles indicate something
that is further defined in another syntax diagram, and ovals indicate a literal
word or character.

Compilation Unit

Package Declaration Import Declaration Type Declaration

Package Declaration

package Name ;

Import Declaration

Type Declaration

Interface Declaration

Class Declaration

import Name Identifier.

*

;

748 APPENDIX L java syntax

Class Declaration

Modifier

class Identifier Class BodyClass Associations

Class Associations

implements Name Listextends Name

Class Body

Class Member
}{

Class Member

Block

Interface Declaration

Class Declaration

Method Declaration

Constructor Declaration

Field Declaration

static

Interface Declaration

Modifier

interface Identifier Interface Body

extends Name List

Interface Body

Interface Member
}{

Interface Member

Interface Declaration

Class Declaration

Method Declaration

Field Declaration

APPENDIX L java syntax 749

Field Declaration

Modifier

Type Variable Declarator

,

;

Variable Declarator

Identifier

= Expression

Array Initializer

Type

Primitive Type

[Name]

Modifier

public

private

protected

static

final

abstract

native

synchronized

transient

volatile

Primitive Type

boolean

char

byte

short

int

long

float

double

Array Initializer

Expression

Array Initializer

{ }

,

Name

Identifier

.

Name List

Name

,

750 APPENDIX L java syntax

Method Declaration

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

Parameters

()

IdentifierType

,

Throws Clause

throws Name List

Method Body

Block

;

Constructor Declaration

Modifier

ParametersIdentifier Throws Clause Constructor Body

Constructor Body

{ }

Block StatementConstructor Invocation

Constructor Invocation

this ;Arguments

Expression

super Arguments

.

APPENDIX L java syntax 751

Block

{ }

Block Statement

Block Statement

Class Declaration

Statement

Local Variable Declaration ;

Local Variable Declaration

Type Variable Declarator

,final

Statement

Try Statement

Throw Statement

Return Statement

For Statement

Empty Statement

Break Statement

Do Statement

While Statement

Switch Statement

If Statement

Basic Assignment

Statement Expression

Synchronized Statement

Block

Continue Statement

Labeled Statement

752 APPENDIX L java syntax

If Statement

if () Statement

else Statement

Expression

Switch Statement

switch ()
Switch Case

Expression { }

Switch Case

case

default

Expression :

:
Block Statement

While Statement

while () StatementExpression

For Statement

for
For Init

;
Expression

;
For Update

)(Statement

For Init

Local Variable Declaration

Statement Expression

,

For Update

Statement Expression

,

Do Statement

do ()whileStatement ;Expression

APPENDIX L java syntax 753

Return Statement

return

Expression

;

Throw Statement

throw Expression ;

Synchronized Statement

(Expressionsynchronized) Block

Empty Statement

;

Break Statement

break

Identifier

;

Continue Statement

continue

Identifier

;

Labeled Statement

Identifier : Statement

Basic Assignment

ExpressionIdentifier = ;

Try Statement

Blocktry catch

finally

Block

Block

()Type Indentifier

754 APPENDIX L java syntax

Expression

Instance Expression

Conditional Expression

Bitwise Expression

Logical Expression

Relational Expression

Equality Expression

Arithmetic Expression

Assignment

Primary Expression

Unary Expression

Cast Expression

Primary Expression

this

Primary Suffix
Literal

super . Identifier

()Expression

Allocation

Name

Primary Suffix

[]Expression

Identifier.

.

.

Allocation.

this

class

Arguments

APPENDIX L java syntax 755

Arguments

()

Expression

,

Allocation

new Primitive Type

Array Initializer
Name

Array Dimensions

Arguments

Class Body

Array Dimensions

[]Expression
[]

Statement Expression

Postfix Expression

Prefix Expression

Assignment ;

Assignment

ExpressionExpression =

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

^=

|=

756 APPENDIX L java syntax

Arithmetic Expression

+ ExpressionExpression

-

*

/

%

Equality Expression

== ExpressionExpression

!=

Relational Expression

>=

< ExpressionExpression

>

<=

Logical Expression

&& ExpressionExpression

||

Bitwise Expression

ExpressionExpression &

|

^

<<

>>

>>>

Conditional Expression

? Expression :Expression Expression

Instance Expression

instanceOf TypeExpression

Cast Expression

(Type) Expression

APPENDIX L java syntax 757

Unary Expression

+

-

Expression

Prefix Expression

Postfix Expression

!

~

Prefix Expression

++

--

Expression

Postfix Expression

++

--

Expression

Literal

Boolean Literal

String Literal

Character Literal

Floating Point Literal

Integer Literal

null

Integer Literal

Hex Integer Literal

Octal Integer Literal

Decimal Integer Literal

Decimal Integer Literal

0

1 - 9 0 - 9 L

l

Octal Integer Literal

0 0 - 7
L

l

Hex Integer Literal

0
L

l

Hex DigitX

x

Hex Digit

a - f

0 - 9

A - F

758 APPENDIX L java syntax

Floating Point Literal

0 - 9

.

.0 - 9

0 - 9 Exponent Part

Float Suffix

Exponent Part

e

E +

-

0 - 9

Float Suffix

f

F

d

D

Character Literal

' any character

Escape Sequence

'

Unicode Escape

Boolean Literal

true

false

Escape Sequence

\ n

t

0 - 70 - 3 0 - 7

b

r

f

\

'

"

String Literal

"
any character

Escape Sequence

"

Unicode Escape

APPENDIX L java syntax 759

Identifier

Java Letter

Java Letter

Java Digit

Java Letter

a - z

A - Z

_

$

Unicode Escape

other Java letter *

Java Digit

0 - 9

Unicode Escape

other Java digit *

* The "other Java letter" category includes letters
 from many languages other than English.

* The "other Java digit" category includes
 additional digits defined in Unicode.

Unicode Escape*

\ Hex Digitu Hex Digit Hex Digit Hex Digit

* In some contexts, the character represented
 by a Unicode Escape is restricted.

M
the java class library

This appendix is a reference for many of the classes in the Java standard class
library. We list the variables, constants, constructors, and methods of each class.
Items within a class are grouped according to their purpose. The classes are listed
in alphabetical order. The package each class is contained in is given in paren-
theses after the class name.

AbstractButton (javax.swing)
A public abstract class, derived from JComponent and implementing
ItemSelectable and SwingConstants, that represents the common behaviors
for buttons and menu items.

methods

public void addActionListener(ActionListener listener)

public void addChangeListener(ChangeListener listener)

public void addItemListener(ItemListener listener)

Adds a specific type of listener to this button.
public void doClick()

public void doClick(int pressTime)

Performs a button click programmatically (as if the user had used the mouse).
The button stays visually “pressed” for pressTime milliseconds if specified.

public Icon getDisabledIcon()

public void setDisabledIcon(Icon disabeledIcon)

Gets or sets the icon used by this button when it is disabled.
public Icon getDisabledSelectedIcon()

public void setDisabledSelectedIcon(Icon disabledSelectedIcon)

Gets or sets the icon used by this button when it is disabled and selected.
public int getHorizontalAlignment()

public void setHorizontalAlignment(int alignment)

public int getVerticalAlignment()

public void setVerticalAlignment(int alignment)

Gets or sets the horizontal or vertical alignment of the icon and text.
public int getHorizontalTextPosition()

public void setHorizontalTextPosition(int position)

public int getVerticalTextPosition()

public void setVerticalTextPosition(int position)

Gets or sets the horizontal or vertical position of the text relative to the icon.
public Icon getIcon()

762 APPENDIX M the java class library

public void setIcon(Icon icon)

Gets or sets the default icon for this button.
public Insets getMargin()

public void setMargin(Insets insets)

Gets or sets the margin between this button’s border and the label.
public int getMnemonic()

public void setMnemonic(int mnemonic)

Gets or sets this button’s keyboard mnemonic.
public Icon getPressedIcon()

public void setPressedIcon(Icon icon)

Gets or sets the icon used by this button when it is pressed.
public Icon getRolloverIcon()

public void setRolloverIcon(Icon icon)

Gets or sets the icon used by this button when the mouse rolls over it.
public Icon getSelectedIcon()

public void setSelectedIcon(Icon icon)

Gets or sets the icon used by this button when it is selected.
public String getText()

public void setText(String text)

Gets or sets the text displayed on this button.
public void setEnabled(boolean flag)

Enables or disables this button.
public void setRolloverEnabled(boolean flag)

Enables or disables the rollover property for this button. Rollover effects will not occur if this prop-
erty is disabled.

public isRolloverEnabled()

Returns true if this button currently has its rollover property enabled.
public void setSelected(boolean flag)

Selects or deselects ths button.
public boolean isSelected()

Returns true if this button is currently selected.

ActionEvent (java.awt.event)
A public class, derived from AWTEvent, that represents an AWT action event.

APPENDIX M the java class library 763

variables and constants

public static final int ALT_MASK

public static final int CTRL_MASK

public static final int META_MASK

public static final int SHIFT_MASK

Constant values which represent masks for the Alt, Control, Meta, and Shift keys being pressed
during an action event.

public static final int ACTION_FIRST

public static final int ACTION_LAST

Constant values that represent the index of the first and last action event ids.
public static final int ACTION_PERFORMED

A constant value that represents an action performed AWT event type.

constructors

public ActionEvent(Object src, int type, String cmd)

public ActionEvent(Object src, int type, String cmd, int keys)

Creates a new instance of an ActionEvent from the specified source object, event type, and com-
mand string. Additionally, a mask value can be set that defines the types of keys depressed during
the event.

methods

public String getActionCommand()

Returns the command string associated with this action.
public int getModifiers()

Returns the mask of the modifiers (special keys) depressed during this event.
public String paramString()

Returns a string containing the parameters of this ActionEvent.

AdjustmentEvent (java.awt.event)
A public class, derived from AWTEvent, that represents an AWT adjustment event.

variables and constructs

public static final int ADJUSTMENT_FIRST

public static final int ADJUSTMENT_LAST

Constant values that represent the index of the first and last adjustment event ids.

764 APPENDIX M the java class library

public static final int ADJUSTMENT_VALUE_CHANGED

A constant value that represents an adjustment value change event.
public static final int BLOCK_DECREMENT

public static final int BLOCK_INCREMENT

Constant values that represent block decrement and increment events.
public static final int TRACK

A constant value which represents an absolute tracking adjustment event.
public static final int UNIT_DECREMENT

public static final int UNIT_INCREMENT

Constant values which represent unit decrement and increment events.

constructors

public AdjustmentEvent(Adjustable source, int id, int type, int val)

Creates a new instance of an AdjustmentEvent from a specified source and having a specified id,
type, and value.

methods

public Adjustable getAdjustable()

Returns the adjustable object that originated this AWT AdjustmentEvent.
public int getAdjustmentType()

Returns the type of adjustment for this event.
public int getValue()

Returns the current value of this AdjustmentEvent.
public String paramString()

Returns a string containing the parameters of this event.

Applet (java.applet)
A public class, derived from Panel, that is intended to be used as a program running inside a Web
page.

constructors

public Applet()

Creates a new instance of an applet for inclusion on a Web page.

APPENDIX M the java class library 765

methods

public void destroy()

Destroys the applet and all of its resources. This method contains no functionality and should be
overridden by subclasses.

public AppletContext getAppletContext()

Returns this applet’s context (the environment in which it is running).
public String getAppletInfo()

Returns a string representation of information regarding this applet. This method contains no func-
tionality and should be overridden by subclasses.

public AudioClip getAudioClip(URL audio)

public AudioClip getAudioClip(URL base, String filename)

Returns the AudioClip requested. The location of the audio clip can be given by the base URL and
the filename relative to that base.

public URL getCodeBase()

public URL getDocumentBase()

public Locale getLocale()

Returns the URL of this applet, the document that contains this applet, or the locale of this applet.
public Image getImage(URL image)

public Image getImage(URL base, String filename)

Returns the image requested. The location of the image can be given by the base URL and the file-
name relative to that base.

public String getParameter(String param)

public String[][] getParameterInfo()

Returns the value of the specified parameter for this applet. An array of string elements containing
information about each parameter for this applet can also be obtained. Each element of the
returned array should be comprised of three strings (parameter name, type, and description). This
method contains no functionality and should be overridden by subclasses.

public void init()

This method provides initialization functionality to the applet prior to the first time that the applet
is started. It is automatically called by the browser or the appletviewer program. This method con-
tains no functionality and should be overridden by subclasses.

public boolean isActive()

Returns a true value if this applet is currently active. An applet is considered active just prior to
execution of its start method and is no longer active just after execution of its stop method.

public void play(URL source)

public void play(URL base, String filename)

Plays the audio clip located at source. The location of the audio clip can be given as a base URL
and the filename relative to that base.

766 APPENDIX M the java class library

public void resize(Dimension dim)

public void resize(int w, int h)

Resizes this applet according to the specified dimension.
public final void setStub(AppletStub stub)

Sets the interface between this applet and the browser or appletviewer program.
public void showStatus(String message)

Prints the specified message in the browser’s status window.
public void start()

This method generally contains functionality relevant to the starting of this applet. It is called after
the applet has been initialized (with the init method) and every time the applet is reloaded in the
browser or appletviewer program. This method contains no functionality and should be overridden
by subclasses.

public void stop()

This method generally contains functionality relevant to the stopping of this applet. It is called by
the browser (when the containing Web page is replaced) or appletviewer program. This method
contains no functionality and should be overridden by subclasses.

ArrayList (java.util)
A public class, derived from AbstractList, that represents a resizable array implementation of a list.
Similar to Vector, but unsynchronized.

constructors

public ArrayList()

public ArrayList(int initialCapacity)

Creates a new list with the specified initial capacity (ten by default).
public ArrayList(Collection col)

Creates a new list containing the elements of the specified collection.

methods

public void add(int index, Object element)

Inserts the specified element into this list at the specified index.
public boolean add(Object obj)

Appends the specified element to the end of this list.
public boolean addAll(Collection col)

public boolean addAll(int index, Collection col)

Inserts all of the elements in the specified collection into the list at the specified index, or appends
them to the end of the list if no index is specified.

APPENDIX M the java class library 767

public void clear()

Removes all of the elements from this list.
public boolean contains(Object obj)

Returns true if this list contians the specified object.
public void ensureCapacity(int minimumCapacity)

Increases the capacity of this list to the specified value if necessary.
public Object get(int index)

Returns the element at the specified index. Throws IndexOutOfBoundsException if the index is
out of range.

public int indexOf(Object obj)

Returns the index of the first occurrence of the specified object (based on the equals method) or –1
if it is not found.

public boolean isEmpty()

Returns true if this list contains no elements.
public int lastIndexOf(Object obj)

Returns the index of the last occurrence of the specified object (based on the equals method) or –1
if it is not found.

public Object remove(int index)

Removes and returns the object at the specified index in this list. Throws
IndexOutOfBoundsException if the index is out of range.

protected void removeRange(int fromIndex, int toIndex)

Removes the elements at the indexes in the specified range, exclusive.
public Object set(int index, Object obj)

Replaces the element at the specified index with the specified object
public int size()

Returns the number of elements in this list.
public Object[] toArray()

Returns an array containing the elements in this list.
public void trimToSize()

Trims the capacity of this list to the current size.

AWTEvent (java.awt)
A public class, derived from EventObject, that is the root class for all of the AWT event classes.

variables and constants

public final static long ACTION_EVENT_MASK

public final static long ADJUSTMENT_EVENT_MASK

768 APPENDIX M the java class library

public final static long COMPONENT_EVENT_MASK

public final static long CONTAINER_EVENT_MASK

public final static long FOCUS_EVENT_MASK

public final static long ITEM_EVENT_MASK

public final static long KEY_EVENT_MASK

public final static long MOUSE_EVENT_MASK

public final static long MOUSE_MOTION_EVENT_MASK

public final static long TEXT_EVENT_MASK

public final static long WINDOW_EVENT_MASK

Constant values representing the AWT event masks for various events.
protected boolean consumed

A variable representing the state of the event. A true value means that it has not been sent to the
appropriate peer, false indicates that it has.

protected int id

The numeric identification for this event.

constructors

public AWTEvent(Event evt)

Creates a new AWTEvent from the specified event.
public AWTEvent(Object src, int type)

Creates a new AWTEvent from a specified source, and having a defined type.

methods

protected void consume()

Targets this AWTEvent to be sent to the appropriate peer.
public int getID()

Returns this event’s type.
protected boolean isConsumed()

Returns a true value if this AWTEvent has been sent to the appropriate peer.
public String paramString()

Returns the parameter string for this AWTEvent.
public String toString()

Returns a string representation of this AWTEvent.

BigDecimal (java.math)
A public class, derived from Number, which can be used to represent a decimal number with a defin-
able precision.

APPENDIX M the java class library 769

variables and constants

ROUND_CEILING

A constant that represents a rounding mode in which the value of the BigDecimal is rounded up
(away from zero) if the number is positive, and down (closer to zero) if the number is negative.

ROUND_DOWN

A constant that represents a rounding mode in which the value of the BigDecimal is rounded closer
to zero (decreasing a positive number and increasing a negative number).

ROUND_FLOOR

A constant that represents a rounding mode in which the value of the BigDecimal is rounded down
(closer to zero) if the number is positive, and up (away from zero) if the number is negative.

ROUND_HALF_DOWN

A constant that represents a rounding mode in which the value of the BigDecimal is rounded as in
ROUND_UP if the fraction of the number is greater than 0.5 and as ROUND_DOWN in all other
cases.

ROUND_HALF_EVEN

A constant that represents a rounding mode in which the value of the BigDecimal is rounded as in
ROUND_HALF_UP if the number to the left of the decimal is odd and as ROUND_HALF_DOWN
when the number is even.

ROUND_HALF_UP

A constant that represents a rounding mode in which the value of the BigDecimal is rounded as in
ROUND_UP if the fraction of the number is greater than or equal to 0.5 and as in
ROUND_DOWN in all other cases.

ROUND_UNNECESSARY

A constant that represents a rounding mode in which the value of the BigDecimal is not rounded
(if possible) and an exact result be returned.

ROUND_UP

A constant that represents a rounding mode in which the value of the BigDecimal is rounded away
from zero (increasing a positive number, and decreasing a negative number).

constructors

public BigDecimal(BigInteger arg)

public BigDecimal(BigInteger arg, int scale) throws NumberFormatException

public BigDecimal(double arg) throws NumberFormatException

public BigDecimal(String arg) throws NumberFormatException

Creates an instance of a BigDecimal from arg. The string argument may contain a preceding minus
sign indicating a negative number. The resulting BigDecimal’s scale will be the number of integers
to the right of the decimal point in the string, a specified value, or 0 (zero) if none are present.

770 APPENDIX M the java class library

methods

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public BigInteger toBigInteger()

public String toString()

Converts this BigDecimal to either a Java primitive type or a BigInteger.
public BigDecimal abs()

Returns the absolute value of this BigDecimal with the same scale as this BigDecimal.
public BigDecimal add(BigDecimal arg)

public BigDecimal subtract(BigDecimal arg)

Returns the result of arg added to or subtracted from this BigDecimal, with the resulting scale equal
to the larger of the two BigDecimal’s scales.

public int compareTo(BigDecimal arg)

This method compares this BigDecimal to arg and will return a –1 if this BigDecimal is less than
arg, 0 if equal to arg or a 1 if greater than arg. If the values of the two BigDecimals are identical
and the scales are different, they are considered equal.

public BigDecimal divide(BigDecimal arg, int mode) throws ArithmeticException,

IllegalArgumentException

public BigDecimal divide(BigDecimal arg, int scale, int mode) throws

ArithmeticException, IllegalArgumentException

Returns the result of this BigDecimal divided by arg. If required the rounding mode is used. The
resulting BigDecimal’s scale is identical to this BigDecimal’s scale or a specified value.

public boolean equals(Object arg)

Returns a true value if this BigDecimal’s value and scale are equal to arg’s value and scale.
public int hashCode()

Returns the hash code of this BigDecimal.
public BigDecimal max(BigDecimal arg)

public BigDecimal min(BigDecimal arg)

Returns the greater or lesser of this BigDecimal and arg.
public BigDecimal movePointLeft(int num)

public BigDecimal movePointRight(int num)

Returns this BigDecimal with the decimal point moved num positions.
public BigDecimal multiply(BigDecimal arg)

Returns the result of this BigDecimal multiplied with the value of arg. The scale of the resulting Big-
Decimal is the result of the addition of the two BigDecimal’s scales.

APPENDIX M the java class library 771

public BigDecimal negate()

Returns the negation of this BigDecimal’s value with the same scale.
public int scale()

Returns the scale of this BigDecimal.
public BigDecimal setScale(int val) throws ArithmeticException,

IllegalArgumentException

public BigDecimal setScale(int val, int mode) throws ArithmeticException,

IllegalArgumentException

Returns a BigDecimal whose value is the same as this BigDecimal’s and has a new scale specified
by val. If rounding is necessary, a rounding mode can be specified.

public int signum()

Returns a –1 if this BigDecimal is negative, 0 if zero, and 1 if positive.
public static BigDecimal valueOf(long value)

public static BigDecimal valueOf(long value, int scale) throws

NumberFormatException

Returns a BigDecimal with a defined value. The scale of the returned number is specified or it
defaults to 0 (zero).

BigInteger (java.math)
A public class, derived from Number, that can be used to represent an integer in a two’s complement
format of any precision.

constructors

public BigInteger(byte[] arg) throws NumberFormatException

public BigInteger(int signum, byte[] magnitude) throws NumberFormatException

Creates an instance of a BigInteger from the specified byte array. The sign of the number can be
placed in signum (where –1 is negative, 0 is zero, and 1 is positive).

public BigInteger(String arg) throws NumberFormatException

public BigInteger(String arg, int radix) throws NumberFormatException

Creates an instance of a BigInteger from the string arg, which can contain decimal numbers pre-
ceded by an optional minus sign. The argument radix specifies the base of the arg value.

public BigInteger(int size, Random rand) throws IllegalArgumentException

public BigInteger(int size, int prob, Random rand)

Creates a (generally) prime instance of a BigInteger from a random integer, rand, of a specified
length, size. The certainty parameter (prob) represents the amount of probability that the generated
number is a prime.

772 APPENDIX M the java class library

methods

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public String toString()

public String toString(int base)

Converts this BigDecimal to either a Java primitive type or a BigInteger. The base can specify
the radix of the number value returned.

public BigInteger abs()

Returns the absolute value of this BigInteger.
public BigInteger add(BigInteger arg) throws ArithmeticException

public BigInteger subtract(BigInteger arg)

Adds the argument to, or subtracts arg from this BigInteger and returns the result.
public BigInteger and(BigInteger arg)

public BigInteger andNot(BigInteger arg)

public BigInteger not()

public BigInteger or(BigInteger arg)

public BigInteger xor(BigInteger arg)

Returns the result of a logical operation of this BigInteger and the value of arg. The not method
returns the logical not of this BigInteger.

public int bitCount()

Returns the number of bits from this BigInteger that are different from the sign bit.
public int bitLength()

Returns the number of bits from this BigInteger, excluding the sign bit.
public BigInteger clearBit(int index) throws ArithmeticException

Returns the modified representation of this BigInteger with the bit at position index cleared.
public int compareTo(BigInteger arg)

Compares this BigInteger to the parameter arg. If this BigInteger is less than arg, a -1 is returned, if
equal to arg a 0 (zero) is returned, and if greater than arg, a 1 is returned.

public BigInteger divide(BigInteger arg) throws ArithmeticException

public BigInteger[] divideAndRemainder(BigInteger arg) throws ArithmeticException

Returns the result of this BigInteger divided by arg. The divideAndRemainder method returns
as the first element ([0]) the quotient, and the second element ([1]) the remainder.

public boolean equals(Object arg)

Returns a true value if this BigInteger is equal to the parameter arg.
public BigInteger flipBit(int index) throws ArithmeticException

Returns the modified representation of this BigInteger with the bit at position index flipped.

APPENDIX M the java class library 773

public BigInteger gcd(BigInteger arg)

Returns the greatest common denominator of the absolute value of this BigInteger and the
absolute value of the parameter arg.

public int getLowestSetBit()

Returns the index of the rightmost bit that is equal to one from this BigInteger.
public int hashCode()

Returns the hash code of this BigInteger.
public boolean isProbablePrime(int prob)

Returns a true value if this BigInteger is probably a prime number. The parameter prob repre-
sents the certainty of the decision.

public BigInteger max(BigInteger arg)

public BigInteger min(BigInteger arg)

Returns the larger or smaller of this BigInteger or arg.
public BigInteger mod(BigInteger arg)

public BigInteger modInverse(BigInteger arg) throws ArithmeticException

public BigInteger modPow(BigInteger exp, BigInteger arg)

Returns the result of this BigInteger mod arg. The modInverse returns the modular multiplica-
tive inverse. modPow returns the result of this (BigInteger ** exp) mod arg.

public BigInteger multiply(BigInteger arg)

Returns the result of this BigInteger multiplied by arg.
public BigInteger negate()

Returns this BigInteger negated (this BigInteger * –1).
public BigInteger pow(int exp) throws ArithmeticException

Returns the result of this BigInteger ** exp.
public BigInteger remainder(BigInteger arg) throws ArithmeticException

Returns the result of this BigInteger mod arg.
public BigInteger setBit(int index) throws ArithmeticException

Returns the result of this BigInteger with the bit at the specified index set.
public BigInteger shiftLeft(int num)

public BigInteger shiftRight(int num)

Returns the result of this BigInteger shifted num bits.
public int signum()

Returns a –1 if the value of this BigInteger is negative, 0 if zero, and 1 if positive.
public boolean testBit(int index) throws ArithmeticException

Returns a true value if the bit at the specified index is set.
public byte[] toByteArray()

Returns the two’s complement of this BigInteger in an array of bytes.
public static BigInteger valueOf(long arg)

Returns a BigInteger from the value of arg.

774 APPENDIX M the java class library

BitSet (java.util)
A public final class, derived from Object and implementing Cloneable and Serializable, that
allows for the manipulation of a vectored array of bits.

constructors

public BitSet()

public BitSet(int size)

Creates a new instance of a bit sequence of size bits (the default is 64). Each of the initial bits are
set to false.

methods

public void and(BitSet arg)

public void or(BitSet arg)

public void xor(BitSet arg)

Places all of the bits from both this BitSet AND/OR/XORed with the bits of arg into this BitSet.
public void clear(int index)

public void set(int index)

Clears or sets the bit (sets it to false) at location index.
public Object clone()

Returns a clone of this BitSet.
public boolean equals(Object arg)

Returns a true if arg is not null and all bits are equal to this BitSet.
public boolean get(int index)

Returns the boolean value of the bit at location index.
public int hashCode()

Returns the hash code of this BitSet.
public int size()

Returns the size of this BitSet.
public String toString()

Returns a string representation of this BitSet in set notation (i.e., {1, 2, 5})

Boolean (java.lang)
A public final class, derived from Object and implementing Serializable, that contains boolean
logic operations, constants, and methods as a wrapper around the Java primitive type boolean.

APPENDIX M the java class library 775

variables and constructs

public final static Boolean TRUE

public final static Boolean FALSE

Boolean constant values of true or false.
public final static Class TYPE

The Boolean constant value of the boolean type class.

constructors

public Boolean(boolean arg)

public Boolean(String arg)

Creates an instance of the Boolean class from the parameter arg.

methods

public boolean booleanValue()

The boolean value of the current object.
public boolean equals(Object arg)

Returns the result of an equality comparison against arg. Here arg must be a boolean object with
the same value as this Boolean for a resulting true value.

public static boolean getBoolean(String str)

Returns a Boolean representation of the system property named in str.
public int hashCode()

Returns the hash code for this object.
public String toString()

Returns the string representation of the state of the current object (i.e., “true” or “false”).
public static Boolean valueOf(String str)

Returns a new Boolean initialized to the value of str.

BorderFactory (javax.swing)
A public class, derived from Object, that represents a factory for creating GUI borders.

methods

public static Border createBevelBorder(int type)

public static Border createBevelBorder(int type, Color highlight, Color shadow)

776 APPENDIX M the java class library

public static Border createBevelBorder(int type, Color outerHighlight, Color

innerHighlight, Color outerShadow, Color innerShadow)

Returns a bevel border with the specified type (BevelBorder.LOWERED or BevelBorder.RAISED)
and shading.

public static CompoudBorder createCompoundBorder(Border outside, Border inside)

Returns a border composed of the two other specified borders.
public static Border createEmptyBorder()

public static Border createEmptyBorder(int top, int left, int bottom, int right)

Returns an empty (invisible) border with the specified dimensions, which default to 0.
public static Border createEtchedBorder()

public static Border createEtchedBorder(Color highlight, Color shadow)

public static Border createEtchedBorder(int type)

public static Border createEtchedBorder(int type, Color highlight, Color shadow)

Returns an etched border with the specified type (EtchedBorder.RAISED or EtchedBorder.LOW-
ERED) and shading.

public static Border createLineBorder(Color color)

public static Border createLineBorder(Color color, int thickness)

Returns a line border with the specified color and thickness. If unspecified, the thickness defaults to
one pixel.

public static Border createLoweredBevelBorder()

public static Border createRaisedBevelBorder()

Returns a border with a lowered or raised beveled edge.
public static MatteBorder createMatteBorder(int top, int left, int bottom, int

right, Color color)

public static MatteBorder createMatteBorder(int top, int left, int bottom, int

right, Icon icon)

Returns a matte border with the specified edge sizes. The border is made up either of the specified
color or the specified icon.

public static TitledBorder createTitledBorder(Border border)

public static TitledBorder createTitledBorder(String title)

public static TitledBorder createTitledBorder(Border border, String title)

public static TitledBorder createTitledBorder(Border border, String title, int

justification, int position)

public static TitledBorder createTitledBorder(Border border, String title, int

justification, int position, Font font)

public static TitledBorder createTitledBorder(Border border, String title, int

justification, int position, Font font, Color color)

Returns a titled border with the specified border and the specified title text, justification, posiition,
font, and color. Justification and position are defined by constants in the TitledBorder class.

APPENDIX M the java class library 777

Justification can be: LEFT, CENTER, RIGHT, LEADING, or TRAILING (default is LEADING).
Position specifies the title’s vertical position in relation to the border and can be: TOP,
BELOW_TOP, ABOVE_BOTTOM, BOTTOM, or BELOW_BOTTOM (default is TOP).

BorderLayout (java.awt)
A public class, derived from Object and implementing LayoutManager2 and Serializable, that
lays out a container using five distinct areas (North, South, East, West, and Center).

variables and constructs

public final static String CENTER

public final static String EAST

public final static String NORTH

public final static String SOUTH

public final static String WEST

Constant values indicating areas of the border layout manager.

constructors

public BorderLayout()

public BorderLayout(int hgap, int vgap)

Creates a new instance of a BorderLayout. If no initial horizontal and vertical gaps are specified,
they default to zero.

methods

public void addLayoutComponent(Component item, Object constraints)

public void removeLayoutComponent(Component item)

Adds or removes a component to this layout manager. When adding a component, it is possible to
restrict the component to the specified constraints.

public int getHgap()

public int getVgap()

Returns the horizontal or vertical gap of components laid out by this layout manager.
public float getLayoutAlignmentX(Container cont)

public float getLayoutAlignmentY(Container cont)

Returns the horizontal or vertical alignment value of the specified container.
public void invalidateLayout(Container cont)

Forces this layout manager to discard any cached layout information about the specified container.

778 APPENDIX M the java class library

public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.
public Dimension maximumLayoutSize(Container cont)

public Dimension minimumLayoutSize(Container cont)

public Dimension preferredLayoutSize(Container cont)

Returns the maximum, minimum or preferred size of the specified container when laid out by this
layout manager.

public void setHgap(int hgap)

public void setVgap(int vgap)

Sets the horizontal or vertical gap in pixels of components laid out by this layout manager.

Box (javax.swing)
A public class, derived from JComponent and implementing Accessible, that represents a lightweight
container that uses a box layout.

constructors

public Box(int axis)

Creates a box that displays its components along the specified axis (BoxLayout. X_AXIS or
BoxLayout.Y_AXIS).

methods

public static Box createHorizontalBox()

public static Box createVerticalBox()

Returns a box that displays its components horizontally (from left to right) or vertically (from top
to bottom).

public static Component createGlue()

public static Component createHorizontalGlue()

public static Component createVerticalGlue()

Returns an invisible glue component that expands as much as necessary to fill the space between
neighboring components.

public static Component createRigidArea(Dimension dim)

Returns an invisible component with the specified size.
public static Component createHorizontalStrut(int width)

public static Component createVerticalStrut(int height)

Returns an invisible component with a fixed width or height.

APPENDIX M the java class library 779

BoxLayout (javax.swing)
A public class, derived from Object and implementing LayoutManager2 and Serializable, that
lays out components either vertically or horizontally.

variables and constructs

public static final int X_AXIS

public static final int Y_AXIS

Specifies that components should be laid out left to right or top to bottom.

constructors

public BoxLayout(Container target, int axis)

Creates a box layout for the specified target container along the specified axis.

methods

public float getLayoutAlignmentX(Container cont)

public float getLayoutAlignmentY(Container cont)

Returns the horizontal or vertical alignment value of the specified container.
public void invalidateLayout(Container cont)

Forces this layout manager to discard any cached layout information about the specified container.
public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.
public Dimension maximumLayoutSize(Container cont)

public Dimension minimumLayoutSize(Container cont)

public Dimension preferredLayoutSize(Container cont)

Returns the maximum, minimum or preferred size of the specified container when laid out by this
layout manager.

BufferedReader (java.io)
A public class, derived from Reader, that provides a buffered stream of character-based input.

constructors

public BufferedReader(Reader rdr)

public BufferedReader(Reader rdr, int size)

Creates a BufferedReader from the specified Reader, by using a specified size (in characters). The
default size is 8192 characters.

780 APPENDIX M the java class library

methods

public void close() throws IOException

Closes this BufferedReader.
public void mark(int readAheadLimit) throws IOException

Sets a mark in the stream where attempts to reset this BufferedReader will return to. The
readAheadLimit determines how far ahead the stream can be read before the mark expires.

public boolean markSupported()

An overridden method from Reader that determines if this stream supports the setting of a mark.
public int read() throws IOException

public String readLine() throws IOException

Reads a single character or an entire line from this BufferedReader stream. The character is
returned as an int, the line as a string. A line of text is considered to be a series of characters end-
ing in a carriage return (\r), a line feed (\n), or a carriage return followed by a line (\r\n).

public int read(char[] dest, int offset, int size) throws IOException

Reads size characters from this BufferedReader stream. Reading will skip offset characters
into the current location in the stream, and place them in the destination array. This method will
return the number of characters read from the stream or a -1 if the end of the stream was reached.

public boolean ready() throws IOException

Returns a true value if this BufferedReader is capable of being read from. This state can only be
true if the buffer is not empty.

public void reset() throws IOException

Resets this BufferedReader to the last mark.
public long skip(long num) throws IOException

Skips forward num characters in the stream and returns the actual number of characters skipped.

BufferedWriter (java.io)
A public class, derived from Writer, that represents a character output stream that buffers characters
for efficiency.

constructors

public BufferedWriter(Writer out)

public BufferedWriter(Writer out, int size)

Creates a buffered output stream using the specified Writer stream and a buffer of the specified
size.

APPENDIX M the java class library 781

methods

public void close()

Closes this stream
public void flush()

Flushes this stream
public void newLine()

Writes a line separator to this stream.
public void write(int ch)

public void write(String str)

public void write(String str, int offset, int length)

public void write(char[] buffer)

public void write(char[] buffer, int offset, int length)

Writes a single character, string, or character array to this stream. A portion of the string or char-
acter array can be specified.

ButtonGroup (javax.swing)
A public class, derived from Object and implementing Serializable, that represents a set of mutu-
ally exclusive buttons.

constructors

public ButtonGroup()

Creates an empty button group.

methods

public void add(AbstractButton button)

public void remove(AbstractButton button)

Adds or removes the specified button to this group.
public int getButtonCount()

Returns the number of buttons in this group.

Byte (java.lang)
A public final class, derived from Number, that contains byte logic operations, constants, and meth-
ods as a wrapper around the Java primitive type byte.

782 APPENDIX M the java class library

variables and constructs

public final static byte MAX_VALUE

public final static byte MIN_VALUE

A constant value that holds the maximum (127) and minimum (–128) values a byte can contain.
public final static Class TYPE

The Byte constant value of the byte type class.

constructors

public Byte(byte arg)

public Byte(String arg) throws NumberFormatException

Creates a new instance of a Byte from arg.

methods

public byte byteValue()

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public short shortValue()

Returns the value of this Byte as a Java primitive type.
public static Byte decode(String str) throws NumberFormatException

Returns the given string (str) as a Byte. The parameter string may be encoded as an octal, hexadec-
imal, or binary number.

public boolean equals(Object arg)

Returns a true value if this Byte is equal to the parameter object arg.
public int hashCode()

Returns the hash code of this Byte.
public static byte parseByte(String str) throws NumberFormatException

public static byte parseByte(String str, int base) throws NumberFormatException

Returns the value of the parsed string (str) as a byte. The radix of the string can be specified in
base.

public String toString()

public static String toString(byte prim)

Returns a string representation of this Byte or the specified primitive byte (prim), whose radix is
assumed to be 10.

public static Byte valueOf(String str) throws NumberFormatException

APPENDIX M the java class library 783

public static Byte valueOf(String str, int base) throws NumberFormatException

Returns a Byte object whose initial value is the result of the parsed parameter (str). The parame-
ter is assumed to be the text representation of a byte and its radix 10 (unless specified in base).

Calendar (java.util)
A public abstract class, derived from Object and implementing Cloneable and Serializable, that
allows for the manipulation of a Date object.

variables and constructs

public static final int AM

public static final int PM

Constant values that represent ante and post meridian.
public static final int ERA

public static final int YEAR

public static final int MONTH

public static final int WEEK_OF_YEAR

public static final int WEEK_OF_MONTH

public static final int DATE

public static final int DAY_OF_MONTH

public static final int DAY_OF_YEAR

public static final int DAY_OF_WEEK

public static final int DAY_OF_WEEK_IN_MONTH

public static final int AM_PM

public static final int HOUR

public static final int HOUR_OF_DAY

public static final int MINUTE

public static final int SECOND

public static final int MILLISECOND

public static final int ZONE_OFFSET

public static final int DST_OFFSET

Constant values that represent the index to the field where particular data is stored representing an
instance of time (to millisecond precision). The combination of all of these fields yields a full rep-
resentation of a moment of time with respect to a particular calendar (i.e., GregorianCalendar).

public static final int JANUARY

public static final int FEBRUARY

public static final int MARCH

784 APPENDIX M the java class library

public static final int APRIL

public static final int MAY

public static final int JUNE

public static final int JULY

public static final int AUGUST

public static final int SEPTEMBER

public static final int OCTOBER

public static final int NOVEMBER

public static final int DECEMBER

public static final int UNDECIMBER

Constant values representing various calendar months. UNDECIMBER represents the 13th month of
a Gregorian calendar (lunar month).

public static final int SUNDAY

public static final int MONDAY

public static final int TUESDAY

public static final int WEDNESDAY

public static final int THURSDAY

public static final int FRIDAY

public static final int SATURDAY

Constant values representing the days of a week.
protected boolean areFieldsSet

A boolean flag that indicates if the time fields have been set for this Calendar.
public static final int FIELD_COUNT

A constant value that represents the number of date/time fields stored by a Calendar.
protected int fields[]

The integer array that contains the values that make up the information about this Calendar.
protected boolean isSet[]

The boolean array that contains status values used to indicate if a corresponding time field has been
set.

protected boolean isTimeSet

A boolean flag field that is used to indicate if the time is set for this Calendar.
protected long time

A long int field that contains the time set for this Calendar.

methods

public abstract void add(int field, int val)

Adds (or subtracts in the case of a negative val) an amount of days or time from the specified
field.

APPENDIX M the java class library 785

public abstract boolean after(Object arg)

public abstract boolean before(Object arg)

Returns a true value if this Calendar date is after or before the date specified by arg.
public final void clear()

public final void clear(int field)

Clears the value from the specified time field from this Calendar. The clear method will clear
all of the values from this Calendar.

public Object clone()

Returns a clone of this Calendar.
protected void complete()

Attempts to complete any empty date/time fields by calling the completeTime() and
completeFields() methods of this Calendar.

protected abstract void computeFields()

protected abstract void computeTime()

Computes the values of the time fields based on the currently set time (computeFields()) or com-
putes the time based on the currently set time fields (computeTime()) for this Calendar.

public abstract boolean equals(Object arg)

Returns a true value if this Calendar is equal to the value of arg.
public final int get(int fld)

Returns the value of the specified time field from this Calendar.
public static synchronized Locale[] getAvailableLocales()

Returns the list of locales that are available.
public int getFirstDayOfWeek()

public void setFirstDayOfWeek(int val)

Returns or sets the first day of the week to val for this Calendar.
public abstract int getGreatestMinimum(int fld)

Returns the largest allowable minimum value for the specified field.
public static synchronized Calendar getInstance()

public static synchronized Calendar getInstance(Locale locale)

public static synchronized Calendar getInstance(TimeZone tz)

public static synchronized Calendar getInstance(TimeZone tz, Locale locale)

Returns an instance of a Calendar based on the default time zone and locale, or from a specified
time zone and/or locale.

public abstract int getLeastMaximum(int fld)

Returns the smallest allowable maximum value for the specified field.
public abstract int getMaximum(int fld)

public abstract int getMinimum(int fld)

Returns the largest or smallest allowable value for the specified field.

786 APPENDIX M the java class library

public int getMinimalDaysInFirstWeek()

public void setMinimalDaysInFirstWeek(int val)

Returns or sets the smallest allowable number of days in the first week of the year, based on the
locale.

public final Date getTime()

public final void setTime(Date dt)

Returns or sets the time for this Calendar.
protected long getTimeInMillis()

protected void setTimeInMillis(long ms)

Returns or sets the time in milliseconds for this Calendar.
public TimeZone getTimeZone()

public void setTimeZone(TimeZone val)

Returns or sets the time zone for this Calendar.
protected final int internalGet(int fld)

An internal method used to obtain field values to be used by subclasses of Calendar.
public boolean isLenient()

public void setLenient(boolean flag)

Returns or sets the flag indicating leniency for date/time input.
public final boolean isSet(int fld)

Returns a true value if a value is set for the specified field.
public abstract void roll(int fld, boolean direction)

Adds one single unit of time to the specified date/time field. A true value specified for direction
increases the field’s value, false decreases it.

public final void set(int fld, int val)

Sets a single specified field to a value.
public final void set(int year, int month, int date)

public final void set(int year, int month, int date, int hour, int min)

public final void set(int year, int month, int date, int hour, int min, int sec)

Sets the year, month, date, hour, minute, and seconds of the time fields for this Calendar.

CardLayout (java.awt)
A public class, derived from Object and implementing LayoutManager2 and Serializable, that lays
out components in a series of separate cards, only one of which is visible at any time. The visibility of
the cards can be changed, essentially providing the ability to sequence through the cards.

APPENDIX M the java class library 787

constructors

public CardLayout()

public CardLayout(int hg, int vg)

Creates a new instance of a card layout with a specified horizontal and vertical gap (or no gap in
the case of the first constructor).

methods

public void addLayoutComponent(Component item, Object constr)

public void removeLayoutComponent(Component item)

Adds or removes a component to this layout manager. While adding, it is possible to restrict the
component to the specified constraints (constr).

public void first(Container cont)

public void last(Container cont)

Moves to the first or last card in the layout. cont is the container that is laid out by this layout
manager.

public int getHgap()

public int getVgap()

Returns the horizontal or vertical gap between the components laid out by this layout manager.
public float getLayoutAlignmentX(Container parent)

public float getLayoutAlignmentY(Container parent)

Returns the horizontal or vertical alignment value of the specified container.
public void invalidateLayout(Container cont)

Forces this layout manager to discard any cached layout information about the specified container.
public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.
public Dimension maximumLayoutSize(Container cont)

public Dimension minimumLayoutSize(Container cont)

public Dimension preferredLayoutSize(Container cont)

Returns the maximum, minimum or preferred size of the specified container when laid out by this
layout manager.

public void next(Container cont)

public void previous(Container cont)

Cycles to the next or previous card. cont is container that is laid out by this layout manager.
public void setHgap(int hg)

public void setVgap(int vg)

Sets the horizontal or vertical gap in pixels of components laid out by this layout manager.

788 APPENDIX M the java class library

public void show(Container cont, String str)

Cycles to the card the contains the component with the name str. When found, the specified con-
tainer is laid out with this layout manager.

public String toString()

Returns a string representation of this layout manager.

Character (java.lang)
A public class, derived from Object and implementing Serializable, that contains character con-
stants and methods to convert and identify characters.

variables and constructs

public final static byte COMBINING_SPACING_MARK

public final static byte CONNECTOR_PUNCTUATION

public final static byte CONTROL

public final static byte CURRENCY_SYMBOL

public final static byte DASH_PUNCTUATION

public final static byte DECIMAL_DIGIT_NUMBER

public final static byte ENCLOSING_MARK

public final static byte END_PUNCTUATION

public final static byte FORMAT

public final static byte LETTER_NUMBER

public final static byte LINE_SEPARATOR

public final static byte LOWERCASE_LETTER

public final static byte MATH_SYMBOL

public final static byte MODIFIER_LETTER

public final static byte MODIFIER_SYMBOL

public final static byte NON_SPACING_MARK

public final static byte OTHER_LETTER

public final static byte OTHER_NUMBER

public final static byte OTHER_PUNCTUATION

public final static byte OTHER_SYMBOL

public final static byte PARAGRAPH_SEPARATOR

public final static byte PRIVATE_USE

public final static byte SPACE_SEPARATOR

public final static byte START_PUNCTUATION

APPENDIX M the java class library 789

public final static byte SURROGATE

public final static byte TITLECASE_LETTER

public final static byte UNASSIGNED

public final static byte UPPERCASE_LETTER

Constant values representing various character symbols and types.
public final static int MAX_RADIX

A constant value that represents the largest possible value of a radix (base).
public final static char MAX_VALUE

A constant value that represents the largest possible value of a character in Java = \uffff’.
public final static int MIN_RADIX

A constant value that represents that smallest possible value of a radix (base).
public final static char MIN_VALUE

A constant value that represents the smallest possible value of a character in Java = \u0000’.
public final static Class TYPE

The Character constant value of the character type class.

constructors

public Character(char prim)

Creates an instance of the Character class from the primitive parameter prim.

methods

public char charValue()

Returns the value of this Character as a primitive character.
public static int digit(char c, int base)

public static char forDigit(int c, int base)

Returns the numeric value or the character depiction of the parameter c in radix base.
public boolean equals(Object arg)

Returns a true value if this Character is equal to the parameter arg.
public static int getNumericValue(char c)

Returns the Unicode representation of the character parameter (c) as a nonnegative integer. If the
character has no numeric representation, a -1 is returned. If the character cannot be represented as
a nonnegative number, –2 will be returned.

public static int getType(char c)

Returns an integer value that represents the type of character the parameter c is.
public int hashCode()

Returns a hash code for this Character.
public static boolean isDefined(char c)

790 APPENDIX M the java class library

public static boolean isISOControl(char c)

Returns a true value if the parameter c has a defined meaning in Unicode or is an ISO control char-
acter.

public static boolean isIdentifierIgnorable(char c)

Returns a true value if the parameter c is a character that can be ignored in a Java identifier (such
as control characters).

public static boolean isJavaIdentifierPart(char c)

public static boolean isJavaIdentifierStart(char c)

Returns a true value if the parameter c can be used in a valid Java identifier in any but the leading
character. isJavaIdentifierStart returns a true value if the parameter c can be used as the lead-
ing character in a valid Java identifier.

public static boolean isDigit(char c)

public static boolean isLetter(char c)

public static boolean isLetterOrDigit(char c)

public static boolean isLowerCase(char c)

public static boolean isSpaceChar(char c)

public static boolean isTitleCase(char c)

public static boolean isUnicodeIdentifierPart(char c)

public static boolean isWhitespace(char c)

public static boolean isUnicodeIdentifierStart(char c)

public static boolean isUpperCase(char c)

Returns a true value if the parameter c is a digit; letter; letter or a digit; lowercase character; space
character; titlecase character; can be used in a valid Unicode identifier in any but the leading char-
acter; a white space character; can be used as the leading character in a valid Unicode identifier or
an uppercase character (respectively).

public static char toLowerCase(char c)

public String toString()

public static char toTitleCase(char c)

public static char toUpperCase(char c)

Returns a lowercase character, string representation, titlecase, or uppercase character of the param-
eter c.

Class (java.lang)
A public final class, derived from Object and implementing Serializable, that describes both inter-
faces and classes in the currently running Java program.

APPENDIX M the java class library 791

methods

public static Class forName(String class) throws ClassNotFoundException

Returns a Class object that corresponds with the named class. The name of the specified class
must be a fully qualified class name (as in java.io.Reader).

public Class[] getClasses()

public Class[] getDeclaredClasses() throws SecurityException

Returns an array of Classes that contains all of the interfaces and classes that are members of this
Class (excluding superclasses). getClasses returns only the list of public interfaces and classes.

public ClassLoader getClassLoader()

Returns the ClassLoader for this Class.
public Class getComponentType()

Returns the Component type of the array that is represented by this Class.
public Constructor getConstructor(Class[] types) throws NoSuchMethodException,

SecurityException

public Constructor[] getConstructors() throws SecurityException

Returns the Constructor object or an array containing the public constructors for this class. The
signature of the public constructor that is returned must match exactly the types and sequence of
the parameters specified by the types array.

public Constructor getDeclaredConstructor(Class[] types) throws

NoSuchMethodException, SecurityException

public Constructor[] getDeclaredConstructors() throws SecurityException

Returns the Constructor object or an array containing the constructors for this class. The signa-
ture of the public constructor that is returned must match exactly the types and sequence of the
parameters specified by the types array parameter.

public Field getDeclaredField(String field) throws NoSuchFieldException,

SecurityException

public Field[] getDeclaredFields() throws SecurityException

Returns the Field object or an array containing all of the fields for the specified matching field
name for this Class.

public Method getDeclaredMethod(String method, Class[] types) throws

NoSuchMethodException, SecurityException

public Method[] getDeclaredMethods() throws SecurityException

Returns a Method object or an array containing all of the methods for the specified method of this
Class. The requested method’s parameter list must match identically the types and sequence of the
elements of the types array.

public Class getDeclaringClass()

Returns the declaring class of this Class, provided that this Class is a member of another class.
public Field getField(String field) throws NoSuchFieldException,

SecurityException

792 APPENDIX M the java class library

public Field[] getFields() throws SecurityException

Returns a Field object or an array containing all of the fields of a specified matching field name
for this Class.

public Class[] getInterfaces()

Returns an array containing all of the interfaces of this Class.
public Method getMethod(String method, Class[] types) throws

NoSuchMethodException, SecurityException

public Method[] getMethods() throws SecurityException

Returns a Method object or an array containing all of the public methods for the specified public
method of this Class. The requested method’s parameter list must match identically the types and
sequence of the elements of the types array.

public int getModifiers()

Returns the encoded integer visibility modifiers for this Class. The values can be decoded using the
Modifier class.

public String getName()

Returns the string representation of the name of the type that this Class represents.
public URL getResource(String arg)

Returns a URL representing the system resource for the class loader of this Class.
public InputStream getResourceAsStream(String arg)

Returns an input stream representing the named system resource from the class loader of this Class.
public Object[] getSigners()

Returns an array of Objects that contains the signers of this Class.
public Class getSuperclass()

Returns the superclass of this Class, or null if this Class is an interface or of type Object.
public boolean isArray()

Returns a true value if this Class represents an array type.
public boolean isAssignableFrom(Class other)

Returns a true value if this Class is the same as a superclass or superinterface of the other class.
public boolean isInstance(Object target)

Returns a true value if the specified target object is an instance of this Class.
public boolean isInterface()

public boolean isPrimitive()

Returns a true value if this Class represents an interface class or a primitive type in Java.
public Object newInstance() throws InstantiationException, IllegalAccessException

Creates a new instance of this Class.
public String toString()

Returns a string representation of this Class in the form of the word class or interface, followed by
the fully qualified name of this Class.

APPENDIX M the java class library 793

Color (java.awt)
A public final class, derived from Object and implementing Serializable, that is used to represent
colors. A color is defined by three components, red, blue, and green, that each have a value ranging
from 0 to 255.

variables and constructs

public final static Color black

public final static Color blue

public final static Color cyan

public final static Color darkGray

public final static Color gray

public final static Color green

public final static Color lightGray

public final static Color magenta

public final static Color orange

public final static Color pink

public final static Color red

public final static Color white

public final static Color yellow

A constant value that describes the colors black (0, 0, 0), blue (0, 0, 255), cyan (0, 255, 255),
darkGray (64, 64, 64), gray (128, 128, 128), green (0, 255, 0), lightGray (192, 192, 192), magenta
(255, 0, 255), orange (255, 200, 0), pink (255, 175, 175), red (255, 0, 0), white (255, 255, 255)
and yellow (255, 255, 0) as a set of RGB values.

constructors

public Color(float r, float g, float b)

public Color(int rgb)

public Color(int r, int g, int b)

Creates a new instance of the color described by the rgb value. When passed as a single integer
value, the red component is represented in bits 16 to 23, green in 15 to 8, and blue in 0 to 7.

methods

public Color brighter()

public Color darker()

Returns a brighter or darker version of this color.
public static Color decode(String str) throws NumberFormatException

Returns the color specified by str.

794 APPENDIX M the java class library

public boolean equals(Object arg)

Returns a true value if this color is equal to arg.
public int getBlue()

public int getGreen()

public int getRed()

Returns the blue, green, or red component value for this color.
public static Color getColor(String str)

public static Color getColor(String str, Color default)

public static Color getColor(String str, int default)

Returns the color represented in the string str (where its value is an integer). If the value is not
determined, the color default is returned.

public static Color getHSBColor(float h, float s, float b)

Returns a color specified by the Hue-Saturation-Brightness model for colors, where h is the hue, s
is the saturation, and b is the brightness of the desired color.

public int getRGB()

Returns an integer representation of the RGB value for this color.
public int hashCode()

Returns the hash code for this color.
public static int HSBtoRGB(float hue, float saturation, float brightness)

Converts a hue, saturation, and brightness representation of a color to a RGB value.
public static float[] RGBtoHSB(int r, int g, int b, float[] hsbvals)

Converts a RGB representation of a color to a HSB value, placing the converted values into the
hsbvals array. The RGB value is represented via a red (r), green (g), and blue (b) value.

public String toString()

Returns a string representation of this color.

Component (java.awt)
A public abstract class, derived from Object and implementing ImageObserver, MenuContainer,
and Serializable, that is the superclass to every AWT item that is represented on screen with a spe-
cific size and position.

variables and constructs

public final static float BOTTOM_ALIGNMENT

public final static float LEFT_ALIGNMENT

public final static float RIGHT_ALIGNMENT

APPENDIX M the java class library 795

public final static float TOP_ALIGNMENT

Constant values that represent specified alignments within the component.
protected Locale locale

Holds the locale for this component.

constructors

protected Component()

Creates a new instance of a component.

methods

public synchronized void add(PopupMenu popmenu)

public synchronized void remove(MenuComponent popmenu)

Adds or removes the specified popup menu to this component.
public synchronized void addComponentListener(ComponentListener listener)

public synchronized void addFocusListener(FocusListener listener)

public synchronized void addKeyListener(KeyListener listener)

public synchronized void addMouseListener(MouseListener listener)

public synchronized void addMouseMotionListener(MouseMotionListener listener)

public synchronized void removeComponentListener(ComponentListener listener)

public synchronized void removeFocusListener(FocusListener listener)

public synchronized void removeKeyListener(KeyListener listener)

public synchronized void removeMouseListener(MouseListener listener)

public synchronized void removeMouseMotionListener(MouseMotionListener listener)

Adds or removes the specified listener to this component.
public void addNotify()

public void removeNotify()

Notifies the component that a peer must be created or destroyed.
public int checkImage(Image img, ImageObserver obs)

public int checkImage(Image img, int width, int height, ImageObserver obs)

Returns the status of the construction of a scaled image img. The image created can be scaled to a
width and height. The image obs will be informed of the status of the image.

public boolean contains(int x, int y)

public boolean contains(Point pt)

Returns a true value if this component contains the specified position.
public Image createImage(ImageProducer prod)

public Image createImage(int width, int height)

Returns a new image created from prod. The second method creates another image which is gener-
ally offscreen (having width and height), used for double-buffering drawings.

796 APPENDIX M the java class library

protected final void disableEvents(long mask)

protected final void enableEvents(long mask)

Disables or enables all events specified by the mask for this component.
public final void dispatchEvent(AWTEvent event)

Dispatches an AWTEvent to this component or one of its subcomponents.
public void doLayout()

Lays out this component.
public float getAlignmentX()

public float getAlignmentY()

Returns the horizontal or vertical alignment for this component.
public Color getBackground()

public Color getForeground()

public void setBackground(Color clr)

public void setForeground(Color clr)

Returns or sets the background or foreground color for this component.
public Rectangle getBounds()

public void setBounds(int x, int y, int width, int height)

Returns or sets the bounds of this component. Setting the bounds resizes and reshapes this com-
ponent to the bounding box of <x, y> to <x+width, y+height>.

public ColorModel getColorModel()

Returns the color model of this component.
public Component getComponentAt(int x, int y)

public Component getComponentAt(Point pt)

Returns the component located at the specified point.
public Cursor getCursor()

public synchronized void setCursor(Cursor csr)

Returns or sets the cursor set for this component.
public Font getFont()

public void setFont(Font ft)

Returns or sets the font of this component.
public FontMetrics getFontMetrics(Font ft)

Returns the font metrics of the specified font.
public Graphics getGraphics()

Returns the graphics context for this component.
public Locale getLocale()

public void setLocale(Locale locale)

Returns or sets the locale for this component.
public Point getLocation()

APPENDIX M the java class library 797

public Point getLocationOnScreen()

Returns the location of this component relative to the containing or screen space.
public Dimension getMaximumSize()

public Dimension getMinimumSize()

public Dimension getPreferredSize()

Returns the maximum, minimum or preferred size of this component.
public String getName()

public void setName(String str)

Returns or sets the name of this component.
public Container getParent()

Returns the parent container of this component.
public Dimension getSize()

public void setSize(Dimension dim)

public void setSize(int width, int height)

Returns the size of or resizes this component to the specified dimension(s).
public Toolkit getToolkit()

Returns the toolkit of this component.
public final Object getTreeLock()

Returns the AWT object that is used as the base of the component tree and layout operations for
this component.

public boolean imageUpdate(Image src, int flags, int x, int y, int width, int

height)

Draws more of an image (src) as its information becomes available. The exact value of the x, y,
width, and height variables is dependent on the value of the flags variable.

public void invalidate()

Forces this component to be laid out again by making it “invalid.”
public boolean isEnabled()

public void setEnabled(boolean toggle)

Returns or sets the enabled state of this component.
public boolean isFocusTraversable()

Returns a true value if this component can be traversed using Tab or Shift-Tab sequences.
public boolean isShowing()

public boolean isValid()

Returns a true value if this component is visible on screen or does not need to be laid out (valid).
public boolean isVisible()

public void setVisible(boolean toggle)

Returns or sets the state of this component’s visibility.
public void list()

798 APPENDIX M the java class library

public void list(PrintStream outstrm)

public void list(PrintStream outstrm, int spc)

public void list(PrintWriter outstrm)

public void list(PrintWriter outstrm, int spc)

Prints a listing of this component’s parameters to the print writer stream outstrm (default of
System.out), indenting spc spaces (default of 0).

public void paint(Graphics gc)

public void print(Graphics gc)

Paints or prints this component with the graphics context gc.
public void paintAll(Graphics gc)

public void printAll(Graphics gc)

Paints or prints this component and all of its subcomponents with the graphics context gc.
protected String paramString()

Returns a string describing the parameters of this component.
public boolean prepareImage(Image src, ImageObserver obs)

public prepareImage(Image src, int width, int height, ImageObserver obs)

Downloads the src for display. The image can be scaled to a width and height. The obs is
informed of the status of the image.

protected void processComponentEvent(ComponentEvent event)

protected void processFocusEvent(FocusEvent event)

protected void processKeyEvent(KeyEvent event)

protected void processMouseEvent(MouseEvent event)

protected void processMouseMotionEvent(MouseEvent event)

Processes the specified event for this component, sending the event to a registered event listener.
protected void processEvent(AWTEvent event)

Processes an AWT event for this component, sending it to the appropriate processing routine (i.e.,
processComponentEvent method) for further handling.

public void repaint()

public void repaint(int x, int y, int width, int height)

Repaints a rectangular portion of this component from <x, y> to <x+width, y+height>.
public void repaint(long msec)

public void repaint(long msec, int x, int y, int width, int height)

Repaints a rectangular portion of this component from <x, y> to <x+width, y+height> after a
delay of msec milliseconds.

public void requestFocus()

Requests that this component get the input focus.
public void setLocation(int x, int y)

APPENDIX M the java class library 799

public void setLocation(Point pt)

Moves this component to the specified point in the containing space.
public String toString()

Returns a string representation of this component.
public void transferFocus()

Transfers focus from this component to the next component.
public void update(Graphics gc)

Updates this component using graphics context gc.
public void validate()

Validates this component if needed.

ComponentAdapter (java.awt.event)
A public abstract class, derived from Object and implementing ComponentListener, that permits a
derived class to override the predefined no-op component events.

constructors

public ComponentAdapter()

Creates a new instance of a ComponentAdapter.

methods

public void componentHidden(ComponentEvent event)

public void componentMoved(ComponentEvent event)

public void componentResized(ComponentEvent event)

public void componentShown(ComponentEvent event)

Empty methods that should be overridden in order to implement event handling for AWT compo-
nents.

ComponentEvent (java.awt.event)
A public class, derived from AWTEvent, that represents an AWT component event.

variables and constructs

public static final int COMPONENT_FIRST

public static final int COMPONENT_LAST

Constant values that represent the index of the first and last component event ids.

800 APPENDIX M the java class library

public static final int COMPONENT_MOVED

public static final int COMPONENT_RESIZED

public static final int COMPONENT_SHOWN

public static final int COMPONENT_HIDDEN

Constant values that represent AWT component event ids.

constructors

public ComponentEvent(Component src, int type)

Creates a new instance of a ComponentEvent from the specified source and of a specific type.

methods

public Component getComponent()

Returns the AWT component that triggered this event.
public String paramString()

Returns a string containing the parameters of this event.

Container (java.awt)
A public abstract class, derived from Component, that is the superclass to any AWT component that
can contain one or more AWT components.

constructors

protected Container()

Creates a new instance of a container.

methods

public Component add(Component item)

public Component add(Component item, int idx)

public void add(Component item, Object constr)

public void add(Component item, Object constr, int idx)

public Component add(String str, Component item)

Adds component item to this container at index idx (or to the end by default). The new item can
have constraints (constr) applied to it. A string name can be associated with the added component
in the case of the last constructor.

public void addContainerListener(ContainerListener listener)

public void removeContainerListener(ContainerListener listener)

Adds or removes the specified listener to this container.

APPENDIX M the java class library 801

protected void addImpl(Component item, Object constr, int idx)

Adds component item to this container at index idx, and passes the constraints for the new item
(constr) to the layout manager for this container.

public void addNotify()

public void removeNotify()

Creates or destroys this container’s peer.
public void doLayout()

Lays out the components of this container.
public float getAlignmentX()

public float getAlignmentY()

Returns the horizontal or vertical alignment value of this container.
public Component getComponent(int idx) throws ArrayIndexOutOfBoundsException

public Component getComponentAt(int x, int y)

public Component getComponentAt(Point pt)

Returns the component that is located at the specified point or index.
public int getComponentCount()

Returns the number of components in this container.
public Component[] getComponents()

Returns an array of all of the components in this container.
public Insets getInsets()

Returns the insets of this container.
public LayoutManager getLayout()

public void setLayout(LayoutManager layout)

Returns or sets the layout manager of this container.
public Dimension getMaximumSize()

public Dimension getMinimumSize()

public Dimension getPreferredSize()

Returns the maximum, minimum, or preferred size of this container.
public void invalidate()

Marks the layout of this container as invalid, forcing the need to lay out the components again.
public boolean isAncestorOf(Component comp)

Returns a true value if the specified component (comp) is contained in the component hierarchy of
this container.

public void list(PrintStream outstream, int spaces)

public void list(PrintWriter outstream, int spaces)

Prints a listing of all of the components of this container to print stream outstream, indented a
specified number of spaces (default of 0).

public void paint(Graphics gwin)

802 APPENDIX M the java class library

public void print(Graphics gwin)

Paints or prints this container with graphics context gwin.
public void paintComponents(Graphics gwin)

public void printComponents(Graphics gwin)

Repaints or prints all of the components in this container with graphics context gwin.
protected String paramString()

Returns a string representation of this container’s parameters.
protected void processContainerEvent(ContainerEvent event)

Processes any container event, passing the event to a registered container listener.
protected void processEvent(AWTEvent event)

Handles any AWTEvent, invoking processContainerEvent for container events, and passing the
event to the superclass’ processEvent otherwise.

public void remove(Component comp)

public void remove(int idx)

Removes the specified component (or the component at the specified index) from this container.
public void removeAll()

Removes all components from this container.
public void validate()

Validates this container and all of the subcomponents in it.
protected void validateTree()

Validates this container and all subcontainers in it.

ContainerAdapter (java.awt.event)
A public abstract class, derived from Object and implementing ContainerListener, that permits a
derived class to override the predefined no-op container events.

constructors

public ContainerAdapter()

Creates a new instance of a ContainerAdapter.

methods

public void componentAdded(ContainerEvent event)

public void componentRemoved(ContainerEvent event)

Empty methods that should be overridden in order to implement event handling for AWT con-
tainers.

APPENDIX M the java class library 803

ContainerEvent (java.awt.event)
A public class, derived from ComponentEvent, that describes a particular AWT container event.

variables and constructs

public static final int COMPONENT_ADDED

public static final int COMPONENT_REMOVED

Constant values that represent various container events (a component being added or removed to
this container).

public static final int CONTAINER_FIRST

public static final int CONTAINER_LAST

Constant values that represent the index of the first and last component event ids.

constructors

public ContainerEvent(Component src, int type, Component comp)

Creates a new instance of a ContainerEvent with a specified source component, event type and a
defined component (which is being added or removed).

methods

public Component getChild()

Returns the child component that was added or removed, triggering this event.
public Container getContainer()

Returns the container in which this event was triggered.
public String paramString()

Returns a string containing the parameters of this ComponentEvent.

Cursor (java.awt)
A public class, derived from Object and implementing Serializable, that represents the different
states and images of the mouse cursor in a graphical application or applet.

variables and constructs

public final static int CROSSHAIR_CURSOR

public final static int DEFAULT_CURSOR

public final static int E_RESIZE_CURSOR

public final static int HAND_CURSOR

public final static int MOVE_CURSOR

804 APPENDIX M the java class library

public final static int N_RESIZE_CURSOR

public final static int NE_RESIZE_CURSOR

public final static int NW_RESIZE_CURSOR

public final static int S_RESIZE_CURSOR

public final static int SE_RESIZE_CURSOR

public final static int SW_RESIZE_CURSOR

public final static int TEXT_CURSOR

public final static int W_RESIZE_CURSOR

public final static int WAIT_CURSOR

Constant values that represent various cursors.
protected static Cursor predefined[]

An array used to hold the cursors as they are defined and implemented.

constructors

public Cursor(int cursortype)

Creates a new instance of a cursor of the specified type (cursortype).

methods

public static Cursor getDefaultCursor()

Returns the default cursor.
public static Cursor getPredefinedCursor(int cursortype)

Returns the cursor of the specified type (cursortype).
public int getType()

Returns the type of this cursor.

Date (java.util)
A public class, derived from Object and implementing Serializable and Cloneable, that creates
and manipulates a single moment of time.

constructors

public Date()

public Date(long date)

Creates a new instance of a Date from a specified date (time in milliseconds since midnight,
January 1, 1970 GMT) or by using the current time.

APPENDIX M the java class library 805

methods

public boolean after(Date arg)

public boolean before(Date arg)

Returns a true value if this Date is after/before the date specified in arg.
public boolean equals(Object arg)

Returns a true value if this Date is equal to arg.
public long getTime()

public void setTime(long tm)

Returns or sets the time specified by this Date. The time is represented as a long integer equal to
the number of seconds since midnight, January 1, 1970 UTC.

public int hashCode()

Returns the hash code for this Date.
public String toString()

Returns a string representation of this Date.

DateFormat (java.text)
A public abstract class, derived from Cloneable, that is used to convert date/time objects to locale-
specific strings, and vice versa.

variables and constructs

public static final int DEFAULT

public static final int FULL

public static final int LONG

public static final int MEDIUM

public static final int SHORT

Constant values that represent formatting styles.
public static final int AM_PM_FIELD

public static final int DATE_FIELD

public static final int DAY_OF_WEEK_FIELD

public static final int DAY_OF_WEEK_IN_MONTH_FIELD

public static final int DAY_OF_YEAR_FIELD

public static final int ERA_FIELD

public static final int HOUR0_FIELD

public static final int HOUR1_FIELD

806 APPENDIX M the java class library

public static final int HOUR_OF_DAY0_FIELD

public static final int HOUR_OF_DAY1_FIELD

public static final int MILLISECOND_FIELD

public static final int MINUTE_FIELD

public static final int MONTH_FIELD

public static final int SECOND_FIELD

public static final int TIMEZONE_FIELD

public static final int WEEK_OF_MONTH_FIELD

public static final int WEEK_OF_YEAR_FIELD

public static final int YEAR_FIELD

Constant values that represent various fields for date/time formatting.
protected Calendar calendar

Holds the calendar that this DateFormat uses to produce its date/time formatting.
protected NumberFormat numberFormat

Holds the number format that this DateFormat uses to produce its number formatting.

constructors

protected DateFormat()

Creates a new instance of a DateFormat.

methods

public Object clone()

Returns a copy of this DateFormat.
public boolean equals(Object arg)

Returns a true value is this DateFormat is equal to arg.
public final String format(Date src)

Formats the specified Date object into a string.
public abstract StringBuffer format(Date src, StringBuffer dest, FieldPosition

pos)

public final StringBuffer format(Object src, StringBuffer dest, FieldPosition

pos)

Formats the source object into the specified destination, starting at field pos. This method returns
the same value as the destination buffer.

public static Locale[] getAvailableLocales()

Returns the set of available locales for this DateFormat.
public Calendar getCalendar()

APPENDIX M the java class library 807

public void setCalendar(Calendar cal)

Returns or sets the calendar associated with this DateFormat.
public static final DateFormat getDateInstance()

public static final DateFormat getDateInstance(int style)

public static final DateFormat getDateInstance(int style, Locale locale)

Returns the DateFormat for the specified or default locale (using the default or specified date for-
matting style).

public static final DateFormat getDateTimeInstance()

public static final DateFormat getDateTimeInstance(int dstyle, int tstyle)

public static final DateFormat getDateTimeInstance(int dstyle, int tstyle,

Locale locale)

Returns the DateFormat for the specified or default locale (using the default or specified date and
time formatting styles).

public static final DateFormat getInstance()

Returns the DateFormat for the default locale using the short formatting style.
public NumberFormat getNumberFormat()

public void setNumberFormat(NumberFormat format)

Returns or sets the NumberFormat for this DateFormat.
public static final DateFormat getTimeInstance()

public static final DateFormat getTimeInstance(int style)

public static final DateFormat getTimeInstance(int style, Locale locale)

Returns the DateFormat for the specified or default locale (using the default or specified time for-
matting style).

public TimeZone getTimeZone()

public void setTimeZone(TimeZone tz)

Returns or sets the time zone for this DateFormat.
public int hashCode()

Returns the hash code for this DateFormat.
public boolean isLenient()

public void setLenient(boolean lenient)

Returns or sets the state of the leniency for this DateFormat.
public Date parse(String src) throws ParseException

Parses the specified source to a Date object.
public abstract Date parse(String src, ParsePosition pos)

public Object parseObject(String src, ParsePosition pos)

Parses the specified source string to a Date or Object, starting at the specified position.

808 APPENDIX M the java class library

DateFormatSymbols (java.text)
A public class, derived from Object and implementing Serializable and Cloneable, that contains
functionality for formatting both date and time values. This class is usually utilized as part of a
DateFormat class (or subclass).

constructors

public DateFormatSymbols()

public DateFormatSymbols(Locale locale)

Creates a new instance of DateFormatSymbols using the specified or default locale.

methods

public Object clone()

Returns a clone of this DateFormatSymbols.
public boolean equals(Object arg)

Returns a true value if this DateFormatSymbols is equal to arg.
public String[] getAmPmStrings()

public void setAmPmStrings(String[] newstr)

Returns or sets the AM/PM strings for this set of symbols.
public String[] getEras()

public void setEras(String[] newstr)

Returns or sets the eras for this set of symbols.
public String getLocalPatternChars()

public void setLocalPatternChars(String newchars)

Returns or sets the local pattern characters for date and time for this set of symbols.
public String[] getMonths()

public void setMonths(String[] newmon)

Returns or sets the full names of months for this set of symbols.
public String[] getShortMonths()

public void setShortMonths(String[] newmon)

Returns or sets the short names of months for this set of symbols.
public String[] getShortWeekdays()

public void setShortWeekdays(String[] newdays)

Returns or sets the short names of weekdays for this set of symbols.
public String[] getWeekdays()

public void setWeekdays(String[] newdays)

Returns or sets the full names of weekdays for this set of symbols.
public String[][] getZoneStrings()

APPENDIX M the java class library 809

public void setZoneStrings(String[][] newzone)

Returns or sets the time zone strings for this set of symbols.
public int hashCode()

Returns the hash code for this set of symbols.

DecimalFormat (java.text)
A public class, derived from NumberFormat, that is used to format decimal numbers to locale-based
strings, and vice versa.

constructors

public DecimalFormat()

public DecimalFormat(String str)

public DecimalFormat(String str, DecimalFormatSymbols sym)

Creates a new instance of a DecimalFormat from the specified or default pattern, specified or
default symbols and using the default locale.

methods

public void applyLocalizedPattern(String str)

public String toLocalizedPattern()

Sets or returns the pattern of this DecimalFormat. The specified pattern is in a locale-specific for-
mat.

public void applyPattern(String str)

public String toPattern()

Sets or returns the pattern of this DecimalFormat.
public Object clone()

Returns a copy of this DecimalFormat.
public boolean equals(Object arg)

Returns a true value if this DecimalFormat is equal to arg.
public StringBuffer format(double num, StringBuffer dest, FieldPosition pos)

public StringBuffer format(long num, StringBuffer dest, FieldPosition pos)

Formats the specified Java primitive type starting at pos, according to this DecimalFormat, plac-
ing the resulting string in the specified destination buffer. This method returns the value of the
string buffer.

public DecimalFormatSymbols getDecimalFormatSymbols()

public void setDecimalFormatSymbols(DecimalFormatSymbols symbols)

Returns or sets the decimal number format symbols for this DecimalFormat.
public int getGroupingSize()

810 APPENDIX M the java class library

public void setGroupingSize(int val)

Returns or sets the size of groupings for this DecimalFormat.
public int getMultiplier()

public void setMultiplier(int val)

Returns or sets the value of the multiplier for use in percent calculations.
public String getNegativePrefix()

public void setNegativePrefix(String val)

Returns or sets the prefix for negative numbers for this DecimalFormat.
public String getNegativeSuffix()

public void setNegativeSuffix(String val)

Returns or sets the suffix for negative numbers for this DecimalFormat.
public String getPositivePrefix()

public void setPositivePrefix(String val)

Returns or sets the prefix for positive numbers for this DecimalFormat.
public String getPositiveSuffix()

public void setPositiveSuffix(String val)

Returns or sets the suffix for positive numbers for this DecimalFormat.
public int hashCode()

Returns the hash code for this DecimalFormat.
public boolean isDecimalSeparatorAlwaysShown()

public void setDecimalSeparatorAlwaysShown(boolean toggle)

Returns or sets the state value that allows/prevents the display of the decimal point when format-
ting integers.

public Number parse(String src, ParsePosition pos)

Parses the specified string as a long (if possible) or double, starting a position pos, and returns a
Number.

DecimalFormatSymbols (java.text)
A public class, derived from Object and implementing Serializable and Cloneable, that contains
functionality for formatting decimal values. This class is usually utilized as part of a DecimalFormat
class (or subclass).

constructors

public DecimalFormatSymbols()

public DecimalFormatSymbols(Locale locale)

Creates a new instance of DecimalFormatSymbols using the specified or default locale.

APPENDIX M the java class library 811

methods

public Object clone()

Returns a clone of this DecimalFormatSymbols.
public boolean equals(Object arg)

Returns a true value if this DecimalFormatSymbols is equal to arg.
public char getDecimalSeparator()

public void setDecimalSeparator(char separator)

Returns or sets the character used to separate decimal numbers in this set of symbols.
public char getDigit()

public void setDigit(char num)

Returns or sets the character used as a digit placeholder in a pattern for this set of symbols.
public char getGroupingSeparator()

public void setGroupingSeparator(char separator)

Returns or sets the character used to separate groups of thousands for this set of symbols.
public String getInfinity()

public void setInfinity(String str)

Returns or sets the string used to represent the value of infinity for this set of symbols.
public char getMinusSign()

public void setMinusSign(char minus)

Returns or sets the character used to represent the minus sign for this set of symbols.
public String getNaN()

public void setNaN(String str)

Returns or sets the character used to represent a NAN value for this set of symbols.
public char getPatternSeparator()

public void setPatternSeparator(char separator)

Returns or sets the character used to separate positive and negative numbers in a pattern from this
set of symbols.

public char getPercent()

public void setPercent(char percent)

Returns or sets the character used as a percent sign for this set of symbols.
public char getPerMill()

public void setPerMill(char perMill)

Returns or sets the character used as a mille percent sign for this set of symbols.
public char getZeroDigit()

public void setZeroDigit(char zero)

Returns or sets the character used to represent zero for this set of symbols.
public int hashCode()

Returns the hash code for this set of symbols.

812 APPENDIX M the java class library

Dimension (java.awt)
A public class, derived from Object and implementing Serializable, that is used to encapsulate an
object’s dimensions (height and width).

variables and constructs

public int height

public int width

Variables which contain the height and width of an object.

constructors

public Dimension()

public Dimension(Dimension dim)

public Dimension(int width, int height)

Creates a new instance of a dimension from specified dimensions (or 0 width and 0 height by
default).

methods

public boolean equals(Object arg)

Returns a true value if this dimension is equal to arg.
public Dimension getSize()

public void setSize(Dimension dim)

public void setSize(int width, int height)

Returns or sets the size of this dimension.
public String toString()

Returns the string representation of this dimension.

Double (java.lang)
A public final class, derived from Number, that contains floating point math operations, constants,
methods to compute minimum and maximum numbers, and string manipulation routines related to
the double primitive type.

variables and constructs

public final static double MAX_VALUE

public final static double MIN_VALUE

Constant values that contain the maximum (1.79769313486231570e+308d) and minimum
(4.94065645841246544e2324d) possible values of an integer in Java.

APPENDIX M the java class library 813

public final static double NaN

A constant value that contains the representation of the Not-A-Number double (0.0d).
public final static double NEGATIVE_INFINITY

public final static double POSITIVE_INFINITY

Constant values that contain the negative (–1.0d / 0.0d) and positive (1.0d / 0.0d) infinity double.
public final static Class TYPE

A constant value of the Double type class.

constructors

public Double(double arg)

public Double(String arg) throws NumberFormatException

Creates an instance of the Double class from the parameter arg.

methods

public byte byteValue()

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public short shortValue()

Returns the value of the current object as a Java primitive type.
public static long doubleToLongBits(double num)

public static double longBitsToDouble(long num)

Returns a long bit stream or a double representation of parameter num. Bit 63 of the returned long
is the sign bit, bits 52 to 62 are the exponent, and bits 0 to 51 are the mantissa.

public boolean equals(Object param)

Returns a true value if this Double is equal to the specified parameter (param).
public int hashCode()

Returns a hash code for this Double.
public boolean isInfinite()

public static boolean isInfinite(double num)

Returns true if the current object or num is positive or negative infinity, false in all other cases.
public boolean isNaN()

public static boolean isNaN(double num)

Returns true if the current object or num is Not-A-Number, false in all other cases.
public static double parseDouble(String str) throws NumberFormatException

Returns the double value represented by str.
public String toString()

814 APPENDIX M the java class library

public static String toString(double num)

Returns the string representation of the current object or num in base 10 (decimal).
public static Double valueOf(String str) throws NumberFormatException

Returns a Double initialized to the value of str.

Error (java.lang)
A public class, derived from Throwable, that is used to signify program-terminating errors that should
not be caught.

constructors

public Error()

public Error(String str)

Creates a new instance of an error. A message can be provided via str.

Event (java.awt)
A public class, derived from Object, that represents event obtained from a graphical user interface.

variables and constructs

public final static int ACTION_EVENT

A constant that represents the user desires an action.
public final static int ALT_MASK

public final static int CTRL_MASK

public final static int META_MASK

public final static int SHIFT_MASK

Constant values which represent the mask for Alt, Control, Meta, and Shift keys modifying events.
public Object arg

An optional argument used by some events.
public final static int BACK_SPACE

public final static int CAPS_LOCK

public final static int DELETE

public final static int DOWN

public final static int END

public final static int ENTER

public final static int ESCAPE

public final static int F1

APPENDIX M the java class library 815

public final static int F2

public final static int F3

public final static int F4

public final static int F5

public final static int F6

public final static int F7

public final static int F8

public final static int F9

public final static int F10

public final static int F11

public final static int F12

public final static int HOME

public final static int INSERT

public final static int LEFT

public final static int NUM_LOCK

public final static int PAUSE

public final static int PGDN

public final static int PGUP

public final static int PRINT_SCREEN

public final static int RIGHT

public final static int SCROLL_LOCK

public final static int TAB

public final static int UP

Constant values that represent keyboard keys.
public int clickCount

The number of consecutive clicks during a MOUSE_DOWN event.
public Event evt

The next event to take place, as in a linked list.
public final static int GOT_FOCUS

An id field constant that represents when an AWT component gets the focus.
public int id

The numeric identification for this event.
public int key

The keyboard key that was pressed during this event.
public final static int KEY_ACTION

public final static int KEY_ACTION_RELEASE

Constant values that represent when the user presses or releases a function key.
public final static int KEY_PRESS

816 APPENDIX M the java class library

public final static int KEY_RELEASE

Constant values that represent when the user presses or releases a keyboard key.
public final static int LIST_DESELECT

public final static int LIST_SELECT

Constant values that represent when the user deselects or selects a list item.
public final static int LOAD_FILE

public final static int SAVE_FILE

Constant values that represent when a file load or save event occurs.
public final static int LOST_FOCUS

An id field constant that represents when an AWT component loses the focus.
public int modifiers

Value of any key modifiers for this event.
public final static int MOUSE_DOWN

public final static int MOUSE_DRAG

public final static int MOUSE_ENTER

public final static int MOUSE_EXIT

public final static int MOUSE_MOVE

public final static int MOUSE_UP

Constant values that represent mouse events.
public final static int SCROLL_ABSOLUTE

An id field constant that represents when the user has moved the bubble in a scrollbar.
public final static int SCROLL_BEGIN

public final static int SCROLL_END

Constant values that represent the scroll begin or ending event.
public final static int SCROLL_LINE_DOWN

public final static int SCROLL_LINE_UP

Constant values that represent when the user has clicked in the line down or up area of the scroll-
bar.

public final static int SCROLL_PAGE_DOWN

public final static int SCROLL_PAGE_UP

Constant values that represent when the user has clicked in the page down or up area of the scroll-
bar.

public Object target

The object that this event was created from or took place over.
public long when

The time stamp of this event. Represented as the number of milliseconds since midnight, January 1,
1970 UTC.

public final static int WINDOW_DEICONIFY

APPENDIX M the java class library 817

public final static int WINDOW_DESTROY

public final static int WINDOW_EXPOSE

public final static int WINDOW_ICONIFY

public final static int WINDOW_MOVED

Constant values that represent various window events.
public int x

public int y

The horizontal or vertical coordinate location of this event.

constructors

public Event(Object obj, int id, Object arg)

public Event(Object obj, long ts, int id, int x, int y, int key, int state)

public Event(Object obj, long ts, int id, int x, int y, int key, int state,

Object arg)

Creates a new instance of an event with an initial target Object (obj), id, x location, y location,
key, modifier state, time stamp (ts), and argument (arg).

methods

public boolean controlDown()

public boolean metaDown()

public boolean shiftDown()

Returns a true value if the Control, Meta, or Shift key is down for this event.
protected String paramString()

Returns the parameter string for this event.
public String toString()

Returns a string representation of this event.
public void translate(int xval, int yval)

Translates this event, modifying the x and y coordinates for this event by adjusting the x location
by xval and the y location by yval.

Exception (java.lang)
A public class, derived from Throwable, that catches conditions that are thrown by methods.

constructors

public Exception()

public Exception(String str)

Creates a new instance of an exception. A message can be provided via str.

818 APPENDIX M the java class library

Float (java.lang)
A public final class, derived from Number, that contains floating point math operations, constants,
methods to compute minimum and maximum numbers, and string manipulation routines related to
the primitive float type.

variables and constructs

public final static float MAX_VALUE

public final static float MIN_VALUE

Constant values that contain the maximum possible value (3.40282346638528860e+38f) or the
minimum possible value (1.40129846432481707e245f) of a float in Java.

public final static float NaN

A constant value that contains the representation of the Not-A-Number float (0.0f).
public final static float NEGATIVE_INFINITY

public final static float POSITIVE_INFINITY

Constant values that contain the representation of the negative (–1.0f / 0.0f) or positive (1.0f / 0.0f)
infinity float.

public final static Class TYPE

The Float constant value of the float type class.

constructors

public Float(double arg)

public Float(float arg) throws NumberFormatException

public Float(String arg)

Creates an instance of the Float class from the parameter arg.

methods

public byte byteValue()

public float floatValue()

public double doubleValue()

public int intValue()

public long longValue()

public short shortValue()

Returns the value of the current object as a Java primitive type.
public boolean equals(Object arg)

Returns the result of an equality comparison against arg.

APPENDIX M the java class library 819

public static int floatToIntBits(float num)

public static float intBitsToFloat(int num)

Returns the bit stream or float equivalent of the parameter num as an int. Bit 31 of the int
returned value is the sign bit, bits 23 to 30 are the exponent, while bits 0 to 22 are the mantissa.

public int hashCode()

Returns a hash code for this object.
public boolean isInfinite()

public static boolean isInfinite(float num)

Returns true if the current object or num is positive or negative infinity, false in all other cases.
public boolean isNaN()

public static boolean isNaN(float num)

Returns true if the current object or num is Not-A-Number, false in all other cases.
public static float parseFloat(String str) throws NumberFormatException

Returns the float value represented by str.
public String toString()

public static String toString(float num)

Returns the string representation of the current object or num.
public static Float valueOf(String str) throws NumberFormatException

Returns a Float initialized to the value of str.

FlowLayout (java.awt)
A public class, derived from Object implementing LayoutManager and Serializable, that lays out
components in a sequential horizontal order using their preferred size.

variables and constructs

public final static int CENTER

public final static int LEFT

public final static int RIGHT

Constant values indicating areas of the flow layout manager.

constructors

public FlowLayout()

public FlowLayout(int al)

public FlowLayout(int al, int hg, int vg)

Creates a new instance of a flow layout and gives it al alignment (default of centered) with a vg
vertical and hg horizontal gap (default of 0).

820 APPENDIX M the java class library

methods

public void addLayoutComponent(String str, Component cpnt)

public void removeLayoutComponent(Component cpnt)

Adds or removes a component to/from this layout manager. When adding a component, a name
may be specified.

public int getAlignment()

public void setAlignment(int alg)

Returns or sets the alignment value for this layout manager.
public int getHgap()

public int getVgap()

Returns the value of the horizontal or vertical gap between components laid out by this layout man-
ager.

public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.
public Dimension minimumLayoutSize(Container cont)

public Dimension preferredLayoutSize(Container cont)

Returns the minimum or preferred size of the specified container when laid out by this layout man-
ager.

public void setHgap(int hg)

public void setVgap(int vg)

Sets the horizontal or vertical gap for this layout manager.
public String toString()

Returns a string representation of this layout manager.

FocusAdapter (java.awt.event)
A public abstract class, derived from Object and implementing FocusListener, that permits derived
classes to override the predefined no-op focus events.

constructors

public FocusAdapter()

Creates a new instance of a FocusAdapter.

methods

public void focusGained(FocusEvent event)

APPENDIX M the java class library 821

public void focusLost(FocusEvent event)

Empty methods that should be overridden in order to implement event handling for AWT focus-
based events.

FocusEvent (java.awt.event)
A public class, derived from ComponentEvent, that describes a particular AWT focus event.

variables and constructs

public static final int FOCUS_FIRST

public static final int FOCUS_LAST

Constant values that represent the index of the first and last focus event ids.
public static final int FOCUS_GAINED

public static final int FOCUS_LOST

Constant values that represent the gain and loss of focus events.

constructors

public FocusEvent(Component src, int type)

public FocusEvent(Component src, int type, boolean toggle)

Creates a new instance of a FocusEvent from the specified source, having a defined event type and
toggling this event as a temporary change of focus (false by default).

methods

public boolean isTemporary()

Returns the status value of the temporary focus toggle.
public String paramString()

Returns a string containing the parameters of this FocusEvent.

Font (java.awt)
A public class, derived from Object and implementing Serializable, that represents a GUI font.

variables and constructs

public final static int BOLD

public final static int ITALIC

public final static int PLAIN

Constant values that indicate the style of the font.

822 APPENDIX M the java class library

protected String name

The name of the font.
protected int size

The size of the font in pixels.
protected int style

The style of the font.

constructors

public Font(String str, int st, int sz)

Creates a new font with an initial name (str), style (st), and size (sz).

methods

public static Font decode(String arg)

Returns the requested font from a specified string.
public boolean equals(Object obj)

Returns a true value if this font is equal to obj.
public String getFamily()

Returns the name of the family this font belongs to.
public static Font getFont(String str)

public static Font getFont(String str, Font ft)

Returns the font named str. If the font cannot be located, the second method returns ft as the
default.

public String getName()

Returns the name of this font.
public FontPeer getPeer()

Returns the peer of this font.
public int getSize()

public int getStyle()

Returns the size or style of this font.
public int hashCode()

Returns the hash code for this font.
public boolean isBold()

public boolean isItalic()

public boolean isPlain()

Returns a true value if this font is bolded, italicized, or plain.
public String toString()

Returns a string representation of this font.

APPENDIX M the java class library 823

FontMetrics (java.awt)
A public class, derived from Object and implementing Serializable, that provides detailed infor-
mation about a particular font.

variables and constructs

protected Font font

The font upon which the metrics are generated.

constructors

protected FontMetrics(Font f)

Creates a new instance of metrics from a given font f.

methods

public int bytesWidth(byte[] src, int offset, int size)

public int charsWidth(char[] src, int offset, int size)

Returns the advance width for displaying the subarray of src, starting at index offset, and hav-
ing a length of size.

public int charWidth(char c)

public int charWidth(int c)

Returns the advance width of the character c for the font in this font metric.
public int getAscent()

public int getDescent()

Returns the amount of ascent or descent for the font in this font metric.
public Font getFont()

Returns the font in this font metric.
public int getHeight()

Returns the standard height of the font in this font metric.
public int getLeading()

Returns the standard leading of the font in this font metric.
public int getMaxAdvance()

Returns the maximum amount of advance for the font in this font metric.
public int getMaxAscent()

public int getMaxDescent()

Returns the maximum amount of ascent or descent for the font in this font metric.
public int[] getWidths()

Returns an int array containing the advance widths of the first 256 characters of the font.

824 APPENDIX M the java class library

public int stringWidth(String str)

Returns the advance width of the string str as represented by the font in this font metric.
public String toString()

Returns a string representation of the font metrics.

Format (java.text)
A public abstract class, derived from Object and implementing Cloneable and Serializable, which
is used to format locale-based values into Strings, and vice versa.

constructors

public Format()

Creates a new instance of a Format.

methods

public Object clone()

Returns a copy of this Format.
public final String format(Object arg)

Returns a formatted string from arg.
public abstract StringBuffer format(Object arg, StringBuffer dest, FieldPosition

pos)

Formats the specified argument (starting at field pos) into a string, and appends it to the specified
StringBuffer. This method returns the same value as the destination buffer.

public Object parseObject(String src) throws ParseException

Parses the specified source string into a formatted object.
public abstract Object parseObject(String src, ParsePosition pos)

Parses the specified source string into a formatted object starting at the specified ParsePosition.

Graphics (java.awt)
A public abstract class, derived from Object, that provides many useful drawing methods and tools
for the manipulation of graphics. A Graphics object defines a context in which the user draws.

constructors

protected Graphics()

Creates a new Graphics instance. This constructor cannot be called directly.

APPENDIX M the java class library 825

methods

public abstract void clearRect(int x, int y, int width, int height)

Draws a rectangle (with no fill pattern) in the current background color at position <x, y>, and
having a width and height.

public abstract void clipRect(int x, int y, int width, int height)

Sets a clipping rectangle at position <x, y> and having a width and height.
public abstract void copyArea(int x, int y, int width, int height, int newx, int

newy)

Copies a graphic rectangular area at position <x, y> and having a width and height, to position
newx and newy.

public abstract Graphics create()

public Graphics create(int x, int y, int width, int height)

Returns a copy of this graphics context from position <x, y>, and having a width and height. In
the case of the first method, the entire area is copied.

public abstract void dispose()

Disposes this graphics context.
public void draw3DRect(int x, int y, int width, int height, boolean toggle)

Draws a 3D rectangle at position <x, y> and having a width and height. If toggle is true, the
rectangle will appear raised; otherwise, it will appear indented.

public abstract void drawArc(int x, int y, int width, int height, int sAngle,

int aAngle)

Draws an arc with a starting position <x, y> and having a width and height. The start angle
(sAngle) and arc angle (aAngle) are both measured in degrees and describe the starting and end-
ing angle of the arc.

public void drawBytes(byte[] src, int index, int ln, int x, int y)

public void drawChars(char[] src, int index, int ln, int x, int y)

Draw ln bytes or characters of array src (starting at the offset index) at position <x, y>.
public abstract boolean drawImage(Image src, int x, int y, Color bgc,

ImageObserver obsv)

public abstract boolean drawImage(Image src, int x, int y, ImageObserver obsv)

Draws a graphic image (src) at position <x, y>. Any transparent color pixels are drawn as bgc,
and the obsv monitors the progress of the image.

public abstract boolean drawImage(Image src, int x, int y, int width, int

height, Color bgc, ImageObserver obsv)

public abstract boolean drawImage(Image src, int x, int y, int width, int

height, ImageObserver obsv)

Draws a graphic image (src) at position <x, y> and having a width and height. Any transpar-
ent color pixels are drawn as bgc, and the obsv monitors the progress of the image.

826 APPENDIX M the java class library

public abstract boolean drawImage(Image src, int xsrc1, int ysrc1, int xsrc1, int

ysrc2, int xdest1, int ydest1, int xdest1, int ydest2, Color bgc, ImageObserver

obsv)

public abstract boolean drawImage(Image src, int xsrc1, int ysrc1, int xsrc1, int

ysrc2, int xdest1, int ydest1, int xdest1, int ydest2, ImageObserver obsv)

Draws a graphic image (src) from the area defined by the bounding rectangle <xsrc1, ysrc1> to
<xsrc2, ysrc2> in the area defined by the bounding rectangle <xdest1, ydest1> to <xdest2,
ydest2>. Any transparent color pixels are drawn as bgc, and the obsv monitors the progress of the
image.

public abstract void drawLine(int xsrc, int ysrc, int xdest, int ydest)

Draws a line from position <xsrc, ysrc> to <xdest, ydest>.
public abstract void drawOval(int xsrc, int ysrc, int width, int height)

Draws an oval starting at position <xsrc, ysrc> and having a width and height.
public abstract void drawPolygon(int[] x, int[] y, int num)

public void drawPolygon(Polygon poly)

Draws a polygon constructed from poly or an array of x points, y points and a number of points
in the polygon (num).

public void drawRect(int xsrc, int ysrc, int width, int height)

public abstract void drawRoundRect(int xsrc, int ysrc, int width, int height, int

awd, int aht)

Draws a rectangle with or without rounded corners at position <xsrc, ysrc> and having a width
and height. The shape of the rounded corners are determined by the width of the arc (awd) and
the height of the arc (aht).

public abstract void drawString(String str, int x, int y)

Draws the string str at position <x, y> in this Graphic’s current font and color.
public void fill3DRect(int x, int y, int width, int height, boolean toggle)

Draws a filled 3D rectangle at position <x, y> and having a width and height. The rectangle is
filled with this Graphic’s current color, and if toggle is true, the rectangle is drawn raised.
(Otherwise it is drawn indented.)

public abstract void fillArc(int x, int y, int width, int height, int sAngle, int

aAngle)

Draws a filled arc at position <x, y> and having a width and height. The arc has a starting angle
of sAngle and an ending angle of aAngle.

public abstract void fillOval(int x, int y, int width, int height)

Draws a filled oval at position <x, y> and having a width and height.
public abstract void fillPolygon(int[] x, int[] y, int num)

public void fillPolygon(Polygon poly)

Draws a filled polygon defined by poly or the arrays x, y and the number of points in the polygon,
num.

public abstract void fillRect(int x, int y, int width, int height)

APPENDIX M the java class library 827

public abstract void fillRoundRect(int x, int y, int width, int height, int

aWidth, int aHeight)

Draws a filled rectangle with or without rounded corners at position <x, y> and having a width
and height. The shape of the rounded corners are determined by the width of the arc (aWidth)
and the height of the arc (aHeight).

public void finalize()

Disposes of the current graphics context.
public abstract Shape getClip()

Returns a shape object of the current clipping area for this graphics context.
public abstract Rectangle getClipBounds()

Returns a rectangle describing the bounds of the current clipping area for this graphics context.
public abstract Color getColor()

public abstract void setColor(Color clr)

Returns or sets the current color for this graphics context.
public abstract Font getFont()

public abstract void setFont(Font ft)

Returns or sets the current font of this graphics context.
public FontMetrics getFontMetrics()

public abstract FontMetrics getFontMetrics(Font fn)

Returns the font metrics associated with this graphics context or font fn.
public abstract void setClip(int x, int y, int width, int height)

public abstract void setClip(Shape shp)

Sets the clipping area for this graphics context to be at position <x, y> and having a width and
height or to be of a specified shape (shp).

public abstract void setPaintMode()

Sets the current graphics context’s paint mode to overwrite any subsequent destinations with the
current color.

public abstract void setXORMode(Color clr)

Sets the current graphics context’s paint mode to overwrite any subsequent destinations with the
alternating current color and clr color.

public String toString()

Returns a string representation of this graphics context.
public abstract void translate(int x, int y)

Modifies the origin of this graphics context to be relocated to <x, y>.

GregorianCalendar (java.util)
A public class, derived from Calendar, that represents the standard world Gregorian calendar.

828 APPENDIX M the java class library

variables and constructs

AD

BC

Constant values representing periods of an era.

constructors

public GregorianCalendar()

public GregorianCalendar(Locale locale)

public GregorianCalendar(TimeZone zone)

public GregorianCalendar(TimeZone zone, Locale locale)

Creates a new GregorianCalendar from the current time in the specified time zone (or the default)
and the specified locale (or the default).

public GregorianCalendar(int year, int month, int date)

public GregorianCalendar(int year, int month, int date, int hour, int min)

public GregorianCalendar(int year, int month, int date, int hour, int min, int

sec)

Creates a new GregorianCalendar, setting the year, month, date, hour, minute, and seconds of the
time fields.

methods

public void add(int field, int val)

Adds (or subtracts in the case of a negative val) an amount of days or time from the specified
field.

public boolean after(Object arg)

public boolean before(Object arg)

Returns a true value if this GregorianCalendar date is after or before the date specified by arg.
public Object clone()

Returns a clone of this GregorianCalendar.
protected void computeFields()

protected void computeTime()

Computes the values of the time fields based on the currently set time (computeFields()) or com-
putes the time based on the currently set time fields (computeTime()) for this GregorianCalendar.

public boolean equals(Object arg)

Returns a true value if this GregorianCalendar is equal to the value of arg.
public int getGreatestMinimum(int fld)

APPENDIX M the java class library 829

public int getLeastMaximum(int fld)

Returns the largest allowable minimum or smallest allowable maximum value for the specified
field.

public final Date getGregorianChange()

public void setGregorianChange(Date dt)

Returns or sets the date of the change from Julian to Gregorian calendars for this calendar. The
default value is October 15, 1582 (midnight local time).

public int getMaximum(int fld)

public int getMinimum(int fld)

Returns the largest or smallest allowable value for the specified field.
public synchronized int hashCode()

Returns the hash code for this GregorianCalendar.
public boolean isLeapYear(int year)

Returns a true value if the specified year is a leap year.
public void roll(int fld, boolean direction)

Adds one single unit of time to the specified date/time field. A true value specified for direction
increases the field’s value, false decreases it.

GridBagConstraints (java.awt)
A public class, derived from Object and implementing Cloneable, that specifies the layout con-
straints for each component laid out with a GridBagLayout.

variables and constructs

public int anchor

Determines where to place a component that is smaller in size than its display area in the gridbag.
public final static int BOTH

public final static int HORIZONTAL

public final static int NONE

public final static int VERTICAL

Constant values that indicate the direction(s) that the component should grow.
public final static int CENTER

public final static int EAST

public final static int NORTH

public final static int NORTHEAST

public final static int NORTHWEST

public final static int SOUTH

830 APPENDIX M the java class library

public final static int SOUTHEAST

public final static int SOUTHWEST

public final static int WEST

Constant values that indicate where the component should be placed in its display area.
public int fill

Determines how to resize a component that is smaller than its display area in the gridbag.
public int gridheight

public int gridwidth

Specifies the number of vertical and horizontal cells the component shall occupy.
public int gridx

public int gridy

Describes horizontal and vertical cell locations (indices) in the gridbag, where gridx=0 is the left-
most cell and gridy=0 is the topmost cell.

public Insets insets

Defines the amount of space (in pixels) around the component in its display area.
public int ipadx

public int ipady

Defines the amount of space (in pixels) to add to the minimum horizontal and vertical size of the
component.

public final static int RELATIVE

A constant that specifies that this component is the next to last item in its gridbag row or that it
should be placed next to the last item added to the gridbag.

public final static int REMAINDER

A constant that specifies that this component is the last item in its gridbag row.
public double weightx

public double weighty

Specifies the weight of horizontal and vertical growth of this component relative to other compo-
nents during a resizing event. A larger value indicates a higher percentage of growth for this com-
ponent.

constructors

public GridBagConstraints()

Creates a new instance of GridBagConstraints.

methods

public Object clone()

Creates a copy of these gridbag constraints.

APPENDIX M the java class library 831

GridBagLayout (java.awt)
A public class, derived from Object and implementing Serializable and LayoutManager, that cre-
ates a gridlike area for component layout. Unlike GridLayout, GridBagLayout does not force the
components to be the same size or to be constrained to one cell.

variables and constructs

public double columnWeights[]

public int columnWidths[]

Holds the weights and widths of each column of this GridBagLayout.
protected Hashtable comptable

A hashtable of the components managed by this layout manager.
protected GridBagConstraints defaultConstraints

Holds the default constraints for any component laid out by this layout manager.
protected GridBagLayoutInfo layoutInfo

Holds specific layout information (such as the list of components or the constraints of this man-
ager) for this GridBagLayout.

protected final static int MAXGRIDSIZE

A constant value that contains the maximum (512) number of grid cells that can be laid out by this
GridBagLayout.

protected final static int MINSIZE

A constant value that contains the minimum (1) number of cells contained within this
GridBagLayout.

protected final static int PREFERREDSIZE

A constant value that contains the preferred (2) number of cells contained within this GridBagLay-
out.

public int rowHeights[]

public double rowWeights[]

Holds the heights and weights of each row of this GridBagLayout.

constructors

public GridBagLayout()

Creates a new instance of a GridBagLayout.

methods

public void addLayoutComponent(Component item, Object constraints)

Adds the component item to this layout manager using the specified constraints on the item.

832 APPENDIX M the java class library

public void addLayoutComponent(String str, Component item)

Adds the component item to this layout manager and names it str.
protected void AdjustForGravity(GridBagConstraints constraints, Rectangle rect)

Sets the characteristics of rect based on the specified constraints.
protected void ArrangeGrid(Container parent)

Arranges the entire grid on the parent.
public GridBagConstraints getConstraints(Component item)

Returns a copy of the constraints for the item component.
public float getLayoutAlignmentX(Container parent)

public float getLayoutAlignmentY(Container parent)

Returns the horizontal and vertical alignment values for the specified container.
public int[][] getLayoutDimensions()

Returns a two-dimensional array in which the zero index of the first dimension holds the minimum
width of each column and the one index of the first dimension holds the minimum height of each
column.

protected GridBagLayoutInfo GetLayoutInfo(Container parent, int sizeflag)

Computes and returns a GridBagLayoutInfo object for components associated with the specified
parent container.

public Point getLayoutOrigin()

Returns this layout’s point of origin.
public double[][] getLayoutWeights()

Returns a two-dimensional array in which the zero index of the first dimension holds the weight in
the x direction of each column and the one index of the first dimension holds the weight in the y
direction of each column.

protected Dimension GetMinSize(Container parent, GridBagLayoutInfo info)

Returns the minimum size for the specified parent container based on laying out the container using
the specified GridBagLayoutInfo.

public void invalidateLayout(Container cont)

Forces this layout manager to discard any cached layout information about the specified container.
public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.
public Point location(int x, int y)

Returns the upper right corner of the cell in this GridBagLayout with dimensions greater than the
specified <x, y> coordinate.

protected GridBagConstraints lookupConstraints(Component item)

Returns the actual constraints for the specified component.
public Dimension maximumLayoutSize(Container cont)

public Dimension minimumLayoutSize(Container cont)

APPENDIX M the java class library 833

public Dimension preferredLayoutSize(Container cont)

Returns the maximum, minimum, or preferred size of the specified container when laid out by this
layout manager.

public void removeLayoutComponent(Component comp)

Removes the specified component from this layout manager.
public void setConstraints(Component item, GridBagConstraints constraints)

Sets the constraints for the item component in this layout manager.

GridLayout (java.awt)
A public class, derived from Object and implementing Serializable and LayoutManager, that cre-
ates a grid area of equal sized rectangles to lay out components in.

constructors

public GridLayout()

public GridLayout(int r, int c)

Creates a new instance of a GridLayout with a dimension of r rows and c columns (default of 1
by any).

public GridLayout(int r, int c, int hg, int vg)

Creates a new instance of a GridLayout with a dimension of r rows and c columns. The grid cells
have a hg pixel horizontal gap and a vg pixel vertical gap.

methods

public void addLayoutComponent(String str, Component comp)

public void removeLayoutComponent(Component comp)

Adds or removes the specified component. When adding, the component can be given a name
(str).

public int getColumns()

public void setColumns(int val)

Returns or sets the number of columns of this layout manager.
public int getHgap()

public int getVgap()

Returns the value of the horizontal or vertical gap for this layout manager.
public int getRows()

public void setRows(int val)

Returns or sets the number of rows of this layout manager.
public void layoutContainer(Container cont)

Lays out the specified container with this layout manager.

834 APPENDIX M the java class library

public Dimension minimumLayoutSize(Container cont)

public Dimension preferredLayoutSize(Container cont)

Returns the minimum or preferred size of the specified container when laid out with this layout
manager.

public void setHgap(int val)

public void setVgap(int val)

Sets the horizontal or vertical gap for this layout manager to val.

Hashtable (java.util)
A public class, derived from Dictionary and implementing Serializable and Cloneable, that
allows for the storing of objects that have a relationship with a key. You can then use this key to access
the object stored.

constructors

public Hashtable()

public Hashtable(int size)

public Hashtable(int size, float load) throws IllegalArgumentException

Creates a new instance of a hashtable, setting the initial capacity (or using the default size of 101)
and a load factor (default of 0.75). The initial capacity sets the number of objects the table can
store, and the load factor value is the percentage filled the table may become before being resized.

methods

public void clear()

Removes all keys and elements from this Hashtable.
public Object clone()

Returns a clone of this Hashtable (the keys and values are not cloned).
public boolean contains(Object arg) throws NullPointerException

Returns a true value if this Hashtable contains a key that is related to the element arg.
public boolean containsKey(Object obj)

Returns a true value if this Hashtable contains an entry for the key at obj.
public Enumeration elements()

public Enumeration keys()

Returns an enumerated list of all of the elements or keys of this Hashtable.
public Object get(Object obj)

public Object put(Object obj, Object arg) throws NullPointerException

public Object remove(Object obj)

Returns, inserts or removes the element arg that corresponds to the key obj.

APPENDIX M the java class library 835

public boolean isEmpty()

Returns a true value if the Hashtable is empty.
protected void rehash()

Resizes this Hashtable. The method is invoked automatically when the number of keys exceeds
the capacity and load factor.

public int size()

Returns the number of elements in this Hashtable.
public String toString()

Returns a string representation of this Hashtable’s key-element pairings.

Image (java.awt)
A public abstract class, derived from Object, that is used to manage graphic images.

variables and constructs

public final static int SCALE_AREA_AVERAGING

public final static int SCALE_DEFAULT

public final static int SCALE_FAST

public final static int SCALE_REPLICATE

public final static int SCALE_SMOOTH

Constant values used to indicate specific scaling algorithms.
public final static Object UndefinedProperty

A constant value that is returned whenever an undefined property for an image is attempted to be
obtained.

constructors

public Image()

Creates a new instance of an image.

methods

public abstract void flush()

Frees the cache memory containing this image.
public abstract Graphics getGraphics()

Returns a newly created graphics context for drawing off-screen images.
public abstract int getHeight(ImageObserver obs)

public abstract int getWidth(ImageObserver obs)

Returns the height or width of this image. If the height is not known, a –1 is returned and the obs
is informed later.

836 APPENDIX M the java class library

public abstract Object getProperty(String property, ImageObserver obs)

Returns the value of the property for this image. If the value is not known, a null is returned and
obs is informed later.

public Image getScaledInstance(int width, int height, int algo)

Returns a scaled version of this image. The new image is scaled to width pixels by height pixels
using the specified scaling algorithm (algo). If either of the new width or height values are –1, then
the new image will maintain the aspect ratios of the old image.

public abstract ImageProducer getSource()

Returns the source image producer for this image.

ImageIcon (javax.swing)
A public class, derived from Object and implementing Accessible, Icon, and Serializable, that
represents an icon based on an image.

constructors

public ImageIcon()

public ImageIcon(byte[] imageData)

public ImageIcon(byte[] imageData, String description)

public ImageIcon(Image image)

public ImageIcon(Image image, String description)

public ImageIcon(String filename)

public ImageIcon(String filename, String description)

public ImageIcon(URL location)

public ImageIcon(URL location, String description)

Creates an icon using an image described by raw image data (in a supported format such as GIF or
JPEG), and Image object, a file, or a URL. An optional description can be specified as well.

methods

public String getDescription()

Returns the description of this image icon.
public int getIconHeight()

public int getIconWidth()

Returns this icon’s height or width.
public Image getImage()

Returns this icon’s image.

APPENDIX M the java class library 837

public void paintIcon(Component observer, Graphics page, int x, int y)

Paints this icon on the specified graphics context at the specified location using the specified image
observer.

public setDescription(String description)

public setImage(Image image)

Sets the description or the image for this icon.

InputEvent (java.awt.event)
A public abstract class, derived from ComponentEvent, that describes a particular AWT input event.

variables and constructs

public static final int ALT_MASK

public static final int BUTTON1_MASK

public static final int BUTTON2_MASK

public static final int BUTTON3_MASK

public static final int CTRL_MASK

public static final int META_MASK

public static final int SHIFT_MASK

Constant values which represent various keyboard and mouse masks.

methods

public void consume()

Consumes this event, preventing it from being passed to its peer component.
public int getModifiers()

Returns the modifiers for this event.
public long getWhen()

Returns the timestamp of this event.
public boolean isConsumed()

Returns a true value if this event is consumed.
public boolean isAltDown()

public boolean isControlDown()

public boolean isMetaDown()

public boolean isShiftDown()

Returns a true value if the Alt, Control, Meta, or Shift key is depressed during this event.

838 APPENDIX M the java class library

InputStream (java.io)
A public abstract class, derived from Object, that is the parent class of any type of input stream that
reads bytes.

constructors

public InputStream()

Generally called only by subclasses, this constructor creates a new instance of an InputStream.

methods

public int available() throws IOException

Returns the number of available bytes that can be read. This method returns a 0 (zero) value and
should be overridden by a subclass implementation.

public void close() throws IOException

Closes the input stream. This method has no functionality and should be overridden by a subclass
implementation.

public void mark(int size)

Sets a mark in the input stream, allowing a rereading of the stream data to occur if the reset method
is invoked. The size parameter indicates how many bytes may be read following the mark being
set, before the mark is considered invalid.

public boolean markSupported()

Returns a true value if this InputStream object supports the mark and reset methods. This method
always returns a false value and should be overridden by a subclass implementation.

public abstract int read() throws IOException

Reads the next byte of data from this InputStream and returns it as an int. This method has no
functionality and should be implemented in a subclass. Execution of this method will block until
data is available to be read, the end of the input stream occurs, or an exception is thrown.

public int read(byte[] dest) throws IOException

public int read(byte[] dest, int offset, int size) throws IOException

Reads from this InputStream into the array dest, and returns the number of bytes read. size speci-
fies the maximum number of bytes read from this InputStream into the array dest[] starting at
index offset. This method returns the actual number of bytes read or –1, indicating that the end
of the stream was reached. To read size bytes and throw them away, call this method with dest[]
set to null.

public synchronized void reset() throws IOException

Resets the read point of this InputStream to the location of the last mark set.
public long skip(long offset) throws IOException

Skips over offset bytes from this InputStream. Returns the actual number of bytes skipped, as it
is possible to skip over less than offset bytes.

APPENDIX M the java class library 839

InputStreamReader (java.io)
A public class, derived from Reader, that is an input stream of characters.

constructors

public InputStreamReader(InputStream input)

public InputStreamReader(InputStream input, String encoding) throws

UnsupportedEncodingException

Creates an instance of InputStreamReader from the InputStream input with a specified encod-
ing.

methods

public void close() throws IOException

Closes this InputStreamReader.
public String getEncoding()

Returns the string representation of this InputStreamReader’s encoding.
public int read() throws IOException

Reads a single character from this InputStreamReader. The character read is returned as an int,
or a –1 is returned if the end of this InputStreamReader was encountered.

public int read(char[] dest, int offset, int size) throws IOException

Reads no more than size bytes from this InputStreamReader into the array dest[] starting at
index offset. This method returns the actual number of bytes read or –1, indicating that the end
of the stream was reached. To read size bytes and throw them away, call this method with dest[]
set to null.

public boolean ready() throws IOException

Returns a true value if this InputStreamReader is capable of being read from. This state can only
be true if the buffer is not empty.

Insets (java.awt)
A public class, derived from Object and implementing Serializable and Cloneable, that specify
the margins of a container.

variables and constructs

public int bottom

public int left

public int right

840 APPENDIX M the java class library

public int top

Contains the value of the inset for a particular margin.

constructors

public Insets(int t, int l, int b, int r)

Creates an instance of insets with initial top (t), bottom (b), left (l) and right (r) inset values.

methods

public Object clone()

Creates a copy of this group of inset values.
public boolean equals(Object arg)

Returns a true value if this inset is equal to the object arg.
public String toString()

Returns a string representation of this group of inset values.

Integer (java.lang)
A public final class, derived from Number, that contains integer math operations, constants, methods
to compute minimum and maximum numbers, and string manipulation routines related to the prim-
itive int type.

variables and constructs

public final static int MAX_VALUE

public final static int MIN_VALUE

Constant values that contain the maximum possible value (2147483647) or minimum possible
value (22174783648) of an integer in Java.

public final static Class TYPE

The Integer constant value of the integer type class.

constructors

public Integer(int num)

public Integer(String num) throws NumberFormatException

Creates an instance of the Integer class from the parameter num.

methods

public byte byteValue()

public double doubleValue()

public float floatValue()

APPENDIX M the java class library 841

public int intValue()

public long longValue()

public short shortValue()

Returns the value of this integer as a Java primitive type.
public static Integer decode(String str) throws NumberFormatException

Decodes the given string (str) and returns it as an Integer. The decode method can handle octal,
hexadecimal, and decimal input values.

public boolean equals(Object num)

Returns the result of an equality comparison against num.
public static Integer getInteger(String str)

public static Integer getInteger(String str, int num)

public static Integer getInteger(String str, Integer num)

Returns an Integer representation of the system property named in str. If there is no property
corresponding to num, or the format of its value is incorrect, then the default num is returned as an
Integer object.

public int hashCode()

Returns a hash code for this object.
public static int parseInt(String str) throws NumberFormatException

public static int parseInt(String str, int base) throws NumberFormatException

Evaluates the string str and returns the int equivalent in radix base.
public static String toBinaryString(int num)

public static String toHexString(int num)

public static String toOctalString(int num)

Returns the string representation of parameter num in base 2 (binary), 8 (octal), or 16 (hexadeci-
mal).

public String toString()

public static String toString(int num)

public static String toString(int num, int base)

Returns the string representation of this integer or num. The radix of num can be specified in base.
public static Integer valueOf(String str) throws NumberFormatException

public static Integer valueOf(String str, int base) throws NumberFormatException

Returns an Integer initialized to the value of str in radix base.

ItemEvent (java.awt.event)
A public class, derived from AWTEvent, that represents an AWT item event (from a component such
as a Checkbox, CheckboxMenuItem, Choice, or List).

842 APPENDIX M the java class library

variables and constructs

public static final int DESELECTED

public static final int SELECTED

Constant values representing the deselection or selection of an AWT item component.
public static final int ITEM_FIRST

public static final int ITEM_LAST

Constant values that represent the index of the first and last item event ids.
public static final int ITEM_STATE_CHANGED

A constant value that represents the event of the change of state for an AWT item.

constructors

public ItemEvent(ItemSelectable src, int type, Object obj, int change)

Creates a new instance of an ItemEvent from the specified source, having a specific type, item
object, and state change.

methods

public Object getItem()

Returns the specific item that triggered this event.
public ItemSelectable getItemSelectable()

Returns the ItemSelectable object that triggered this event.
public int getStateChange()

Returns the state change type (deselection or selection) that triggered this event.
public String paramString()

Returns a parameter string containing the values of the parameters for this event.

JApplet (javax.swing)
A public class, derived from Applet and implementing Accessible and RootPaneContainer, that
represents a primary applet container.

constructors

public JApplet()

Creates an applet container.

methods

public Container getContentPane()

public Component getGlassPane()

APPENDIX M the java class library 843

public JLayeredPane getLayeredPane()

public JRootPane getRootPane()

Returns the content pane, glass pane, layered pane, or root pane for this applet.
public void setContentPane(Container contenetPane)

public void setGlassPane(Component glassPane)

public void setLayeredPane(JLayeredPane layeredPane)

public void setRootPane(JRootPane rootPane)

Sets the content pane, glass pane, layered pane, or root pane for this applet.
public void remove(Component comp)

Removes the specified component from this applet.
public JMenuBar getJMenuBar()

public void setJMenuBar setJMenuBar(JMenuBar menuBar)

Gets or sets the menu bar for this applet.

JButton (javax.swing)
A public class, derived from AbstractButton and implementing Accessible, that represents a GUI
push button.

constructors

public JButton()

public JButton(Icon icon)

public JButton(String text)

public JButton(String text, Icon icon)

Creates a button with the specified text and icon.

methods

public boolean isDefaultButton()

Returns true if this button is the current default button for its root pane.
public boolean isDefaultCapable()

public void setDefaultCapable(boolean capable)

Gets or sets the property that determines if this button can be the default button for its root pane.

JCheckBox (javax.swing)
A public class, derived from JToggleButton and implementing Accessible, that represents a GUI
component that can be selected or deselected (displaying its state to the user).

844 APPENDIX M the java class library

constructors

public JCheckBox()

public JCheckBox(Icon icon)

public JCheckBox(Icon icon, boolean selected)

public JCheckBox(String text)

public JCheckBox(String text, boolean selected)

public JCheckBox(String text, Icon icon)

public JCheckBox(String text, Icon icon, boolean selected)

Creates a check box with the specified text, icon, and selected state (which defaults to unselected).

JCheckBoxMenuItem (javax.swing)
A public class, derived from JMenuItem and implementing Accessible and SwingConstants, that
represents a menu item that can be selected or deselected.

constructors

public JCheckBoxMenuItem()

public JCheckBoxMenuItem(Icon icon)

public JCheckBoxMenuItem(String text)

public JCheckBoxMenuItem(String text, boolean selected)

public JCheckBoxMenuItem(String text, Icon icon)

public JCheckBoxMenuItem(String text, Icon icon, boolean selected)

Creates a menu check box with the specified text, icon, and selected state (which defaults to unse-
lected).

JColorChooser (javax.swing)
A public class, derived from JComponent and implementing Accessible, that represents a pane of
controls that allows a user to define and select a color. A color chooser can be displayed as a dialog
box or within any container.

constructors

public JColorChooser()

public JColorChooser(Color initialColor)

Creates a color chooser with the specified initial color (white by default).

APPENDIX M the java class library 845

methods

public Color getColor()

public void setColor(Color color)

public void setColor(int color)

public void setColor(int red, int green, int blue)

Gets or sets the current color for this color chooser.
public static Color showDialog(Component parent, String title, Color

initialColor)

Shows a color chooser dialog box, returning the selected color when the user presses the OK
button.

JComboBox (javax.swing)
A public class, derived from JComponent and implementing ItemSelectable, ListDataListener,
ActionListener, and Accessible, that represents a GUI component that combines a button (or
editable field) and a drop down list.

constructors

public JComboBox()

public JComboBox(Object[] items)

public JComboBox(Vector items)

Creates a combo box containing the specified items.

methods

public addActionListener(ActionListener listener)

public addItemListener(ItemListener listener)

Adds a secific type of listener to this combo box.
public void addItem(Object item)

public insertItemAt(Object item, int index)

Adds the specified item to the end of the item list or inserts it at the specified index.
public Object getItemAt(int index)

Returns the item at the specified index.
public int getItemCount()

Returns the number of items in the list.
public Object getSelectedItem()

Returns the currently selected item.

846 APPENDIX M the java class library

public void setEditable(boolean flag)

Sets whether this combo box is editable.
public boolean isEditable()

Returns true if this combo box is editable.
public void setEnabled(boolean flag)

Enables or disables this combo box. When disabled, items cannot be selected.
public void removeAllItems()

public void removeItem(Object item)

public void removeItemAt(int index)

Removes all items, a specific item, or the item at a specific index, from the list.

JComponent (javax.swing)
A public abstract class, derived from Component and implementing Serializable, that represents the
base class for all Swing components (except top-level containers).

methods

public float getAlignmentX()

public void setAlignmentX(float alignment)

public float getAlignmentY()

public void setAlignmentY(float alignment)

Gets or sets the horizontal or vertical alignment for this component.
public Border getBorder()

public void setBorder(Border border)

Gets or sets the border for this component.
public Graphics getGraphics()

Returns the graphics context for this component.
public int getHeight()

public int getWidth()

Returns the height or width of this component.
public Dimension getMaximumSize()

public void setMaximumSize(Dimension size)

public Dimension getMinimumSize()

public void setMinimumSize(Dimension size)

public Dimension getPreferredSize()

public void setPreferredSize(Dimension size)

Gets or sets the maximum, minimum, or preferred size for this component.

APPENDIX M the java class library 847

public JRootPane getRootPane()

Returns the root pane ancestor for this component.
public String getToolTipText()

public void setToolTipText(String text)

Gets or sets the text for this component’s tool tip.
public int getX()

public int getY()

Returns the x or y coordinate of this component.
public void setEnabled(boolean enabled)

Enables or disables this component.
public void setFont(Font font)

Sets the font for this component.
public void setBackground(Color color)

public void setForeground(Color color)

Sets the background or foreground color for this component.
public setVisible(boolean flag)

Makes this component visible or invisible.

JFileChooser (javax.swing)
A public class, derived from JComponent and implementing Accessible, that represents a GUI com-
ponent that allows the user to select a file from a file system.

variables and constructs

public static final int APPROVE_OPTION

Return value if approval (Yes, Ok) is chosen.
public static final int CANCEL_OPTION

Return value if Cancel is chosen.
public static final int ERROR_OPTION

Return value if an error occured.

constructors

public JFileChooser()

public JFileChooser(File directory)

public JFileChooser(FileSystemView view)

public JFileChooser(String path)

848 APPENDIX M the java class library

public JFileChooser(File directory, FileSystemView view)

public JFileChooser(String path, FileSystemView view)

Creates a file chooser with the specified directory or path and optional file system view.

methods

public File getCurrentDirectory()

public void setCurrentDirectory(File directory)

Gets or sets the current directory for this file chooser.
public String getDescription(File file)

public String getName(File file)

Returns the description or name of the specified file.
public boolen getDraggedEnabled()

public void setDraggedEnabled(boolean flag)

Gets or sets the property that determines whether the user can drag to select files.
public File getSelectedFile()

public File[] getSelectedFiles()

Gets the currently selected file or files.
public boolean isMultiSelectionEnabled()

Returns true if multiple files can be selected.
public void setDialogTitle(String title)

Sets the title of the dialog box.
public void setFileFilter(FileFilter filter)

Sets the current file filter.
public void setSelectedFile(File file)

public void setSelectedFiles(File[] files)

Sets the selected file or files.
public int showDialog(Component parent, String approveButtonText)

Displays a custom file chooser dialog with the specified approve button text.
public int showOpenDialog(Component parent)

Displays an “open file” file chooser dialog.
public int showSaveDialog(Component parent)

Displays a “save file” file chooser dialog.

JFrame (javax.swing)
A public class, derived from Frame and implementing WindowConstants, Accessible, and
RootPaneContainer, that represents a primary GUI window.

APPENDIX M the java class library 849

variables and constructs

public static final int EXIT_ON_CLOSE

Represents the exit application default window close operation.

constructors

public JFrame()

public JFrame(String title)

Creates a frame with the specified title.

methods

public Container getContentPane()

public Component getGlassPane()

public JLayeredPane getLayeredPane()

public JRootPane getRootPane()

Returns the content pane, glass pane, layered pane, or root pane for this frame.
public void setContentPane(Container contenetPane)

public void setGlassPane(Component glassPane)

public void setLayeredPane(JLayeredPane layeredPane)

public void setRootPane(JRootPane rootPane)

Sets the content pane, glass pane, layered pane, or root pane for this frame.
public void remove(Component comp)

Removes the specified component from this frame.
public JMenuBar getJMenuBar()

public void setJMenuBar setJMenuBar(JMenuBar menuBar)

Gets or sets the menu bar for this frame.
public void setDefaultCloseOperation(int operation)

Sets the default operation when the user closes this frame.

JLabel (javax.swing)
A public class, derived from JComponent and implementing Accessible and SwingConstants, that
represents a GUI display area for a string, and image, or both.

constructors

public JLabel()

public JLabel(String text)

public JLabel(Icon icon)

850 APPENDIX M the java class library

public JLabel(String text, int horizontalAlignment)

public JLabel(Icon icon, int horizontalAlignment)

public JLabel(String text, Icon icon, int horizontalAlignment)

Creates a label containing the specified icon and string, and using the specified horizontal align-
ment.

methods

public int getHorizontalAlignment()

public void setHorizontalAlignment(int alignment)

public int getVerticalAlignment()

public void setVerticalAlignment(int alignment)

Gets or sets the horizontal or vertical alignment of the icon and text.
public int getHorizontalTextPosition()

public void setHorizontalTextPosition(int position)

public int getVerticalTextPosition()

public void setVerticalTextPosition(int position)

Gets or sets the horizontal or vertical position of the text relative to the icon.
public Icon getIcon()

public void setIcon(Icon icon)

Gets or sets the default icon for this button.
public String getText()

public void setText(String text)

Gets or sets the text displayed on this button.
public Component getLabelFor()

public void setLabelFor(Component comp)

Gets or sets the component that this label describes.

JList (javax.swing)
A public class, derived from JComponent and implementing Accessible and Scrollable, that rep-
resents a GUI component that allows the user to select one or more objects from a list.

variables and constructs

public static final int HORIZONTAL_WRAP

Indicates that cells flow horizontally, then vertically.
public static final int VERTICAL

Indicates one column of cells (the default).

APPENDIX M the java class library 851

public static final int VERTICAL_WRAP

Indicates that cells flow vertically, then horizontally.

constructors

public JList()

public JList(Object[] items)

public JList(Vector items)

Creates a list that displays the specified items.

methods

public void addListSelectionListener(ListSelectionListener listener)

Adds the specified listener to this list.
public void clearSelection()

Clears the selection (no items will be selected).
public void ensureIndexIsVisible(int index)

Scrolls the list to make the specified item visible.
public int getLastVisibleIndex()

Returns the index of the last visible cell.
public int getLayoutOrientation()

public void setLayoutOrientation(int orientation)

Gets or sets the layout orientation for this list.
public int getMaxSelectionIndex()

public int getMinSelectionIndex()

Returns the largest or smallest selected cell index.
public int getSelectedIndex()

public void setSelectedIndex(int index)

public int[] getSelectedIndices()

public void setSelectedIndex(int[] indices)

Gets or sets the selected index or indices.
public void setSelectionInterval(int from, int to)

Selects the specified index interval.
public Object getSelectedValue()

public Object[] getSelectedValues()

Returns the currently selected value or values.
public Color getSelectionBackground()

public void setSelectionBackground(Color color)

public Color getSelectionForeground()

852 APPENDIX M the java class library

public void setSelectionForeground(Color color)

Gets or sets the background or foreground color of the selection.
public boolean isSelectedIndex(int index)

Returns true if the specified index is selected.
public boolean isSelectionEmpty()

Returns true if no item is currently selected.
public void setDragEnabled(boolean flag)

Enables or disables the property allowing the user to select multiple items by dragging the mouse.
public void setListData(Object[] items)

public void setListData(Vector items)

Sets the contents of the list to the specified items.
public void setSelectionMode(int selectionMode)

Sets the selection mode for this list using ListSelectionModel constants.

JOptionPane (javax.swing)
A public class, derived from JComponent and implementing Accessible, that provides methods for
creating standard dialog boxes.

variables and constructs

public static final int CANCEL_OPTION

public static final int OK_OPTION

public static final int YES_OPTION

Return value if a specific button option is chosen.
public static final int CLOSED_OPTION

Return value if the user closes the window without selecting anything.
public static final int DEFAULT_OPTION

public static final int YES_NO_OPTION

public static final int YES_NO_CANCEL_OPTION

public static final int OK_CANCEL_OPTION

Specifies the types of buttons to use in the dialog.
public static final int ERROR_MESSAGE

public static final int INFORMATION_MESSAGE

public static final int WARNING_MESSAGE

public static final int QUESTION_MESSAGE

public static final int PLAIN_MESSAGE

Specifies a message style.

APPENDIX M the java class library 853

methods

public static void showConfirmDialog(Component parent, Object message)

public static void showConfirmDialog(Component parent, Object message, String

title, int buttonSet)

public static void showConfirmDialog(Component parent, Object message, String

title, int buttonSet, int messageStyle)

public static void showConfirmDialog(Component parent, Object message, String

title, int buttonSet, int messageStyle, Icon icon)

Displays a dialog box allowing the user to confirm an option. Uses the specified message, title, but-
ton set, message style, and icon.

public static void showInputDialog(Component parent, Object message)

public static void showInputDialog(Component parent, Object message, Object

initialSelectionValue)

public static void showInputDialog(Component parent, Object message, String

title, int messageStyle)

public static void showInputDialog(Object message)

public static void showInputDialog(Object message, Object initialSelectionValue)

public static void showInputDialog(Component parent, Object message, String

title, int messageStyle, Icon icon, Object[] selectionValues, Object

initialSelectionValue)

Displays a dialog box allowing the user to enter input. Uses the specified message, title, and mes-
sage style. An initial selection and options can also be specified.

public static void showMessageDialog(Component parent, Object message)

public static void showMessageDialog(Component parent, Object message, String

title, int messageStyle)

public static void showMessageDialog(Component parent, Object message, String

title, int buttonSet, int messageStyle, Icon icon)

Displays a dialog box presenting a message. Uses the specified message, title, message style, and
icon.

public static void showOptionDialog(Component parent, Object message, String

title, int buttonSet, int messageStyle, Icon icon, Object[] options, Object

initialValue)

Displays a dialog box allowing the user to make a general choice. Uses the specified message, title,
button set, message style, and icon. An initial selection and options can also be specified.

JPanel (javax.swing)
A public class, derived from JComponent and implementing Accessible, that represents a light-
weight GUI container used to organize other components.

854 APPENDIX M the java class library

constructors

public JPanel()

public JPanel(LayoutManager manager)

Creates a panel with the specified layout manager, which defaults to a flow layout.

JPasswordField (javax.swing)
A public class, derived from JTextField, that represents a GUI text field into which the user can type
a password. The password itself is not displayed as it is typed, but a visual indication that characters
are being typed is shown.

constructors

public JPasswordField()

public JPasswordField(int columns)

public JPasswordField(String text)

public JPasswordField(String text, int columns)

Creates a password field with the specified number of columns, initialized to the specified text.

methods

public char[] getPassword()

Returns the text contained in this password field.
public char getEchoChar()

public void setEchoChar(char ch)

Gets or sets the character that is displayed as the user types into this field.

JRadioButton (javax.swing)
A public class, derived from JToggleButton and implementing Accessible, that represents a radio
button, used as part of a button group (ButtonGroup), to present a set of mutually exclusive options.

constructors

public JRadioButton()

public JRadioButton(String text)

public JRadioButton(Icon icon)

public JRadioButton(String text, boolean selected)

public JRadioButton(Icon icon, boolean selected)

APPENDIX M the java class library 855

public JRadioButton(String text, Icon icon)

public JRadioButton(String text, Icon icon, boolean selected)

Creates a radio button with the specified text, icon, and initial selection status (unselected by
default).

JScrollPane (javax.swing)
A public class, derived from JComponent and implementing Accessible and ScrollPaneConstants,
that represents a lightweight GUI container with a scrollable view.

constructors

public JScrollPane()

public JScrollPane(Component comp)

public JScrollPane(int verticalPolicy, int horizontalPolicy)

public JScrollPane(Component comp, int verticalPolicy, int horizontalPolicy)

Creates a scroll pane displaying the specified component and using the specified horizontal and ver-
tical scrollbar policies.

methods

public int getHorizontalScrollBarPolicy()

public void setHorizontalScrollBarPolicy(int policy)

public int getHorizontalScrollBarPolicy()

public void setHorizontalScrollBarPolicy(int policy)

Gets or sets the horizontal or vertical scrollbar policy for this scroll pane.

JSlider (javax.swing)
A public class, derived from JComponent, that represents a GUI component that allows the user to
select a numeric value by sliding a knob within a bounded interval.

constructors

public JSlider()

public JSlider(int orientation)

public JSlider(int min, int max)

public JSlider(int min, int max, int initialValue)

856 APPENDIX M the java class library

public JSlider(int orientation, int min, int max, int initialValue)

Creates a new slider with the specified orientation, minimum value, maximum value, and initial
value. The default orientation is horizontal, the default minimum value is 0, the default maximum
value is 100, and the default initial value is the range midpoint.

methods

public void addChangeListener(ChangeListener listener)

Adds a ChangeListener to this slider.
public int getExtent()

Returns the range of values covered by the knob.
public int getMajorTickSpacing()

public int getMinorTickSpacing()

Returns the major or minor tick spacing of this slider.
public int getMinimum()

public int getMaximum()

Returns the minimum or maximum value of this slider.
public int getOrientation()

Returns this slider’s orientation.
public boolean getPaintLabels()

public boolean getPaintTicks()

public boolean getPaintTrack()

Returns true if this slider’s labels, tick marks, or track are to be painted.
public boolean getSnapToTicks()

Returns true if this slider’s knob snaps to the closest tick mark when the user moves the knob.
public int getValue()

Returns this slider’s values.
public boolean getValueIsAdjusting()

Returns true if the slider knob is being dragged.
public void setExtent(int extent)

Sets the size of the range covered by this slider’s knob.
public void setMajorTickSpacing(int value)

public void setMinorTickSpacing(int value)

Sets the major or minor tick spacing for this slider.
public void setMinimum(int minimumValue)

public void setMaximum(int maximumValue)

Sets the minimum or maximum value for this slider.
public void setOrientation(int orientation)

Sets the orientation for this slider.
public void setPaintLabels(boolean flag)

APPENDIX M the java class library 857

public void setPaintTicks(boolean flag)

public void setPaintTrack(boolean flag)

Determines whether this slider’s labels, tick marks, or track are to be painted.
public void setSnapToTicks(boolean flag)

Determines whether the knob (and value) snaps to the closest tick mark when the user moves the
knob.

public void setValue(int value)

Sets this slider’s current value.

JTabbedPane (javax.swing)
A public class, derived from JComponent and implementing Accessible, Serializable, and
SwingConstants, that represents a GUI container that allows the user to switch between a group of
components by clicking on a tab.

variables and constructs

public static final int SCROLL_TAB_LAYOUT

Specifies a tab layout that provides a scrollable region of tabs when all tabs won’t fit in a single run.
public static final int WRAP_TAB_LAYOUT

Specifies a tab layout that wraps tabs in multiple rows when all tabs won’t fit in a single run.

constructors

public JTabbedPane()

public JTabbedPane(int tabPlacement)

public JTabbedPane(int tabPlacement, int tabLayoutPolicy)

Creates a tabbed pane with the specified tab placement and tab layout policy. The tab placement is
specified using SwingConstants.

methods

public Component add(String title, Component comp)

Adds the specified component to a tab with the specified title.
public int getTabCount()

Returns the number of tabs in this tabbed pane.
public Color getBackgroundAt(int index)

public void setBackgroundAt(int index, Color color)

public Color getForegroundAt(int index)

public void setForegroundAt(int index, Color color)

Gets or sets the background or foreground color of the tab at the specified index.

858 APPENDIX M the java class library

JTextArea (javax.swing)
A public class, derived from JTextComponent, that represents a multi-line area for displaying or edit-
ing text.

constructors

public JTextArea()

public JTextArea(int rows, int columns)

public JTextArea(String text)

public JTextArea(String text, int rows, int columns)

Creates a text area with the specified initial text and an initial size goverened by the specified num-
ber of rows and columns.

methods

public int getColumns()

public void setColumns(int columns)

public int getRows()

public void setRows(int rows)

Gets or sets the number of rows or columns for this text area.
public int getLineCount()

Returns the number of lines cotained in this text area.
public boolean getLineWrap()

public void setLineWrap(boolean flag)

Gets or sets the property that determines if lines are wrapped in this text area.
public boolean getWrapStyleWord()

public void setWrapStyleWord(boolean flag)

Gets or sets the property that determines if lines are wrapped by words or characters (if they are
wrapped at all).

public void append(String str)

Appends the specified string to the end of the document in this text area.
public void insert(String str, int position)

Inserts the specified string into this text area’s document at the specified position.
public void setFont(Font font)

Sets the font for this text area.

APPENDIX M the java class library 859

JTextField (javax.swing)
A public class, derived from JTextComponent and implementing SwingConstants, that represents a
single line area for displaying or editing text (often used as an input field).

constructors

public JTextField()

public JTextField(int columns)

public JTextField(String text)

public JTextField(String text, int columns)

Creates a text field with the specified initial text and an initial size goverened by the specified num-
ber of columns.

methods

public void addActionListener(ActionListener listener)

Adds an action listener to this text field.
public int getColumns()

public void setColumns(int columns)

Gets or sets the number of columns for this text field.
public int getHorizontalAlignment()

public void setHorizontalAlignment(int alignment)

Gets or sets the horizontal alignment for this text field.
public void setFont(Font font)

Sets the font for this text field.

JToggleButton (javax.swing)
A public class, derived from AbstractButton and implementing Accessible, that represents a two-
state button.

constructors

public JToggleButton()

public JToggleButton(String text)

public JToggleButton(String text, boolean selected)

public JToggleButton(Icon icon)

public JToggleButton(Icon icon, boolean selected)

860 APPENDIX M the java class library

public JToggleButton(String text, Icon icon)

public JToggleButton(String text, Icon icon, boolean selected)

Creates a toggle button with the specified string, icon, and selection state.

JToolTip (javax.swing)
A public class, derived from JComponent and implementing Accessible, that represents a text tip
that is displayed when the mouse cursor rests momentarily over a GUI component.

constructors

public JToolTip()

Creates a tool tip.

methods

public JComponent getComponent()

public void setComponent(JComponent comp)

Gets or sets the component to which this tool tip applies.
public String getTipText()

public void setTipText(String text)

Gets or sets the text shown when this tool tip is displayed.

KeyAdapter (java.awt.event)
A public abstract class, derived from Object and implementing KeyListener, that permits derived
classes to override the predefined no-op keyboard events.

constructors

public KeyAdapter()

Creates a new instance of a KeyAdapter.

methods

public void keyPressed(KeyEvent event)

public void keyReleased(KeyEvent event)

public void keyTyped(KeyEvent event)

Empty methods that should be overridden in order to implement event handling for keyboard
events.

APPENDIX M the java class library 861

KeyEvent (java.awt.event)
A public class, derived from InputEvent, that represents an AWT keyboard event.

variables and constructs

public static final int VK_0

public static final int VK_1

public static final int VK_2

public static final int VK_3

public static final int VK_4

public static final int VK_5

public static final int VK_6

public static final int VK_7

public static final int VK_8

public static final int VK_9

Constant values that represent the keyboard keys 0–9.
public static final int KEY_FIRST

public static final int KEY_LAST

Constant values that represent the index of the first and last key event ids.
public static final int KEY_PRESSED

public static final int KEY_RELEASED

public static final int KEY_TYPED

Constant values that represent the ids of a key being pressed, released, or typed.
public static final char CHAR_UNDEFINED

A constant value that represents an event of a key press or release that does not correspond to a
Unicode character.

public static final int VK_LEFT

public static final int VK_RIGHT

public static final int VK_UP

public static final int VK_DOWN

public static final int VK_HOME

public static final int VK_END

public static final int VK_PAGE_UP

public static final int VK_PAGE_DOWN

Constant values that represent various keyboard directional keys.
public static final int VK_INSERT

public static final int VK_DELETE

Constant values that represent various keyboard editing control keys.

862 APPENDIX M the java class library

public static final int VK_NUMPAD0

public static final int VK_NUMPAD1

public static final int VK_NUMPAD2

public static final int VK_NUMPAD3

public static final int VK_NUMPAD4

public static final int VK_NUMPAD5

public static final int VK_NUMPAD6

public static final int VK_NUMPAD7

public static final int VK_NUMPAD8

public static final int VK_NUMPAD9

public static final int VK_ADD

public static final int VK_SUBTRACT

public static final int VK_MULTIPLY

public static final int VK_DIVIDE

public static final int VK_ENTER

public static final int VK_DECIMAL

Constant values that represent various keyboard number pad keys.
public static final int VK_PERIOD

public static final int VK_EQUALS

public static final int VK_OPEN_BRACKET

public static final int VK_CLOSE_BRACKET

public static final int VK_BACK_SLASH

public static final int VK_SLASH

public static final int VK_COMMA

public static final int VK_SEMICOLON

public static final int VK_SPACE

public static final int VK_BACK_SPACE

public static final int VK_QUOTE

public static final int VK_BACK_QUOTE

public static final int VK_TAB

public static final int VK_SLASH

Constant values that represent various keyboard character keys.
public static final int VK_PAUSE

public static final int VK_PRINTSCREEN

public static final int VK_SHIFT

public static final int VK_HELP

public static final int VK_CONTROL

APPENDIX M the java class library 863

public static final int VK_ALT

public static final int VK_ESCAPE

public static final int VK_META

public static final int VK_ACCEPT

public static final int VK_CANCEL

public static final int VK_CLEAR

public static final int VK_CONVERT

public static final int VK_NONCONVERT

public static final int VK_MODECHANGE

public static final int VK_SEPARATER

public static final int VK_KANA

public static final int VK_KANJI

public static final int VK_FINAL

Constant values that represent various keyboard command and control keys.
public static final int VK_UNDEFINED

A constant value for KEY_TYPED events for which there is no defined key value.
public static final int VK_F1

public static final int VK_F2

public static final int VK_F3

public static final int VK_F4

public static final int VK_F5

public static final int VK_F6

public static final int VK_F7

public static final int VK_F8

public static final int VK_F9

public static final int VK_F10

public static final int VK_F11

public static final int VK_F12

Constant values that represent the keyboard keys F1–F12.
public static final int VK_CAPS_LOCK

public static final int VK_NUM_LOCK

public static final int VK_SCROLL_LOCK

Constant values that represent various keyboard control keys.
public static final int VK_A

public static final int VK_B

public static final int VK_C

public static final int VK_D

864 APPENDIX M the java class library

public static final int VK_E

public static final int VK_F

public static final int VK_G

public static final int VK_H

public static final int VK_I

public static final int VK_J

public static final int VK_K

public static final int VK_L

public static final int VK_M

public static final int VK_N

public static final int VK_O

public static final int VK_P

public static final int VK_Q

public static final int VK_R

public static final int VK_S

public static final int VK_T

public static final int VK_U

public static final int VK_V

public static final int VK_W

public static final int VK_X

public static final int VK_Y

public static final int VK_Z

Constant values that represent the keyboard keys A–Z.

constructors

public KeyEvent(Component src, int id, long when, int modifiers, int keyCode)

public KeyEvent(Component src, int id, long when, int modifiers, int keyCode,

char keyChar)

Creates a new instance of a KeyEvent from the specified source, having a specific type (id), time
stamp, modifiers, key code, and/or key character.

methods

public char getKeyChar()

public void setKeyChar(char character)

Returns or sets the character associated with this KeyEvent. For events that have no corresponding
character, a CHAR_UNDEFINED is returned.

public int getKeyCode()

APPENDIX M the java class library 865

public void setKeyCode(int code)

Returns or sets the code associated with this KeyEvent. For events that have no corresponding
code, a VK_UNDEFINED is returned.

public static String getKeyModifiersText(int mods)

public static String getKeyText(int keyCode)

Returns a string representation of the KeyEvent modifiers key code (i.e., “Meta+Shift” or “F1”).
public boolean isActionKey()

Returns a true value if this event is from an action key.
public String paramString()

Returns a string representation of the parameters of this event.
public void setModifiers(int mods)

Sets the key event modifiers for this event.

Locale (java.util)
A public class, derived from Object and implementing Serializable and Cloneable, that repre-
sents geographic-specific or political-specific information.

variables and constructs

public static final Locale CANADA

public static final Locale CANADA_FRENCH

public static final Locale CHINA

public static final Locale FRANCE

public static final Locale GERMANY

public static final Locale ITALY

public static final Locale JAPAN

public static final Locale KOREA

public static final Locale PRC

public static final Locale TAIWAN

public static final Locale UK

public static final Locale US

Constant values that represent locales based on countries.
public static final Locale CHINESE

public static final Locale ENGLISH

public static final Locale FRENCH

public static final Locale GERMAN

public static final Locale ITALIAN

866 APPENDIX M the java class library

public static final Locale JAPANESE

public static final Locale KOREAN

public static final Locale SIMPLIFIED_CHINESE

public static final Locale TRADITIONAL_CHINESE

Constant values that represent locales based on languages.

constructors

public Locale(String lang, String country)

public Locale(String lang, String country, String var)

Creates a new locale from the specified two character ISO codes for a language and country. A com-
puter and browser variant of a locale can also be included. These usually take the form of WIN for
Windows or MAC for Macintosh.

methods

public Object clone()

Returns a copy of this locale.
public boolean equals(Object arg)

Returns a true value if this locale is equal to arg.
public String getCountry()

public String getLanguage()

public String getVariant()

Returns the character code for the name of this locale’s country, language or variant.
public static synchronized Locale getDefault()

public static synchronized void setDefault(Locale locale)

Returns or sets the default locale.
public final String getDisplayCountry()

public String getDisplayCountry(Locale displaylocale)

Returns the display version of the country name for this locale in either the specified or default
locales.

public final String getDisplayLanguage()

public String getDisplayLanguage(Locale displaylocale)

Returns the display version of the language name for this locale in either the specified or default
locales.

public final String getDisplayName()

public String getDisplayName(Locale displaylocale)

Returns the display version of the name for this locale in either the specified or default locales.
public final String getDisplayVariant()

APPENDIX M the java class library 867

public String getDisplayVariant(Locale displaylocale)

Returns the display version of the variant for this locale in either the specified or default locales.
public String getISO3Country() throws MissingResourceException

public String getISO3Language() throws MissingResourceException

Returns the three-character ISO abbreviation for the country or language for this locale.
hashCode()

Returns the hash code for this locale.
toString()

Returns a string representation of this locale.

Long (java.lang)
A public final class, derived from Number, that contains long integer math operations, constants,
methods to compute minimum and maximum numbers, and string manipulation routines related to
the primitive long type.

variables and constructs

public final static long MAX_VALUE

public final static long MIN_VALUE

Constant values that contain the maximum possible value (9223372036854775807L) or minimum
possible value (29223372036854775808L) of a long in Java.

public final static Class TYPE

The Integer constant value of the integer type class.

constructors

public Long(long num)

public Long(String num) throws NumberFormatException

Creates an instance of the Long class from the parameter num.

methods

public byte byteValue()

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public short shortValue()

Returns the value of this Long as a Java primitive type.

868 APPENDIX M the java class library

public boolean equals(Object arg)

Returns the result of the equality comparison between this Long and the parameter arg.
public static Long getLong(String prop)

public static Long getLong(String prop, long num)

public static Long getLong(String prop, long num)

Returns a Long representation of the system property named in prop. If there is no property corre-
sponding to prop, or the format of its value is incorrect, then the default num is returned.

public int hashCode()

Returns a hash code for this Long.
public static Long parseLong(String str) throws NumberFormatException

public static Long parseLong(String str, int base) throws NumberFormatException

Evaluates the string str and returns the long equivalent in radix base.
public static String toBinaryString(long num)

public static String toHexString(long num)

public static String toOctalString(long num)

Returns the string representation of parameter num in base 2 (binary), 8 (octal), or 16 (hexadeci-
mal).

public String toString()

public static String toString(long num)

public static String toString(long num, int base)

Returns the string representation of this long or num in base 10 (decimal). The radix of the returned
number can also be specified in base.

public static Long valueOf(String str) throws NumberFormatException

public static Long valueOf(String str, int base) throws NumberFormatException

Returns a Long initialized to the value of str in radix base.

Math (java.lang)
A public final class, derived from Object, that contains integer and floating point constants, and meth-
ods to perform various math operations, compute minimum and maximum numbers, and generate
random numbers.

variables and constructs

public final static double E

public final static double PI

Constant values that contain the natural base of logarithms (2.7182818284590452354) and the
ratio of the circumference of a circle to its diameter (3.14159265358979323846).

APPENDIX M the java class library 869

methods

public static double abs(double num)

public static float abs(float num)

public static int abs(int num)

public static long abs(long num)

Returns the absolute value of the specified parameter.
public static double acos(double num)

public static double asin(double num)

public static double atan(double num)

Returns the arc cosine, arc sine, or arc tangent of parameter num as a double.
public static double atan2(double x, double y)

Returns the component e of the polar coordinate {r,e} that corresponds to the cartesian coordinate
<x, y>.

public static double ceil(double num)

Returns the smallest integer value that is not less than the argument num.
public static double cos(double angle)

public static double sin(double angle)

public static double tan(double angle)

Returns the cosine, sine, or tangent of parameter angle measured in radians.
public static double exp(double num)

Returns e to the num, where e is the base of natural logarithms.
public static double floor(double num)

Returns a double that is the largest integer value that is not greater than the parameter num.
public static double IEEEremainder(double arg1, double arg2)

Returns the mathematical remainder between arg1 and arg2 as defined by IEEE 754.
public static double log(double num) throws ArithmeticException

Returns the natural logarithm of parameter num.
public static double max(double num1, double num2)

public static float max(float num1, float num2)

public static int max(int num1, int num2)

public static long max(long num1, long num2)

Returns the larger of parameters num1 and num2.
public static double min(double num1, double num2)

public static float min(float num1, float num2)

public static int min(int num1, int num2)

public static long min(long num1, long num2)

Returns the minimum value of parameters num1 and num2.

870 APPENDIX M the java class library

public static double pow(double num1, double num2) throws ArithmeticException

Returns the result of num1 to num2.
public static double random()

Returns a random number between 0.0 and 1.0.
public static double rint(double num)

Returns the closest integer to parameter num.
public static long round(double num)

public static int round(float num)

Returns the closest long or int to parameter num.
public static double sqrt(double num) throws ArithmeticException

Returns the square root of parameter num.

MessageFormat (java.text)
A public class, derived from Format, that is used to build formatted message strings.

constructors

public MessageFormat(String str)

Creates a new instance of a MessageFormat from the specified string pattern.

methods

public void applyPattern(String str)

public String toPattern()

Sets and returns the pattern for this MessageFormat.
public Object clone()

Returns a copy of this MessageFormat.
public boolean equals(Object arg)

Returns a true value if this MessageFormat is equal to arg.
public final StringBuffer format(Object src, StringBuffer dest, FieldPosition

ignore)

public final StringBuffer format(Object[] src, StringBuffer dest, FieldPosition

ignore)

Formats the specified source object with this MessageFormat, placing the result in dest. This
method returns the value of the destination buffer.

public static String format(String str, Object[] args)

Formats the given string applying specified arguments. This method allows for message formatting
with the creation of a MessageFormat.

public Format[] getFormats()

APPENDIX M the java class library 871

public void setFormats(Format[] newFormats)

Returns and sets the formats for this MessageFormat.
public Locale getLocale()

public void setLocale(Locale locale)

Returns and sets the locale for this MessageFormat.
public int hashCode()

Returns the hash code for this MessageFormat.
public Object[] parse(String src) throws ParseException

public Object[] parse(String src, ParsePosition pos)

Parses the string source (starting at position pos, or 0 by default), returning its objects.
public Object parseObject(String src, ParsePosition pos)

Parses the string source (starting at position pos, or 0 by default), returning one object.
public void setFormat(int var, Format fmt)

Sets an individual format at index var.

MouseAdapter (java.awt.event)
A public abstract class, derived from Object and implementing MouseListener, that permits derived
classes to override the predefined no-op mouse events.

constructors

public MouseAdapter()

Creates a new instance of a MouseAdapter.

methods

public void mouseClicked(MouseEvent event)

public void mouseEntered(MouseEvent event)

public void mouseExited(MouseEvent event)

public void mousePressed(MouseEvent event)

public void mouseReleased(MouseEvent event)

Empty methods which should be overridden in order to implement event handling for mouse
events.

MouseEvent (java.awt.event)
A public class, derived from InputEvent, that represents events triggered by the mouse.

872 APPENDIX M the java class library

variables and constructs

public static final int MOUSE_CLICKED

public static final int MOUSE_DRAGGED

public static final int MOUSE_ENTERED

public static final int MOUSE_EXITED

public static final int MOUSE_MOVED

public static final int MOUSE_PRESSED

public static final int MOUSE_RELEASED

Constant variables that represent a variety of mouse events.
public static final int MOUSE_FIRST

public static final int MOUSE_LAST

Constant values that represent the index of the first and last mouse event ids.

constructors

public MouseEvent(Component src, int type, long timestamp, int mods, int x, int

y, int clickCount, boolean popupTrigger)

Creates a new instance of a MouseEvent from a given source, with a specified type, timestamp, key-
board modifiers, x and y locations, number of clicks and a state value, if this event triggers a popup
menu.

methods

public int getClickCount()

Returns the number of mouse clicks in this event.
public Point getPoint()

Returns the point location of this event, relative to the source component’s space.
public int getX()

public int getY()

Returns the x or y location of this event, relative to the source component’s space.
public boolean isPopupTrigger()

Returns a true value if this event is a trigger for popup-menus.
public String paramString()

Returns a string representation of the parameters of this MouseEvent.
public synchronized void translatePoint(int xoffset, int yoffset)

Offsets the x and y locations of this event by the specified amounts.

APPENDIX M the java class library 873

MouseMotionAdapter (java.awt.event)
A public abstract class, derived from Object and implementing MouseMotionListener, that permits
a derived class to override the predefined no-op mouse motion events.

constructors

public MouseMotionAdapter()

Creates a new instance of a MouseMotionAdapter.

methods

public void mouseDragged(MouseEvent event)

public void mouseMoved(MouseEvent event)

Empty methods that should be overridden in order to implement event handling for mouse motion
events.

Number (java.lang)
A public abstract class, derived from Object and implementing Serializable, that is the parent class
to the wrapper classes Byte, Double, Integer, Float, Long and Short.

constructors

public Number()

Creates a new instance of a Number.

methods

public byte byteValue()

public abstract double doubleValue()

public abstract float floatValue()

public abstract int intValue()

public abstract long longValue()

public short shortValue()

Returns the value of this Number as a Java primitive type.

NumberFormat (java.text)
A public abstract class, derived from Format and implementing Cloneable, that is used to convert
number objects to locale-specific strings, and vice versa.

874 APPENDIX M the java class library

variables and constructs

public static final int FRACTION_FIELD

public static final int INTEGER_FIELD

Constant values that indicate field locations in a NumberFormat.

constructors

public NumberFormat()

Creates a new instance of a NumberFormat.

methods

public Object clone()

Returns a copy of this NumberFormat.
public boolean equals(Object arg)

Returns a true value if this NumberFormat is equal to arg.
public final String format(double num)

public final String format(long num)

Formats the specified Java primitive type according to this NumberFormat, returning a string.
public abstract StringBuffer format(double num, StringBuffer dest,FieldPosition

pos)

public abstract StringBuffer format(long num, StringBuffer dest, FieldPosition

pos)

public final StringBuffer format(Object num, StringBuffer dest, FieldPosition

pos)

Formats the specified Java primitive type (or object) starting at pos, according to this
NumberFormat, placing the resulting string in the specified destination buffer. This method returns
the value of the string buffer.

public static Locale[] getAvailableLocales()

Returns the available locales.
public static final NumberFormat getCurrencyInstance()

public static NumberFormat getCurrencyInstance(Locale locale)

Returns the NumberFormat for currency for the default or specified locale.
public static final NumberFormat getInstance()

public static NumberFormat getInstance(Locale locale)

Returns the default number format for the default or specified locale.
public int getMaximumFractionDigits()

public void setMaximumFractionDigits(int val)

Returns or sets the maximum number of fractional digits allowed in this NumberFormat.
public int getMaximumIntegerDigits()

APPENDIX M the java class library 875

public void setMaximumIntegerDigits(int val)

Returns or sets the maximum number of integer digits allowed in this NumberFormat.
public int getMinimumFractionDigits()

public void setMinimumFractionDigits(int val)

Returns or sets the minimum number of fractional digits allowed in this NumberFormat.
public int getMinimumIntegerDigits()

public void setMinimumIntegerDigits(int val)

Returns or sets the minimum number of integer digits allowed in this NumberFormat.
public static final NumberFormat getNumberInstance()

public static NumberFormat getNumberInstance(Locale locale)

Returns the NumberFormat for numbers for the default or specified locale.
public static final NumberFormat getPercentInstance()

public static NumberFormat getPercentInstance(Locale locale)

Returns the NumberFormat for percentages for the default or specified locale.
public int hashCode()

Returns the hash code for this NumberFormat.
public boolean isGroupingUsed()

public void setGroupingUsed(boolean toggle)

Returns or sets the toggle flag for the use of the grouping indicator by this NumberFormat.
public boolean isParseIntegerOnly()

public void setParseIntegerOnly(boolean toggle)

Returns or sets the toggle flag for the use of parsing numbers as integers only by this
NumberFormat.

public Number parse(String str) throws ParseException

Parses the specified string as a number.
public abstract Number parse(String str, ParsePosition pos)

public final Object parseObject(String str, ParsePosition pos)

Parses the specified string as a long (if possible) or double, starting a position pos. Returns a num-
ber or an object.

Object (java.lang)
A public class that is the root of the hierarchy tree for all classes in Java.

constructors

public Object()

Creates a new instance of the object class.

876 APPENDIX M the java class library

methods

protected Object clone() throws OutOfMemoryError, CloneNotSupportedException

Returns an exact copy of the current object.
public boolean equals(Object arg)

Returns a true value if the current object is equal to arg.
protected void finalize() throws Throwable

The finalize method contains code that is called as the object is being destroyed.
public final Class getClass()

Returns the class of the current object.
public int hashCode()

Returns a hash code for the current object.
public final void notify() throws IllegalMonitorStateException

public final void notifyAll() throws IllegalMonitorStateException

Informs a paused thread that it may resume execution. notifyAll informs all paused threads.
public String toString()

Returns a string representation of the current object.
public final void wait() throws IllegalMonitorStateException,

InterruptedException

public final void wait(long msec) throws IllegalMonitorStateException,

InterruptedException

public final void wait(long msec, int nsec) throws IllegalMonitorStateException,

InterruptedException, IllegalArgumentException)

Causes a thread to suspend execution for msec milliseconds and nsec nanoseconds. The wait()
method (without parameters) causes a thread to suspend execution until further notice.

ParsePosition (java.text)
A public class, derived from Object, that is used to track the position of the index during parsing. This
class is generally used by the Format class (and its subclasses).

constructors

public ParsePosition(int index)

Creates a new instance of a ParsePosition from the specified index.

methods

public int getIndex()

public void setIndex(int num)

Returns or sets the parse position.

APPENDIX M the java class library 877

Point (java.awt)
A public class, derived from Object and implementing Serializable, that defines and manipulates
a location on a two-dimensional coordinate system.

variables and constructs

public int x

public int y

The x and y locations of this point.

constructors

public Point()

public Point(Point pt)

public Point(int x, int y)

Creates a new instance of a Point from the specified coordinates, the specified point, or using <0,
0> by default.

methods

public boolean equals(Object arg)

Returns a true value if this point is identical to arg.
public Point getLocation()

public void move(int x, int y)

public void setLocation(Point pt)

public void setLocation(int x, int y)

Returns or relocates the position of this point.
public int hashCode()

Returns the hash code of this point.
public String toString()

Returns a string representation of this point.
public void translate(int xoffset, int yoffset)

Relocates this point to <x+xoffset, y+yoffset>.

Polygon (java.awt)
A public class, derived from Object and implementing Shape and Serializable, that maintains a
list of points that define a polygon shape.

878 APPENDIX M the java class library

variables and constructs

protected Rectangle bounds

The bounds of this polygon.
public int npoints

The total number of points of this polygon.
public int xpoints[]

public int ypoints[]

The arrays of x and y locations for the points of this polygon.

constructors

public Polygon()

public Polygon(int[] x, int[] y, int np)

Creates a new instance of a polygon, initially defined by the arrays of x and y locations <x, y> and
comprised of np points. The default constructor creates a new polygon that contains no points.

methods

public void addPoint(int newx, int newy)

Adds the point located at <newx, newy> to this polygon.
public boolean contains(int x, int y)

public boolean contains(Point pt)

Returns a true value if this polygon contains the specified point.
public Rectangle getBounds()

Returns the bonds of this polygon.
public void translate(int xoffset, int yoffset)

Relocates all of the x and y points of this polygon by xoffset and yoffset.

PrintStream (java.io)
A public class, derived from FilterOutputStream, that provides methods to print data types in a for-
mat other than byte-based.

constructors

public PrintStream(OutputStream out)

public PrintStream(OutputStream out, boolean autoflush)

Creates a new instance of a PrintStream on out. If the autoflush value is set to true, then the
output buffer is flushed at every occurrence of a newline.

APPENDIX M the java class library 879

methods

public boolean checkError()

Flushes this print stream’s buffer and returns a true value if an error occurred.
public void close()

Closes this print stream.
public void flush()

Flushes this print stream’s buffer.
public void print(boolean b)

public void print(char c)

public void print(char[] s)

public void print(double d)

public void print(float f)

public void print(int i)

public void print(long l)

public void print(Object obj)

public void print(String s)

public void println()

public void println(boolean b)

public void println(char c)

public void println(char[] s)

public void println(double d)

public void println(float f)

public void println(int i)

public void println(long l)

public void println(Object obj)

public void println(String s)

Prints the specified Java primitive type, Object, or blank line to this print stream. When using a
character, only the lower byte is printed.

public void write(int b)

public void write(byte[] b, int off, int len)

Writes a byte or len bytes from the array b, starting at index off to this print stream.

Random (java.util)
A public class, derived from Object and implementing Serializable, that produces sequences of
pseudo-random numbers.

880 APPENDIX M the java class library

constructors

public Random()

public Random(long rnd)

Creates a new instance of a random class using the value of rnd as the random number seed. When
the default constructor is used, the current time in milliseconds is the seed.

methods

protected int next(int b)

Returns the next random number (from the specified number of bits).
public void nextBytes(byte[] b)

Generates an array of random bytes as defined by b[].
public double nextDouble()

public float nextFloat()

Returns a random number between 0.0 and 1.0 in the specified primitive type.
public int nextInt()

public long nextLong()

Returns a random integer value from all possible int or long values (positive and negative).
public double nextGaussian()

Returns a Gaussian double random number with a mean value of 0.0 and a standard deviation of
1.0.

public void setSeed(long rnd)

Sets the seeds for this random number generator to rnd.

Rectangle (java.awt)
A public class, derived from Object and implementing Shape and Serializable, that represents a
rectangular shape that is described by an x and y location, and a width and height.

variables and constructs

public int height

public int width

The height and width of this rectangle.
public int x

public int y

The x and y locations of the upper-left corner of this rectangle.

APPENDIX M the java class library 881

constructors

public Rectangle()

public Rectangle(Dimension dim)

public Rectangle(Point pt)

Creates a new instance of a Rectangle with an initial location of the corresponding values of pt
or dim, with a height of 0 and width of 0. If neither pt or dim are specified, then the initial loca-
tion is <0, 0> and the height and width are set to 0.

public Rectangle(Rectangle rect)

public Rectangle(Point pt, Dimension dim)

Creates a new instance of a Rectangle with initial location and size values the same as correspond-
ing values in rect, or with an initial location of the corresponding values of pt, and with a width
and height corresponding to the values of dim.

public Rectangle(int width, int height)

public Rectangle(int x, int y, int width, int height)

Creates a new instance of a Rectangle with an initial location of <x, y> (or <0, 0> by default),
and with a height and width.

methods

public void add(int x, int y)

public void add(Point point)

public void add(Rectangle rect)

Adds the specified point in space, defined by coordinates, a point, or the initial location of the spec-
ified Rectangle, to this Rectangle. This method may expand the Rectangle (if the point lies out-
side) or reduce the Rectangle (if the point lies inside).

public boolean contains(int x, int y)

public boolean contains(Point pt)

Returns a true value if this Rectangle contains the specified point.
public boolean equals(Object rect2)

Returns a true value if this Rectangle and the rectangle rect2 are identical.
public Rectangle getBounds()

Returns the bounds of this Rectangle.
public Point getLocation()

public Dimension getSize()

Returns the location or size of this Rectangle.
public void grow(int width, int height)

Increases this Rectangle by height and width pixels.
public int hashCode()

Returns the hash code for this Rectangle.

882 APPENDIX M the java class library

public Rectangle intersection(Rectangle rect2)

Returns the intersection of this Rectangle and the specified rectangle (rect2).
public boolean intersects(Rectangle rect2)

Returns a true value if this Rectangle intersects rect2.
public boolean isEmpty()

Returns a true value if this Rectangle is empty (height and width <= 0).
public void setBounds(int x, int y, int width, int height)

public void setBounds(Rectangle rect)

Resets the x and y locations, width and height of this rectangle to the respective values of rect
or the specified values of x, y, width, and height.

public void setLocation(int x, int y)

public void setLocation(Point pt)

Resets the location of this Rectangle to the specified point.
public void setSize(Dimension dim)

public void setSize(int width, int height)

Resets the size to width and height, or the corresponding values of dim.
public String toString()

Returns a string representation of this Rectangle.
public void translate(int width, int height)

Adds the specified width and height to this Rectangle’s width and height values.
public Rectangle union(Rectangle rect2)

Returns the union of this Rectangle and rect2.

Short (java.lang)
A public class, derived from Number, that contains integer math operations, constants, methods to
compute minimum and maximum numbers, and string manipulation routines related to the primitive
short type.

variables and constructs

public final static short MAX_VALUE

public final static short MIN_VALUE

A constant value that contains the maximum possible value (32767) or minimum possible value
(–32768) of an integer in Java.

public final static Class TYPE

The Short constant value of the short type class.

APPENDIX M the java class library 883

constructors

public Short(short num)

public Short(String num) throws NumberFormatException

Creates a new instance of a Short from the specified num.

methods

public byte byteValue()

public double doubleValue()

public float floatValue()

public int intValue()

public long longValue()

public short shortValue()

Returns the value of this Short as a Java primitive type.
public static Short decode(String str) throws NumberFormatException

Returns the short representation of the coded argument (str). The argument can be coded in deci-
mal, hexadecimal or octal formats.

public boolean equals(Object arg)

Returns a true value if this Short is equal to the parameter arg.
public int hashCode()

Returns the hash code for this Short.
public static short parseShort(String str) throws NumberFormatException

public static short parseShort(String str, int base) throws

NumberFormatException

Returns the string argument (str) as a short in base 10. The radix of the returned number can be
specified in base.

public static String toString(short num)

public String toString()

Returns a string representation of this Short or num.
public static Short valueOf(String str) throws NumberFormatException

public static Short valueOf(String str, int base) throws NumberFormatException

Returns an instance of a new Short object initialized to the value specified in str. The radix of the
returned number can be specified in base.

SimpleDateFormat (java.text)
A public class, derived from DateFormat, that allows for the parsing of dates to locale-based strings,
and vice versa.

884 APPENDIX M the java class library

constructors

public SimpleDateFormat()

public SimpleDateFormat(String str)

public SimpleDateFormat(String str, Locale locale)

Creates a new instance of a SimpleDateFormat using the specified or default pattern and the spec-
ified or default locale.

public SimpleDateFormat(String str, DateFormatSymbols format)

Creates a new instance of a SimpleDateFormat using the specified pattern and format data.

methods

public void applyLocalizedPattern(String str)

public String toLocalizedPattern()

Sets or returns the locale-based string that describes this SimpleDateFormat.
public void applyPattern(String str)

public String toPattern()

Sets or returns the non-locale-based string that describes this SimpleDateFormat.
public Object clone()

Returns a copy of this SimpleDateFormat.
public boolean equals(Object arg)

Returns a true value if this SimpleDateFormat is equal to arg.
public StringBuffer format(Date date, StringBuffer dest, FieldPosition pos)

Formats the specified string, starting at field pos, placing the result in the specified destination
buffer. This method returns the value of the buffer.

public DateFormatSymbols getDateFormatSymbols()

public void setDateFormatSymbols(DateFormatSymbols symbols)

Returns or sets the date/time formatting symbols for this SimpleDateFormat.
public int hashCode()

Returns the hash code for this SimpleDateFormat.
public Date parse(String str, ParsePosition pos)

Parses the specified string, starting at position pos, and returns a Date object.

SimpleTimeZone (java.util)
A public class, derived from TimeZone, that represents a time zone in a Gregorian calendar.

constructors

public SimpleTimeZone(int offset, String id)

APPENDIX M the java class library 885

public SimpleTimeZone(int offset, String id, int stMonth, int

stNthDayWeekInMonth, int stDayOfWeek, int stTime, int endMonth, int

endNthDayWeekInMonth, int endDayOfWeek, int endTime)

Creates a new SimpleTimeZone from an offset from GMT and a time zone id. ID should be
obtained from the TimeZone.getAvailableIDs method. You can also define the starting and end-
ing times for daylight savings time. Each period has a starting and ending month (stMonth,
endMonth), day of the week in a month (stNthDayWeekInMonth, endNthDayWeekInMonth), day
of the week (stDayOfWeek, endDayOfWeek), and time (stTime, endTime).

methods

public Object clone()

Returns a copy of this SimpleTimeZone.
public boolean equals(Object arg)

Returns a true value if this SimpleTimeZone is equal to arg.
public int getOffset(int era, int year, int month, int day, int dayOfWeek, int

millisec)

Returns the offset from the Greenwich Mean Time (GMT), taking into account daylight savings
time.

public int getRawOffset()

public void setRawOffset(int millisec)

Returns or sets the offset from Greenwich Mean Time (GMT) for this SimpleTimeZone. These
methods do not take daylight savings time into account.

public synchronized int hashCode()

Returns the hash code for this SimpleTimeZone.
public boolean inDaylightTime(Date dt)

Returns a true value if the specified date falls within Daylight Savings Time.
public void setEndRule(int month, int dyWkInMo, int dyWk, int tm)

public void setStartRule(int month, int dyWkInMo, int dyWk, int tm)

Sets the starting and ending times for Daylight Savings Time for this SimpleTimeZone to a speci-
fied month, day of a week in a month, day of a week, and time (in milliseconds).

public void setStartYear(int year)

Sets the Daylight Savings starting year for this SimpleTimeZone.
public boolean useDaylightTime()

Returns a true value if this SimpleTimeZone uses Daylight Savings Time.

Stack (java.util)
A public class, derived from Vector, that represents a last-in-first-out stack.

886 APPENDIX M the java class library

constructors

public Stack()

Creates a new instance of an empty stack.

methods

public boolean empty()

Returns a true value if this stack contains no elements.
public Object peek() throws EmptyStackException

Returns the item on the top of the stack, but does not remove it.
public Object pop() throws EmptyStackException

public Object push(Object obj)

Returns and removes the item on the top of the stack (pop) or pushes a new item onto the stack
(push).

public int search(Object obj)

Returns the relative position of item obj from the top of the stack, or –1 if the item is not in this
stack.

String (java.lang)
A public final class, derived from Object and implementing Serializable, that contains methods for
creating and parsing strings. Because the contents of a string cannot be modified, many of the meth-
ods return a new string.

constructors

public String()

public String(byte[] arg)

public String(byte[] arg, int index, int count)

public String(byte[] arg, String code) throws UnsupportedEncodingException

public String(byte[] arg, int index, int count, String code) throws

UnsupportedEncodingException

Creates a new instance of the String class from the array arg. The parameter index indicates
which element of arg is the first character of the resulting string, and the parameter count is the
number of characters to add to the new string. The String() method creates a new string of no
characters. The characters are converted using code encoding format.

public String(char[] chars)

APPENDIX M the java class library 887

public String(char[] chars, int index, int count) throws

StringIndexOutOfBoundsException

Creates an instance of the String class from the array chars. The parameter index indicates
which element of chars is the first character of the resulting string, and the parameter count is the
number of characters to add to the new string.

public String(String str)

public String(StringBuffer str)

Creates an instance of the String class from the parameter str.

methods

public char charAt(int idx) throws StringIndexOutOfBoundsException

Returns the character at index idx in the current object. The first character of the source string is
at index 0.

public int compareTo(String str)

Compares the current object to str. If both strings are equal, 0 (zero) is returned. If the current
string is lexicographically less than the argument, an int less than zero is returned. If the current
string is lexicographically greater than the argument, an int greater than zero is returned.

public String concat(String source)

Returns the product of the concatenation of argument source to the end of the current object.
public static String copyValueOf(char[] arg)

public static String copyValueOf(char[] arg, int index, int count)

Returns a new String that contains the characters of arg, beginning at index index, and of length
count.

public boolean endsWith(String suff)

Returns true if the current object ends with the specified suffix.
public boolean equals(Object arg)

public boolean equalsIgnoreCase(String arg)

Returns true if the current object is equal to arg. arg must not be null, and must be of exact length
and content as the current object. equalsIgnoreCase disregards the case of the characters.

public byte[] getBytes()

public byte[] getBytes(String enc) throws UnsupportedEncodingException

Returns the contents of the current object in an array of bytes decoded with enc. When a decod-
ing format is not present, the platform default it used.

public void getChars(int start, int end, char[] dest, int destStart)

Copies the contents of the current object starting at index start and ending at end into the char-
acter array dest starting at index destStart.

public int hashCode()

Returns the hash code of the current object.

888 APPENDIX M the java class library

public int indexOf(char c)

public int indexOf(char c, int index)

Returns the index of the first occurrence of the character c in the current object, no less than index
(default of 0). Returns a –1 if there is no such occurrence.

public int indexOf(String str)

public int indexOf(String str, int index)

Returns the index of the first occurrence of the string str in the current object, no less than index
(default of 0). Returns a –1 if there is no such occurrence.

public String intern()

Creates a new canonical string with identical content to this string.
public int lastIndexOf(char c)

public int lastIndexOf(char c, int index)

Returns the index of the last occurrence of the character c in the current object, no less than index
(default of 0). Returns a –1 if there is no such occurrence.

public int lastIndexOf(String str)

public int lastIndexOf(String str, int index)

Returns the index of the last occurrence of the string str in the current object, no less than index
(default of 0). Returns a –1 if there is no such occurrence.

public int length()

Returns the integer length of the current object.
public boolean regionMatches(boolean case, int cindex, String str, int strindex,

int size)

public boolean regionMatches(int cindex, String str, int strindex, int size)

Returns a true result if the subregion of parameter str starting at index strindex and having
length size, is identical to a substring of the current object starting at index cindex and having the
same length. If case is true, then character case is ignored during the comparisons.

public String replace(char oldC, char newC)

Returns a new string with all occurrences of the oldC replaced with the newC.
public boolean startsWith(String str)

public boolean startsWith(String str, int index)

Returns a true if the current object starts with the string str at location index (default of 0).
public String substring(int startindex) throws StringIndexOutOfBoundsException

public String substring(int startindex, int lastindex) throws

StringIndexOutOfBoundsException

Returns the substring of the current object starting with startindex and ending with
lastindex-1 (or the last index of the string in the case of the first method).

public char[] toCharArray()

APPENDIX M the java class library 889

public String toString()

Returns the current object as an array of characters or a string. Is present due to the automatic use
of the toString method in output routines.

public String toLowerCase()

public String toLowerCase(Locale loc)

Returns the current object with each character in lower case, taking into account variations of the
specified locale (loc).

public String toUpperCase()

public String toUpperCase(Locale loc)

Returns the current object with each character in uppercase, taking into account variations of the
specified locale (loc).

public String trim()

Returns the current object with leading and trailing white space removed.
public static String valueOf(boolean arg)

public static String valueOf(char arg)

public static String valueOf(char[] arg)

public static String valueOf(char[] arg, int index, int size)

public static String valueOf(double arg)

public static String valueOf(float arg)

public static String valueOf(int arg)

public static String valueOf(long arg)

public static String valueOf(Object arg)

Returns a string representation of the parameter arg. A starting index and specified size are
permitted.

StringBuffer (java.lang)
A public class, derived from Object and implementing Serializable, that contains methods for cre-
ating, parsing and modifying string buffers. Unlike a String, the content and length of a
StringBuffer can be changed dynamically.

constructors

public StringBuffer()

public StringBuffer(int size) throws NegativeArraySizeException

Creates an instance of the StringBuffer class that is empty but has an initial capacity of size
characters (16 by default).

public StringBuffer(String arg)

Creates an instance of the StringBuffer class from the string arg.

890 APPENDIX M the java class library

methods

public StringBuffer append(boolean arg)

public StringBuffer append(char arg)

public StringBuffer append(char[] arg)

public StringBuffer append(char[] arg, int index, int size)

public StringBuffer append(double arg)

public StringBuffer append(float arg)

public StringBuffer append(int arg)

public StringBuffer append(long arg)

public StringBuffer append(Object arg)

public StringBuffer append(String arg)

Returns the current object with the String parameter arg appended to the end. A substring of a
character array can be appended by specifying an index and size.

public int capacity()

Returns the capacity of this StringBuffer.
public char charAt(int idx) throws StringIndexOutOfBoundsException

Returns the character at the specified index of this StringBuffer.
public void ensureCapacity(int min)

Sets the minimum capacity of this StringBuffer to be no less than min. The new capacity set by
this method may actually be greater than min.

public void getChars(int start, int end, char[] dest, int destindex) throws

StringIndexOutOfBoundsException

Copies the characters at index start to end from this StringBuffer to dest, starting at index
destindex.

public StringBuffer insert(int index, boolean arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, char arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, char[] arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, double arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, float arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, int arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, long arg) throws

StringIndexOutOfBoundsException

APPENDIX M the java class library 891

public StringBuffer insert(int index, Object arg) throws

StringIndexOutOfBoundsException

public StringBuffer insert(int index, String arg) throws

StringIndexOutOfBoundsException

Inserts the string representation of parameter arg into this StringBuffer at index index.
Characters to the right of the specified index of this StringBuffer are shifted to the right.

public int length()

Returns the length of this StringBuffer.
public StringBuffer reverse()

Returns the value of this StringBuffer with the order of the characters reversed.
public void setCharAt(int idx, char c)

Sets the character at the specified index to c.
public void setLength(int size) throws StringIndexOutOfBoundsException

Truncates this StringBuffer, if needed, to the new length of size.
public String toString()

Returns the String representation of this StringBuffer.

StringTokenizer (java.util)
A public class, derived from Object and implementing Enumeration, that manipulates string values
into tokens separated by delimiter characters.

constructors

public StringTokenizer(String arg)

public StringTokenizer(String arg, String delims)

public StringTokenizer(String arg, String delims, boolean tokens)

Creates a new instance of a StringTokenizer with the string initialized to arg, and utilizing the
specified delimiters or the defaults (“ \t\n\r”: a space, tab, newline, and carriage return). If
tokens is true, the delimiters are treated as words within the string and are subject to being
returned as tokens.

methods

public int countTokens()

Returns the number of tokens present in this string tokenizer.
public boolean hasMoreElements()

892 APPENDIX M the java class library

public boolean hasMoreTokens()

Returns a true value if there are more tokens to be returned by this string tokenizer.
hasMoreElements() is identical to hasMoreTokens() and is implemented to complete the imple-
mentation of the Enumerated interface.

public Object nextElement() throws NoSuchElementException

public String nextToken() throws NoSuchElementException

public String nextToken(String delims) throws NoSuchElementException

Returns the next token in the string. nextElement() is identical to nextToken() and is imple-
mented to complete the implementation of the Enumerated interface. New delimiters can be spec-
ified in the last method, and stay in effect until changed.

System (java.lang)
A public final class, derived from Object, that contains the standard input, output, and error streams,
as well as various system related methods.

variables and constructs

public static PrintStream err

public static InputStream in

public static PrintStream out

Constant values that are the standard error output stream (stderr), standard input stream (stdin),
and the standard output stream (stdout).

methods

public static void arraycopy(Object source, int srcindex, Object dest, int

destindex, int size) throws ArrayIndexOutOfBoundsException, ArrayStoreException

Copies a subarray of size objects from source, starting at index srcindex, to dest starting at
destindex.

public static long currentTimeMillis()

Returns the current system in milliseconds from midnight, January 1st, 1970 UTC.
public static void exit(int num) throws SecurityException

Exits the program with the status code of num.
public static void gc()

Executes the gc method of the Runtime class, which attempts to garbage collect any unused objects,
freeing system memory.

public static Properties getProperties() throws SecurityException

APPENDIX M the java class library 893

public static void setProperties(Properties newprops) throws SecurityException

Returns or sets the current system properties.
public static String getProperty(String name) throws SecurityException

public static String getProperty(String name, String default) throws

SecurityException

Returns the system property for name, or returns the value default as a default result if no such
name exists.

public static SecurityManager getSecurityManager()

public static void setSecurityManager(SecurityManager mgr) throws

SecurityException

Returns or sets the security manager for the current application. If no security manager has been
initialized, then a null value is returned by the get method.

public static int identityHashCode(Object arg)

Returns the hash code for the specified object. This will return the default hash code, in the event
that the object’s hashCode method has been overridden.

public static void load(String name) throws UnsatisfiedLinkError,

SecurityException

Loads name as a dynamic library.
public static void loadLibrary(String name) throws UnsatisfiedLinkError,

SecurityException

Loads name as a system library.
public static void runFinalization()

Requests that the Java Virtual Machine execute the finalize method on any outstanding objects.
public static void runFinalizersOnExit(boolean toggle)

Allows the execution of the finalizer methods for all objects, when toggle is true.
public static void setErr(PrintStream strm)

public static void setIn(InputStream strm)

public static void setOut(PrintStream strm)

Reassigns the error stream, input stream, or output stream to strm.

SystemColor (java.awt)
A public final class, derived from Color and implementing Serializable, that represents the current
window system color for the current system. If the user changes the window system colors for this sys-
tem and the window system can update the new color selection, these color values will change as well.

variables and constructs

public final static int ACTIVE_CAPTION

Constant index to the active caption color in the system color array.

894 APPENDIX M the java class library

public final static int ACTIVE_CAPTION_BORDER

public final static int ACTIVE_CAPTION_TEXT

Constant indices to the active caption border and text colors in the system color array.
public final static int CONTROL

Constant index to the control color in the system color array.
public final static int CONTROL_DK_SHADOW

public final static int CONTROL_SHADOW

Constant indices to the control shadow and control dark shadow colors in the system color array.
public final static int CONTROL_HIGHLIGHT

public final static int CONTROL_LT_HIGHLIGHT

Constant indices to the control highlight and light highlight colors in the system color array.
public final static int CONTROL_TEXT

Constant index to the control text color in the system color array.
public final static int DESKTOP

Constant index to the desktop color in the system color array.
public final static int INACTIVE_CAPTION

Constant index to the inactive caption color in the system color array.
public final static int INACTIVE_CAPTION_BORDER

public final static int INACTIVE_CAPTION_TEXT

Constant indices to the inactive caption border and text colors in the system color array.
public final static int INFO

Constant index to the information (help) text background color in the system color array.
public final static int INFO_TEXT

public final static int MENU_TEXT

Constant indices to the information (help) and menu text colors in the system color array.
public final static int NUM_COLORS

Constant value that holds the number of colors in the system color array.
public final static int SCROLLBAR

Constant index to the scrollbar background color in the system color array.
public final static int TEXT

Constant index to the background color of text components in the system color array.
public final static int TEXT_HIGHLIGHT

public final static int TEXT_HIGHLIGHT_TEXT

Constant indices to the background and text colors for highlighted text in the system color array.
public final static int TEXT_INACTIVE_TEXT

Constant index to the inactive text color in the system color array.
public final static int TEXT_TEXT

Constant index to the color of text components in the system color array.

APPENDIX M the java class library 895

public final static int WINDOW

Constant index to the background color of windows in the system color array.
public final static int WINDOW_BORDER

public final static int WINDOW_TEXT

Constant indices to the border and text colors of windows in the system color array.
public final static SystemColor activeCaption

The system’s background color for window border captions.
public final static SystemColor activeCaptionBorder

public final static SystemColor activeCaptionText

The system’s border and text colors for window border captions.
public final static SystemColor control

The system’s color for window control objects.
public final static SystemColor controlDkShadow

public final static SystemColor controlShadow

The system’s dark shadow and regular shadow colors for control objects.
public final static SystemColor controlHighlight

public final static SystemColor controlLtHighlight

The system’s highlight and light highlight colors for control objects.
public final static SystemColor controlText

The system’s text color for control objects.
public final static SystemColor desktop

The system’s color of the desktop background.
public final static SystemColor inactiveCaption

The system’s background color for inactive caption areas of window borders.
public final static SystemColor inactiveCaptionBorder

public final static SystemColor inactiveCaptionText

The system’s border and text colors for inactive caption areas of window borders.
public final static SystemColor info

The system’s background color for information (help) text.
public final static SystemColor infoText

The system’s text color for information (help) text.
public final static SystemColor menu

The system’s background color for menus.
public final static SystemColor menuText

The system’s text color for menus.
public final static SystemColor scrollbar

The system’s background color for scrollbars.

896 APPENDIX M the java class library

public final static SystemColor text

The system’s color for text components.
public final static SystemColor textHighlight

The system’s background color for highlighted text.
public final static SystemColor textHighlightText

public final static SystemColor textInactiveText

The system’s text color for highlighted and inactive text.
public final static SystemColor textText

The system’s text color for text components.
public final static SystemColor window

The system’s background color for windows.
public final static SystemColor windowBorder

public final static SystemColor windowText

The system’s border and text colors for windows.

methods

public int getRGB()

Returns the RGB values of this SystemColor’s symbolic color.
public String toString()

Returns a string representation of this SystemColor’s values.

Thread (java.lang)
A public class, derived from Object and implementing Runnable, that handles the implementation
and management of Java execution threads.

variables and constructs

public final static int MAX_PRIORITY

public final static int MIN_PRIORITY

public final static int NORM_PRIORITY

Constant values that contain the maximum (10), minimum (1), and normal (6) priority values a
thread can have.

constructors

public Thread()

Creates a new instance of a thread.

APPENDIX M the java class library 897

public Thread(Runnable arg)

Creates a new instance of a thread. arg specifies which object’s run method is invoked to start the
thread.

public Thread(String str)

public Thread(Runnable arg, String str)

Creates a new instance of a thread, named str. arg specifies which object’s run method is invoked
to start the thread.

public Thread(ThreadGroup tgrp, String str) throws SecurityException

public Thread(ThreadGroup tgrp, Runnable arg) throws SecurityException

public Thread(ThreadGroup tgrp, Runnable arg, String str) throws

SecurityException

Creates a new instance of a thread, named str and belonging to thread group tgrp. The arg
parameter specifies which object’s run method is invoked to start the thread.

methods

public static int activeCount()

Returns the number of active threads in this thread’s group.
public void checkAccess() throws SecurityException

Validates that the current executing thread has permission to modify this thread.
public static Thread currentThread()

Returns the currently executing thread.
public void destroy()

Destroys this thread.
public static void dumpStack()

Dumps a trace of the stack for the current thread.
public static int enumerate(Thread[] dest)

Copies each of the members of this thread’s group into the thread array dest.
public final String getName()

public final int getPriority()

public final ThreadGroup getThreadGroup()

Returns the name, priority, or thread group of this thread.
public void interrupt()

Interrupts this thread’s execution.
public static boolean interrupted()

Returns a true value if the current thread’s execution has been interrupted.
public final boolean isAlive()

public boolean isInterrupted()

Returns a true value if this thread’s execution is alive or has been interrupted.

898 APPENDIX M the java class library

public final boolean isDaemon()

Returns a true value if this thread is a daemon thread.
public final void join() throws InterruptedException

public final void join(long msec) throws InterruptedException

public final void join(long msec, int nsec) throws InterruptedException

Waits up to msec milliseconds and nsec nanoseconds for this thread to die. The join() method
waits forever for this thread to die.

public void run()

Method containing the main body of the executing thread code. Run methods can run concurrently
with other thread run methods.

public final void setDaemon(boolean flag) throws IllegalThreadStateException

Sets this thread as a daemon thread, if flag is true.
public final void setName(String str) throws SecurityException

public final void setPriority(int val) throws SecurityException

Sets the name of this thread to str or the priority to val.
public static void sleep(long msec) throws InterruptedException

public static void sleep(long msec, int nsec) throws InterruptedException

Causes the current thread to sleep for msec milliseconds and nsec nanoseconds.
public void start() throws IllegalThreadStateException

Start this thread’s execution, calling this thread’s run method.
public String toString()

Returns a string representation of this thread.
public static void yield()

Causes the currently executing thread to pause in execution, allowing other threads to run.

Throwable (java.lang)
A public class, derived from Object and implementing Serializable, that is the superclass of all of
the errors and exceptions thrown.

constructors

public Throwable()

public Throwable(String str)

Creates a new instance of a throwable object with the specified message (str) or none present.

methods

public Throwable fillInStackTrace()

Fills in the executable stack trace for this throwable object.

APPENDIX M the java class library 899

public String getLocalizedMessage()

Returns a locale specific description of this object. Locale specific messages should override this
method; otherwise, the same message that the getMessage method produces will be returned.

public String getMessage()

Returns the detail message for this throwable.
public void printStackTrace()

public void printStackTrace(PrintStream stream)

public void printStackTrace(PrintWriter stream)

Prints the stack trace for this throwable to the standard error stream or to the specified stream.
public String toString()

Returns a string representation of this throwable object.

Timer (javax.swing)
A public class, derived from Object and implementing Serializable, that fires an action event after
a specified delay. Often used to control animations.

constructors

public Timer(int delay, ActionListener listener)

Creates a timer that notifies the specified action listener every delay milliseconds.

methods

public void addActionListener(ActionListener listener)

Adds the specified action listener to this timer.
public int getDelay()

public void setDelay(int delay)

Gets or sets this timer’s delay (in milliseconds).
public void start()

public void stop()

Starts or stops this timer.
public boolean isRunning()

Returns true if this timer is currently running.

TimeZone (java.util)
A public abstract class, derived from Object and implementing Serializable and Cloneable, that
represents an amount of time offset from GMT that results in local time. Functionality is provided to
allow for Daylight Savings Time within a time zone.

900 APPENDIX M the java class library

methods

clone()

Returns a copy of this TimeZone.
public static synchronized String[] getAvailableIDs()

public static synchronized String[] getAvailableIDs(int offset)

Returns a list of all of the supported time zone ids, or only those for a specified time zone offset.
public static synchronized TimeZone getDefault()

public static synchronized void setDefault(TimeZone tz)

Returns or sets the default time zone.
public String getID()

Returns the id of this time zone.
public abstract int getOffset(int era, int year, int month, int day, int

dayOfWeek, int milliseconds)

Returns the offset from the Greenwich Mean Time (GMT), taking into account daylight savings
time.

public abstract int getRawOffset()

public abstract void setRawOffset(int millisec)

Returns or sets the offset from Greenwich Mean Time (GMT) for this SimpleTimeZone. These
methods do not take daylight savings time into account.

public static synchronized TimeZone getTimeZone(String id)

Returns the time zone corresponding to the specified id value.
public abstract boolean inDaylightTime(Date dt)

Returns a true result if the specified date falls within the Daylight Savings Time for this TimeZone.
public void setID(String id)

Sets the id value of this TimeZone.
public abstract boolean useDaylightTime()

Returns a true value if this TimeZone uses Daylight Savings Time.

URL (java.net)
A public final class, derived from Object and implementing Serializable, that represents a Web
Uniform Resource Locator (URL).

constructors

public URL(String arg) throws MalformedURLException

public URL(URL url, String type) throws MalformedURLException

Creates a URL instance from a string argument, or by parsing a type (http, gopher, ftp) and the
remaining base.

APPENDIX M the java class library 901

public URL(String proto, String source, int num, String doc) throws

MalformedURLException

public URL(String proto, String source, String doc) throws MalformedURLException

Creates a URL instance using a defined protocol (proto), source system, destination port num, and
document (doc).

methods

public boolean equals(Object obj)

Returns a true value if this URL is equal in all respects (protocol, source, port, and document) to
obj.

public final Object getContent() throws IOException

Returns the retrieved contents as an Object.
public String getFile()

public String getRef()

Returns the name of the file (document) or its anchor this URL will attempt to retrieve.
public String getHost()

public int getPort()

Returns the name of the host (source) or the port this URL will attempt to connect to.
public String getProtocol()

Returns the protocol this URL will use in retrieving the data.
public int hashCode()

Returns the hash code for this URL.
public URLConnection openConnection() throws IOException

public final InputStream openStream() throws IOException

Returns a connection to this URL and returns the connection or a stream.
public boolean sameFile(URL arg)

Returns a true value if this URL retrieves the same file as the arg URL.
protected void set(String proto, String source, int num, String doc, String

anchor)

Sets the protocol (proto), source, port num, file (doc) and reference (anchor) for this URL.
public static void setURLStreamHandlerFactory(URLStreamHandlerFactory fac)

throws Error

Sets the URL StreamHandlerFactory for this application to fac.
public String toExternalForm()

public String toString()

Returns a string representation of this URL.

902 APPENDIX M the java class library

Vector (java.util)
A public class, derived from Object and implementing Serializable and Cloneable, that manages
an array of objects. Elements can be added or removed from this list and the size of the list can change
dynamically.

variables and constructs

protected int capacityIncrement

The amount of element spaces to be added to the vector each time that an increase must occur. A
capacityIncrement of 0 indicates that the list will double in size at every resizing.

protected int elementCount

protected Object elementData[]

The number of elements and the array containing the elements currently in this Vector.

constructors

public Vector()

public Vector(int size)

public Vector(int size, int incr)

Creates a new instance of a vector with an initial size of size (or using the default of 10). An ini-
tial capacityIncrement can also be specified.

methods

public final void addElement(Object arg)

public final void insertElementAt(Object arg, int index) throws

ArrayIndexOutOfBoundsException

Adds element arg to the end of this Vector or at a specific index. The capacity of the vector is
adjusted if needed.

public final int capacity()

public final void ensureCapacity(int size)

Returns the current capacity of this Vector, or ensures that it can contain at least size elements
public Object clone()

Returns the clone of this Vector.
public final boolean contains(Object arg)

Returns a true value if this Vector contains object arg.
public final void copyInto(Object[] dest)

Copies each of the elements of this Vector into the array dest.
public final Object elementAt(int index) throws ArrayIndexOutOfBoundsException

Returns the element at location index from this Vector.

APPENDIX M the java class library 903

public final Enumeration elements()

Returns an Enumeration of the elements in this Vector.
public final Object firstElement() throws NoSuchElementException

public final Object lastElement() throws NoSuchElementException

Returns the first or last element in this Vector.
public final int indexOf(Object arg)

public final int indexOf(Object arg, int index)

Returns the index of the first occurrence of element arg, starting at index. A –1 value is returned
if the element is not found.

public final boolean isEmpty()

Returns a true value if this Vector contains no elements.
public final int lastIndexOf(Object arg)

public final int lastIndexOf(Object arg, int index)

Returns the first index that object arg occurs at in this Vector, starting a backwards search at the
specified index. If the object is not located, a –1 is returned.

public final void removeAllElements()

public final boolean removeElement(Object arg)

public final void removeElementAt(int index) throws

ArrayIndexOutOfBoundsException

Removes element arg and returns a true value. If the object requested is not located, a false value
is returned. An element can also be removed at a specific index value, or all elements can be
removed.

public final void setElementAt(Object arg, int index) throws

ArrayIndexOutOfBoundsException

Sets the element at the specified index equal to object arg.
public final void setSize(int size)

Sets the size of this Vector to size.
public final int size()

Returns the number of elements in this Vector.
public final String toString()

Returns a string representation of this Vector.
public final void trimToSize()

Reduces the size of this Vector to contain all of the elements present.

Void (java.lang)
An uninstantiable class that acts as a placeholder for the primitive void type in the Class object.

904 APPENDIX M the java class library

variables and constructs

public final static Class TYPE

The Void constant value of the void type class.

Window (java.awt)
A public class, derived from Container, that creates a graphical area that has no borders or menus
and can be used to contain AWT components.

constructors

public Window(Frame frm)

Creates a new instance of a window that has a parent frame (frm). The window is initially not vis-
ible.

methods

public void addNotify()

Creates this window’s peer.
public synchronized void addWindowListener(WindowListener listener)

public synchronized void removeWindowListener(WindowListener listener)

Removes or adds the specified window listener (listener) for this window.
public void dispose()

Removes this window and deletes any resources used by this window.
public Component getFocusOwner()

Returns the component from this active window that currently has the focus.
public Locale getLocale()

Returns the locale for this window.
public Toolkit getToolkit()

Returns the toolkit for this window.
public final String getWarningString()

Returns the warning string for this window.
public boolean isShowing()

Returns a true value if this window is currently visible on the screen.
public void pack()

Causes all of the components of this window to be laid out according to their preferred size.
protected void processEvent(AWTEvent event)

Processes the specified event for this window. If the event is a WindowEvent, then this method calls
the process WindowEvent method of this window, otherwise it will call the parent class’
processEvent method.

APPENDIX M the java class library 905

protected void processWindowEvent(WindowEvent event)

Handles any WindowEvent (event) generated on this window, and passes them to a registered lis-
tener for that event.

public void show()

Makes this window visible to the user and brings it to the front (on top of other windows).
public void toBack()

void toFront()

Sends this window to the back or front of other windows currently displayed on the screen.

WindowAdapter (java.awt.event)
A public abstract class, derived from Object and implementing WindowListener, that permits a
derived class to override the predefined no-op AWT window events.

constructors

public WindowAdapter()

Creates a new instance of a WindowAdapter.

methods

public void windowActivated(WindowEvent event)

public void windowClosed(WindowEvent event)

public void windowClosing(WindowEvent event)

public void windowDeactivated(WindowEvent event)

public void windowDeiconified(WindowEvent event)

public void windowIconified(WindowEvent event)

public void windowOpened(WindowEvent event)

Empty methods that should be overridden in order to implement event handling for window events.

WindowEvent (java.awt.event)
A public class, derived from ComponentEvent, that describes a particular AWT window-based event.

variables and constructs

public static final int WINDOW_ACTIVATED

public static final int WINDOW_CLOSED

public static final int WINDOW_CLOSING

public static final int WINDOW_DEACTIVATED

906 APPENDIX M the java class library

public static final int WINDOW_DEICONIFIED

public static final int WINDOW_FIRST

public static final int WINDOW_ICONIFIED

public static final int WINDOW_LAST

public static final int WINDOW_OPENED

Constant values which represent a variety of window event types.

constructors

public WindowEvent(Window src, int type)

Creates a new instance of a WindowEvent from a specified source window and having a specific
event type.

methods

public Window getWindow()

Returns the source window that this event was triggered in.
public String paramString()

Returns a string containing the parameters for this WindowEvent.

	code30:
	html:

	code37:
	html:

	code38:
	html:

	project57:
	html:

	project58a:
	html:

	project58b:
	html:

	code65:
	html:

	code68:
	html:

	code70:
	html:

	code71:
	html:

	code73:
	html:

	code74:
	html:

	code83:
	html:

	code90:
	html:

	code97:
	html:

	code101:
	html:

	code102:
	html:

	code104:
	html:

	code107:
	html:

	project123a:
	html:

	project123b:
	html:

	project124a:
	html:

	project124b:
	html:

	code135:
	html:

	code139:
	html:

	code141:
	html:

	code143:
	html:

	code147:
	html:

	code159:
	html:

	code161:
	html:

	code163:
	html:

	code165:
	html:

	code167:
	html:

	code172:
	html:

	code175:
	html:

	code176:
	html:

	code178:
	html:

	code180:
	html:

	code182:
	html:

	code186:
	html:

	project201a:
	html:

	project201b:
	html:

	project202:
	html:

	project203:
	html:

	project204:
	html:

	code213:
	html:

	code214:
	html:

	code217:
	html:

	code226:
	html:

	code227:
	html:

	code236:
	html:

	code237:
	html:

	code238:
	html:

	code240:
	html:

	code244:
	html:

	code246:
	html:

	code250:
	html:

	code252:
	html:

	code253:
	html:

	project265a:
	html:

	project265b:
	html:

	project265c:
	html:

	project266:
	html:

	project267:
	html:

	code277:
	html:

	code279:
	html:

	code280:
	html:

	code284:
	html:

	code285:
	html:

	code289:
	html:

	code291:
	html:

	code292:
	html:

	code294:
	html:

	code295:
	html:

	code297:
	html:

	project315b:
	html:

	project315a:
	html:

	project316:
	html:

	project317:
	html:

	code322:
	html:

	code324:
	html:

	code326:
	html:

	code330:
	html:

	code332:
	html:

	code334:
	html:

	code335:
	html:

	code337:
	html:

	code340:
	html:

	code342:
	html:

	code343:
	html:

	code347:
	html:

	code348:
	html:

	code351:
	html:

	code352:
	html:

	code357:
	html:

	project375:
	html:

	project376b:
	html:

	project376a:
	html:

	project377a:
	html:

	project377b:
	html:

	code384:
	html:

	code385:
	html:

	code386:
	html:

	code388:
	html:

	code389:
	html:

	code390:
	html:

	code392:
	html:

	code393:
	html:

	code394:
	html:

	code398:
	html:

	code399:
	html:

	code400:
	html:

	code403:
	html:

	code404:
	html:

	code405:
	html:

	code410:
	html:

	code412:
	html:

	code414:
	html:

	code415:
	html:

	code416:
	html:

	code417:
	html:

	code418:
	html:

	project442a:
	html:

	project442b:
	html:

	project442c:
	html:

	code449:
	html:

	code451:
	html:

	code455:
	html:

	code456:
	html:

	code459:
	html:

	code460:
	html:

	code468:
	html:

	code470:
	html:

	code472:
	html:

	code475:
	html:

	code477:
	html:

	code479:
	html:

	project502a:
	html:

	project502b:
	html:

	project503b:
	html:

	project505:
	html:

	project601a:
	html:

	project601b:
	html:

	project601c:
	html:

	code611:
	html:

	code612:
	html:

	code618:
	html:

	code619:
	html:

	project634a:
	html:

	project634b:
	html:

	project634c:
	html:

	project634d:
	html:

	project636:
	html:

	code641:
	html:

	code642:
	html:

	code644:
	html:

	code649:
	html:

	project657a:
	html:

	project657b:
	html:

	project657c:
	html:

	project658:
	html:

