
A printf format reference page (cheat sheet)
By Alvin Alexander. Last updated: Oct 14, 2014

Summary: This page is a printf formatting cheat sheet. I originally created this cheat sheet

for my own purposes, and then thought I would share it here.

A cool thing about the printf formatting syntax is that the specifiers you can use are very

similar, if not identical, between several different languages, including C, C++, Java, Perl,

Ruby, Scala, and others, so your knowledge is reusable, which is a good thing.

printf formatting with Perl and Java

In this cheat sheet I'm going to show all the examples using Perl, but at first it might help to

see one example using both Perl and Java. So, here's a simple Perl printf example to get us

started:

printf("the %s jumped over the %s, %d times", "cow", "moon", 2);

And here are three different Java printf examples, using different methods that are available

to you in the Java programming language:

System.out.format("the %s jumped over the %s, %d times", "cow", "moon", 2);

System.err.format("the %s jumped over the %s, %d times", "cow", "moon", 2);

String result = String.format("the %s jumped over the %s, %d times", "cow", "moon", 2);

As you can see in that last String.format example, that line of code doesn't print any output,

while the first line prints to standard output, and the second line prints to standard error.

In the remainder of this document I'm going to use Perl examples, but again, the actual

format specifier strings can be used in many different languages.

printf format specifiers - summary

Here's a quick summary of the available printf format specifiers:

%c character

%d decimal (integer) number (base 10)

%e exponential floating-point number

%f floating-point number

%i integer (base 10)

%o octal number (base 8)

%s a string of characters

%u unsigned decimal (integer) number

%x number in hexadecimal (base 16)

%% print a percent sign

\% print a percent sign

Controlling printf integer width

The "%3d" specifier means a minimum width of three spaces, which, by default, will be right-

justified. (Note: the alignment is not currently being displayed properly here.)

printf("%3d", 0); 0

printf("%3d", 123456789); 123456789

printf("%3d", -10); -10

printf("%3d", -123456789); -123456789

Left-justifying printf integer output
To left-justify those previous printf examples, just add a minus sign (-) after the % symbol,

like this:

printf("%-3d", 0); 0

printf("%-3d", 123456789); 123456789

printf("%-3d", -10); -10

printf("%-3d", -123456789); -123456789

The printf zero-fill option
To zero-fill your printf integer output, just add a zero (0) after the % symbol, like this:

printf("%03d", 0); 000

printf("%03d", 1); 001

printf("%03d", 123456789); 123456789

printf("%03d", -10); -10

printf("%03d", -123456789); -123456789

printf integer formatting

Here is a collection of printf examples for integer printing. Several different options are

shown, including a minimum width specification, left-justified, zero-filled, and also a plus

sign for positive numbers.

Description Code Result

At least five wide printf("'%5d'", 10); ' 10'

At least five-wide, left-justified printf("'%-5d'", 10); '10 '

At least five-wide, zero-filled printf("'%05d'", 10); '00010'

At least five-wide, with a plus sign printf("'%+5d'", 10); ' +10'

Five-wide, plus sign, left-justified printf("'%-+5d'", 10); '+10 '

printf - floating point numbers

Here are several examples showing how to print floating-point numbers with printf.

Description Code Result

Print one position after the decimal printf("'%.1f'", 10.3456); '10.3'

Two positions after the decimal printf("'%.2f'", 10.3456); '10.35'

Eight-wide, two positions after the
decimal

printf("'%8.2f'", 10.3456); ' 10.35'

Eight-wide, four positions after the
decimal

printf("'%8.4f'", 10.3456); ' 10.3456'

Eight-wide, two positions after the
decimal, zero-filled

printf("'%08.2f'",
10.3456); '00010.35'

Eight-wide, two positions after the
decimal, left-justified

printf("'%-8.2f'",
10.3456); '10.35 '

Printing a much larger number with
that same format

printf("'%-8.2f'",
101234567.3456); '101234567.35'

printf string formatting
Here are several printf formatting examples that show how to format string output

with printf format specifiers.

Description Code Result

A simple string printf("'%s'", "Hello"); 'Hello'

A string with a minimum length printf("'%10s'", "Hello"); ' Hello'

Minimum length, left-justified printf("'%-10s'", "Hello"); 'Hello '

Summary of special printf characters
The following character sequences have a special meaning when used as printf format

specifiers:

\a audible alert

\b backspace

\f form feed

\n newline, or linefeed

\r carriage return

\t tab

\v vertical tab

\\ backslash

As you can see from that last example, because the backslash character itself is treated

specially, you have to print two backslash characters in a row to get one backslash character

to appear in your output.

Here are a few examples of how to use this special characters:

Description Code Result

Insert a tab character in a string printf("Hello\tworld"); Hello world

Insert a newline character in a string printf("Hello\nworld");
Hello
world

Typical use of the newline character printf("Hello world\n"); Hello world

A DOS/Windows path with backslash
characters

printf("C:\\Windows\\System32\\");
C:\Windows\Sys
tem32\

